1
|
Tang X, Qi Q, Zhou W, Zhou B, Han Y, Liu L. Cyanine based ratio fluorescent probe and its application in hypochlorite detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 313:124150. [PMID: 38492467 DOI: 10.1016/j.saa.2024.124150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/04/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
Hypochlorite (ClO-), a weakly acidic reactive oxygen species, plays a crucial role in antibacterial and anti-inflammatory defense mechanisms. However, elevated levels of ClO- or disruptions in endogenous sites can lead to tissue damage and various diseases including cardiovascular disease, neuronal degeneration, and arthritis. To address this, the development of a specific fluorescent probe with a built-in self-calibration ratio mode for the analysis and biological imaging of ClO- is essential. In this study, a cyanine-based fluorescent probe (Cy-H) was designed for ratiometric fluorescent detection of ClO-, utilizing its aggregation behavior as a novel approach in this field. Upon exposure to ClO-, the phenolic hydroxyl group in probe Cy-H was oxidized into benzoquinone, leading to the formation of cyanine products that displayed a strong tendency to aggregate. As a result, the maximum emission peak of the probe shifted from 700 nm to 485 nm. Notably, a linear relationship was observed between the peak intensity ratio (I485/I700) and the concentration of hypochlorite, with a limit of detection (LOD) of 0.49 μM. Furthermore, this probe was successfully employed for imaging analysis of hypochlorite in living cells and zebrafish.
Collapse
Affiliation(s)
- Xu Tang
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Qi Qi
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Wencheng Zhou
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Boxin Zhou
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yunlong Han
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Lie Liu
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
2
|
Du X, Zhang Q, Ma X, Xu G, Li J, Song P, Xia L. Dual detection and quantification of hypochlorite and sulfite ions via SERS spectroscopy by utilizing the redox reaction of tetramethylbenzidine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 312:124051. [PMID: 38368820 DOI: 10.1016/j.saa.2024.124051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/25/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
We developed a highly efficient, ultra-sensitive, and selective dual detection sensor for hypochlorite (ClO-) and sulfite (SO32-) ions based on surface-enhanced Raman scattering (SERS) spectroscopy. 3,3',5,5'-Tetramethylbenzidine (TMB) is oxidized by ClO- under acidic conditions to diazotized oxTMB that, when electrostatically adsorbed onto Au nanoparticles (NPs), produces a strong Raman signal at 1605 cm-1. Meanwhile, oxTMB is reduced to TMB by SO32-, which significantly reduces the Raman signal. The linear detection range of the proposed sensor is 10-10 to 10-6 M with a detection limit of 59 pM for ClO- and 10-9 to 10-5 M with a detection limit of 5.4 nM for SO32-. In addition, the sensor was successfully applied to detect ClO- and SO32- in water samples.
Collapse
Affiliation(s)
- Xiaoyu Du
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Qijia Zhang
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Xiaodi Ma
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Guangda Xu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jia Li
- College of Physics, Liaoning University, Shenyang 110036, China
| | - Peng Song
- College of Physics, Liaoning University, Shenyang 110036, China.
| | - Lixin Xia
- College of Chemistry, Liaoning University, Shenyang 110036, China.
| |
Collapse
|
3
|
Moeinpour F, Mohseni-Shahri FS, Verdian A, Sheikhzadeh E. Selective Ligand-Doped Liquid Crystal-Based Sensing Platform for Detection of ClO - Ions in Aqueous Media. ACS OMEGA 2022; 7:35993-36000. [PMID: 36249373 PMCID: PMC9558706 DOI: 10.1021/acsomega.2c05250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
The liquid crystal (LC) detection platform has been fabricated for the detection of hypochlorite ions (ClO-) in aquatic solutions. In this system, an imine consisting of the ligand (E)-2-((4-(diethylamino)-2-hydroxybenzylidene)amino)-5-methoxybenzenesulfonic acid (MBA) was doped in 4-cyano-4'-pentyl biphenyl as a selecting LC for ClO-. When immersing the platform in a solution containing ClO-, hypochlorite appears to react with the imine bond in the MBA, and cause it to cleave, which eventually disrupts the direction of LC and causes a dark-to-bright conversion of the LC image. The detection limit for ClO- is 0.05 μM. This sensory platform was unresponsive to NO3 -, BrO3 -, CH3COO-, CO3 2-, and PO4 3- ions. Our sensing platform also detected ClO- in piped water. Since this sensory platform is colored under ambient light, it is easy for regular operators, and it can be used as a mobile tool for monitoring water quality anywhere.
Collapse
Affiliation(s)
- Farid Moeinpour
- Department
of Chemistry, Bandar Abbas Branch, Islamic
Azad University, Bandar Abbas7915893144, Iran
| | | | - Asma Verdian
- Department
of Food Safety and Quality Control, Research
Institute of Food Science and Technology (RIFST), Mashhad79153442, Iran
| | - Elham Sheikhzadeh
- Department
of Chemistry, Faculty of Science, Ferdowsi
University of Mashhad, Mashhad7915893167, Iran
| |
Collapse
|
4
|
Suh B, Kim H, Jang S, Kim KT, Kim C. A benzothiazole-based fluorescent and colorimetric probe for the detection of ClO - and its application to zebrafish and water sample. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 270:120827. [PMID: 34995853 DOI: 10.1016/j.saa.2021.120827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/07/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
A benzothiazole-based fluorescent and colorimetric chemosensor BZD ((E)-2-(benzo[d]thiazol-2-yl)-5-((4-(diethylamino)-2-hydroxybenzylidene)amino)phenol) was applied for detecting ClO-. BZD showed fluorescence quenching and color variation for ClO- via oxidative reaction between ClO- and the imine bond. It could effectively detect ClO- over various competitive analytes. Detection limit for ClO- was calculated to be 1.74 μM by fluorescent method and 16.44 μM by colorimetric one, respectively. Additionally, BZD could be utilized for sensing ClO- in zebrafish, real water sample and paper strip. The photophysical characteristics and sensing mechanism of BZD to ClO- were studied by fluorescent and UV-visible spectroscopy, NMR titration, and ESI-mass spectrometry.
Collapse
Affiliation(s)
- Boeon Suh
- Department of Fine Chem., SNUT (Seoul National Univ. of Sci. and Tech.), Seoul 01811, South Korea
| | - Hyeongjin Kim
- Department of Fine Chem., SNUT (Seoul National Univ. of Sci. and Tech.), Seoul 01811, South Korea
| | - Soogyeong Jang
- Department of Environ. Engineering, (SNUT) Seoul National Univ. of Sci. and Tech., Seoul 01166, South Korea
| | - Ki-Tae Kim
- Department of Environ. Engineering, (SNUT) Seoul National Univ. of Sci. and Tech., Seoul 01166, South Korea.
| | - Cheal Kim
- Department of Fine Chem., SNUT (Seoul National Univ. of Sci. and Tech.), Seoul 01811, South Korea.
| |
Collapse
|
5
|
Ko KH, Kim GH, Song JG, Kim SG. A novel cyclic voltammetric determination of free chlorine generated by ozone disinfection in seawater aquariums. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Thiruppathi M, Tsai CY, Wang TW, Tsao Y, Wu TH, Ho JAA. Simple and Cost-effective Enzymatic Detection of Cholesterol Using Flow Injection Analysis. ANAL SCI 2020; 36:1119-1124. [PMID: 32908068 DOI: 10.2116/analsci.20p080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A flow-injection analytical (FIA) system was developed for the determination of cholesterol concentrations based on enzymatic reactions that occurred in a cholesterol oxidase (CHOx)-immobilized, fused-silica capillary followed by electrochemical detection. The production of hydrogen peroxide from cholesterol in an enzymatic reaction catalyzed by CHOx was subsequently oxidized electrochemically at an electrode. Our FlA system demonstrated its cost-effectiveness and utility at an applied potential of 0.6 V (vs. Ag/AgCl), a flow rate of 100 μL/min and, under optimal conditions, the resulting signal demonstrated a linear dynamic range from 50 μM to 1.0 mM with a limit of detection (LOD) of 12.4 μM, limit of quantification (LOQ) of 44.9 μM, and the coefficient of variation of 5.17%. In addition, validation of our proposed system using a reference HDL-cholesterol kit used for clinical diagnosis suggested our FIA system was comparable to commercial kits for the determination of the cholesterol incorporation amount in various aqueous liposomal suspensions. These good analytical features achieved by FIA could make the implementation of this methodology possible for on-line monitoring of cholesterol in various types of samples.
Collapse
Affiliation(s)
- Murugan Thiruppathi
- BioAnalytical Chemistry and Nanobiomedicine Laboratory, Department of Biochemical Science and Technology, National Taiwan University
| | - Ching-Ying Tsai
- BioAnalytical Chemistry and Nanobiomedicine Laboratory, Department of Biochemical Science and Technology, National Taiwan University
| | - Tzu-Wen Wang
- Department of Chemistry, National Tsing Hua University
| | - Yu Tsao
- BioAnalytical Chemistry and Nanobiomedicine Laboratory, Department of Biochemical Science and Technology, National Taiwan University
| | - Tsung-Hung Wu
- BioAnalytical Chemistry and Nanobiomedicine Laboratory, Department of Biochemical Science and Technology, National Taiwan University
| | - Ja-An Annie Ho
- BioAnalytical Chemistry and Nanobiomedicine Laboratory, Department of Biochemical Science and Technology, National Taiwan University.,Department of Chemistry, National Tsing Hua University.,Department of Chemistry, National Taiwan University.,Center for Biotechnology, National Taiwan University
| |
Collapse
|
7
|
Sivasankar K, Pal S, Thiruppathi M, Lin CH. Carbonization and Preparation of Nitrogen-Doped Porous Carbon Materials from Zn-MOF and Its Applications. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E264. [PMID: 31936117 PMCID: PMC7013983 DOI: 10.3390/ma13020264] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 11/17/2022]
Abstract
Nitrogen-doped porous carbon (NPC) materials were successfully synthesized via a Zn-containing metal-organic framework (Zn-MOF). The resulting NPC materials are characterized using various physicochemical techniques which indicated that the NPC materials obtained at different carbonization temperatures exhibited different properties. Pristine MOF morphology and pore size are retained after carbonization at particular temperatures (600 °C-NPC600 and 800 °C-NPC800). NPC800 material shows an excellent surface area 1192 m2/g, total pore volume 0.92 cm3/g and displays a higher CO2 uptake 4.71 mmol/g at 273 k and 1 bar. Furthermore, NPC600 material displays good electrochemical sensing towards H2O2. Under optimized conditions, our sensor exhibited a wide linearity range between 100 µM and 10 mM with a detection limit of 27.5 µM.
Collapse
Affiliation(s)
- Kulandaivel Sivasankar
- Department of Chemistry, Chung-Yuan Christian University, Chungli District, Taoyuan City 32023, Taiwan
| | - Souvik Pal
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Murugan Thiruppathi
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan;
| | - Chia-Her Lin
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| |
Collapse
|
8
|
Wei Z, Li H, Liu S, Wang W, Chen H, Xiao L, Ren C, Chen X. Carbon Dots as Fluorescent/Colorimetric Probes for Real-Time Detection of Hypochlorite and Ascorbic Acid in Cells and Body Fluid. Anal Chem 2019; 91:15477-15483. [DOI: 10.1021/acs.analchem.9b03272] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Zhenni Wei
- State Key Laboratory
of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry
and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Huiqing Li
- State Key Laboratory
of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry
and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Suibo Liu
- State Key Laboratory
of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry
and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Wei Wang
- State Key Laboratory
of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry
and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Hongli Chen
- State Key Laboratory
of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry
and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Lehui Xiao
- College of Chemistry, Nankai University, Tianjin, 300071, People’s Republic of China
| | - Cuiling Ren
- State Key Laboratory
of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry
and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Xingguo Chen
- State Key Laboratory
of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry
and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| |
Collapse
|
9
|
Thiruppathi M, Lin PY, Chou YT, Ho HY, Wu LC, Ho JAA. Simple aminophenol-based electrochemical probes for non-enzymatic, dual amperometric detection of NADH and hydrogen peroxide. Talanta 2019; 200:450-457. [PMID: 31036208 DOI: 10.1016/j.talanta.2019.03.083] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/21/2019] [Accepted: 03/21/2019] [Indexed: 11/30/2022]
Abstract
Non enzymatic detection of NADH and H2O2 is of practical significance for both environmental and biological prospective. However, there is no simple, straight forward electrochemical sensor available for sensing of them in real samples. Addressing this challenge, we report a simple stimuli responsive aminophenol, pre-anodized screen printed carbon electrode (SPCE*/AP) based electrochemical probes for dual detection of NADH and H2O2. Aminophenol prepared and adsorbed on the electrode from aminophenylboronic acid via boronic acid deprotection with H2O2. The SPCE*/AP fabricated with this process was characterized by cyclic voltammetry (CV), scanning electron microscope (SEM), Raman spectroscopy, UV-visible spectroscopy, and X-ray photoelectron spectroscopy (XPS). Amperometric detection results showed that SPCE*/AP electrodes exhibited linearity from 50 µM to 500 µM and from 200 µM to 2 mM with a detection limit (S/N = 3) of 4.2 µM and 28.9 µM for NADH and H2O2, respectively. Excellent reproducibility and selectivity for NADH and H2O2 were observed for this electrochemical platform. In addition, the matrix effect was investigated further using the same technique to analyze NADH and H2O2 in human urine samples, human serum samples, cell culture medium (containing 10% fetal bovine serum, FBS), and environmental water samples (tap water and rain water). Also, the present sensor demonstrated promising outcomes with living cells (normal cells and cancer cells).
Collapse
Affiliation(s)
- Murugan Thiruppathi
- Bioanalytical Chemistry and Nanobiomedicine Laboratory, Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Pei-Ying Lin
- Bioanalytical Chemistry and Nanobiomedicine Laboratory, Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Yi-Te Chou
- Bioanalytical Chemistry and Nanobiomedicine Laboratory, Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Hsin-Yu Ho
- Department of Applied Chemistry, National Chi Nan University, Puli, Nantou 54561, Taiwan
| | - Li-Chen Wu
- Department of Applied Chemistry, National Chi Nan University, Puli, Nantou 54561, Taiwan
| | - Ja-An Annie Ho
- Bioanalytical Chemistry and Nanobiomedicine Laboratory, Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan; Center for Biotechnology, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
10
|
Gao Y, Yang F, Yu Q, Fan R, Yang M, Rao S, Lan Q, Yang Z, Yang Z. Three-dimensional porous Cu@Cu2O aerogels for direct voltammetric sensing of glucose. Mikrochim Acta 2019; 186:192. [DOI: 10.1007/s00604-019-3263-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 01/16/2019] [Indexed: 10/27/2022]
|
11
|
Hwang SM, Yun D, Kim C. An Imidazo[1,5-α]Pyridine-Based Fluorometric Chemodosimeter for the Highly Selective Detection of Hypochlorite in Aqueous Media. J Fluoresc 2019; 29:451-459. [PMID: 30710188 DOI: 10.1007/s10895-019-02355-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/25/2019] [Indexed: 11/24/2022]
Abstract
A new fluorometric chemodosimeter 2-amino-3-(((E)-3-(1-phenylimidazo[1,5-α]pyridin-3-yl)benzylidene)amino)maleonitrile (BPI-MAL) has been designed and synthesized for sensing hypochlorite. BPI-MAL showed a selective turn-on fluorescence for ClO- through hypochlorite-promoted de-diaminomaleonitrile reaction. It also could detect ClO- in the presence of various competitive anions including reactive oxygen species. Interestingly, sensor BPI-MAL was successfully applied as a fluorescent test kit for ClO- determination. The sensing property and mechanism of BPI-MAL toward ClO- were studied by fluorescence and UV-vis spectroscopy, NMR titration and DFT calculations.
Collapse
Affiliation(s)
- Suh Mi Hwang
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul, 129-743, South Korea
| | - Dongju Yun
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul, 129-743, South Korea
| | - Cheal Kim
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul, 129-743, South Korea.
| |
Collapse
|
12
|
Chinnadayyala SR, Park I, Cho S. Nonenzymatic determination of glucose at near neutral pH values based on the use of nafion and platinum black coated microneedle electrode array. Mikrochim Acta 2018; 185:250. [DOI: 10.1007/s00604-018-2770-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/12/2018] [Indexed: 10/17/2022]
|
13
|
Luo J, Zhao D, Yang M, Qu F. Porous Ni 3N nanosheet array as a catalyst for nonenzymatic amperometric determination of glucose. Mikrochim Acta 2018; 185:229. [PMID: 29594805 DOI: 10.1007/s00604-018-2764-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 03/06/2018] [Indexed: 01/09/2023]
Abstract
A glassy carbon electrode was modified with an array of porous Ni3N nanosheets (Ni3N NA) and studied for its use in non-enzymatic electrochemical detection of glucose. The morphology and structure of the Ni3N NA were characterized by scanning electron microscopy and X-ray diffraction. Electrochemical studies demonstrated that the Ni3N NA acts as an efficient catalyst for the electro-oxidation of glucose at pH 13, best at a working voltage of 0.55 V (vs. Ag/AgCl). Figures of merit include (a) high sensitivity (39 μA·mM-1·cm-2), (b) a low limit of detection (0.48 μM), and (c) a linear range that extends from 2 μM to 7.5 mM. The sensor was applied to the determination of glucose levels in human serum, and satisfactory results were obtained. Graphical abstract Nonenzymatic electrochemical glucose sensor based on porous Ni3N nanosheet array. The arrow indicates the successive addition of glucose standard solutions.
Collapse
Affiliation(s)
- Junjun Luo
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Dan Zhao
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Minghui Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China.
| | - Fengli Qu
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, China.
| |
Collapse
|