1
|
Sun M, Tian Y, Liu J, Yan Y, Zhang X, Xiao C, Jiang R. Proanthocyanidins-based tandem dynamic covalent cross-linking hydrogel for diabetic wound healing. Int J Biol Macromol 2024; 272:132741. [PMID: 38825292 DOI: 10.1016/j.ijbiomac.2024.132741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/04/2024]
Abstract
Wound healing in diabetic patients presents significant challenges in clinical wound care due to high oxidative stress, excessive inflammation, and a microenvironment prone to infection. In this study, we successfully developed a multifunctional tandem dynamic covalently cross-linked hydrogel dressing aimed at diabetic wound healing. This hydrogel was constructed using cyanoacetic acid functionalized dextran (Dex-CA), 2-formylbenzoylboric acid (2-FPBA) and natural oligomeric proanthocyanidins (OPC), catalyzed by histidine. The resulting Dex-CA/OPC/2-FPBA (DPOPC) hydrogel can be dissolved triggered by cysteine, thereby achieving "controllable and non-irritating" dressing change. Furthermore, the incorporation of OPC as a hydrogel building block endowed the hydrogel with antioxidant and anti-inflammatory properties. The cross-linked network of the DPOPC hydrogel circumvents the burst release of OPC, enhancing its biosafety. In vivo studies demonstrated that the DPOPC hydrogel significantly accelerated the wound healing process in diabetic mice compared to a commercial hydrogel, achieving an impressive wound closure rate of 98 % by day 14. The DPOPC hydrogel effectively balanced the disrupted inflammatory state during the healing process. This dynamic hydrogel based on natural polyphenols is expected to be an ideal candidate for dressings intended for chronic wounds.
Collapse
Affiliation(s)
- Minghui Sun
- Department of Dermatology China-Japan Union Hospital of Jilin University, Changchun 130033, PR China; Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Yongchang Tian
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; Department of Chemistry, Northeast Normal University, Changchun 130024, PR China
| | - Jiaying Liu
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Yu Yan
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Xiaonong Zhang
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China.
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Rihua Jiang
- Department of Dermatology China-Japan Union Hospital of Jilin University, Changchun 130033, PR China.
| |
Collapse
|
2
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2017-2018. MASS SPECTROMETRY REVIEWS 2023; 42:227-431. [PMID: 34719822 DOI: 10.1002/mas.21721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2018. Also included are papers that describe methods appropriate to glycan and glycoprotein analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, new methods, matrices, derivatization, MALDI imaging, fragmentation and the use of arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Most of the applications are presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and highlights the impact that MALDI imaging is having across a range of diciplines. MALDI is still an ideal technique for carbohydrate analysis and advancements in the technique and the range of applications continue steady progress.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
Boron-doped titania for separation and purification of lactoferrin in dairy products. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1212:123501. [DOI: 10.1016/j.jchromb.2022.123501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 09/22/2022] [Accepted: 10/07/2022] [Indexed: 11/05/2022]
|
4
|
Zhang B, Chen X, He J, Guo B, Bi S, Zhang F, Tian M. Preparation of a boronate affinity-functionalized metal–organic framework material for selective recognition and separation of glycoproteins at physiological pH. NEW J CHEM 2022. [DOI: 10.1039/d2nj01182d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A boronate affinity functionalized metal–organic framework material was successfully prepared for the efficient and selective extraction of OVA glycoprotein from egg white samples and protein powder.
Collapse
Affiliation(s)
- Baoyue Zhang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, China
| | - Xue Chen
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, China
| | - Jianghua He
- Ruyuan Hec Pharm Co. Ltd, Shaoguan 512700, Guangdong Province, P. R. China
| | - Bailin Guo
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, China
| | - Sheng Bi
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, China
| | - Feng Zhang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, China
| | - Miaomiao Tian
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, China
| |
Collapse
|
5
|
Jin S, Liu L, Fan M, Jia Y, Zhou P. A Facile Strategy for Immobilizing GOD and HRP onto Pollen Grain and Its Application to Visual Detection of Glucose. Int J Mol Sci 2020; 21:ijms21249529. [PMID: 33333754 PMCID: PMC7765182 DOI: 10.3390/ijms21249529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 01/07/2023] Open
Abstract
Pollen grain was explored as a new carrier for enzyme immobilization. After being modified with boric acid-functionalized titania, the pollen grain was able to covalently immobilize glycosylated enzymes by boronate affinity interaction under very mild experimental conditions (e.g., pH 7.0, ambient temperature and free of organic solvent). The glucose oxidase and horse radish peroxidase-immobilized pollen grain became a bienzyme system. The pollen grain also worked as an indicator of the cascade reaction by changing its color. A rapid, simple and cost-effective approach for the visual detection of glucose was then developed. When the glucose concentration exceeded 0.5 mM, the color change was observable by the naked eye. The assay of glucose in body fluid samples exhibited its great potential for practical application.
Collapse
Affiliation(s)
- Shanxia Jin
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China;
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China; (L.L.); (M.F.); (Y.J.)
| | - Liping Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China; (L.L.); (M.F.); (Y.J.)
| | - Mengying Fan
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China; (L.L.); (M.F.); (Y.J.)
| | - Yaru Jia
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China; (L.L.); (M.F.); (Y.J.)
| | - Ping Zhou
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China; (L.L.); (M.F.); (Y.J.)
- Correspondence:
| |
Collapse
|
6
|
An X, Wu H, Li Y, He X, Chen L, Zhang Y. The hydrophilic boronic acid-poly(ethylene glycol) methyl ether methacrylate copolymer brushes functionalized magnetic carbon nanotubes for the selective enrichment of glycoproteins. Talanta 2020; 210:120632. [DOI: 10.1016/j.talanta.2019.120632] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 12/03/2019] [Accepted: 12/08/2019] [Indexed: 12/13/2022]
|
7
|
Magnetic titanium dioxide nanomaterial modified with hydrophilic dicarboxylic ligand for effective enrichment and separation of phosphopeptides and glycopeptides. Mikrochim Acta 2020; 187:195. [DOI: 10.1007/s00604-020-4161-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/13/2020] [Indexed: 12/13/2022]
|
8
|
Le J, Sun T, Peng R, Yuan TF, Feng YQ, Wang ST, Li Y. LC-MS/MS determination of plasma catecholamines after selective extraction by borated zirconia. Mikrochim Acta 2020; 187:165. [DOI: 10.1007/s00604-020-4145-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/24/2020] [Indexed: 12/11/2022]
|
9
|
Dai L, Sun Z, Zhou P. Modification of Luffa Sponge for Enrichment of Phosphopeptides. Int J Mol Sci 2019; 21:ijms21010101. [PMID: 31877829 PMCID: PMC6982136 DOI: 10.3390/ijms21010101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/15/2019] [Accepted: 12/18/2019] [Indexed: 12/15/2022] Open
Abstract
The enrichment technique is crucial to the comprehensive analysis of protein phosphorylation. In this work, a facile, green and efficient synthetic method was set up for quaternization of luffa sponge. The resultant luffa sponge showed strong anion-exchange characteristics and a high adsorption ability for phosphate ions. Along with the unique physical properties, e.g., tenacity and porous texture, quaternized luffa sponge was demonstrated to be a well-suited solid-phase extraction (SPE) material. The quaternized luffa sponge-based SPE method was simple, cost-effective and convenient in operation, and was successfully applied to the capture of phosphopeptides from protein digests. The enrichment approach exhibited exceptionally high selectivity, sensitivity and strong anti-interference ability. Four phosphopeptides were still detected by using the digest mixture of β-casein and bovine serum albumin with a molar ratio of 1:100. 21 phosphopeptides were identified from the tryptic digest of non-fat milk.
Collapse
|
10
|
Synergistic effect of organic-inorganic hybrid monomer and polyhedral oligomeric silsesquioxanes in a boronate affinity monolithic capillary/chip for enrichment of glycoproteins. Mikrochim Acta 2019; 186:812. [DOI: 10.1007/s00604-019-3938-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 10/12/2019] [Indexed: 01/27/2023]
|
11
|
Preparation of cotton wool modified with boric acid functionalized titania for selective enrichment of glycopeptides. Talanta 2019; 203:58-64. [DOI: 10.1016/j.talanta.2019.05.050] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 04/11/2019] [Accepted: 05/10/2019] [Indexed: 01/15/2023]
|
12
|
Chen Y, Huang A, Zhang Y, Bie Z. Recent advances of boronate affinity materials in sample preparation. Anal Chim Acta 2019; 1076:1-17. [DOI: 10.1016/j.aca.2019.04.050] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/18/2019] [Accepted: 04/19/2019] [Indexed: 11/28/2022]
|
13
|
Preparation of a hydrophilic interaction liquid chromatography material by sequential electrostatic deposition of layers of polyethyleneimine and hyaluronic acid for enrichment of glycopeptides. Mikrochim Acta 2019; 186:600. [DOI: 10.1007/s00604-019-3712-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/22/2019] [Indexed: 12/19/2022]
|
14
|
Alzahrani E. Organic Boronate Affinity Sorbent for Capture of cis-Diol Containing Compounds
Eman Alzahrani. ACTA ACUST UNITED AC 2019. [DOI: 10.14233/ajchem.2019.22108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Boronate affinity chromatography (BAC) is argued to be a critical tool in specific capture and separation of cis-diol containing compounds. In present study, organic boronate affinity monolith poly(3-acrylamido phenylboronic acid-co-ethylene dimethacrylate) (AAPBA-co-EDMA) is prepared through one-step in situ polymerization procedure within a micropipette through the application of a pre-polymerization mixture which contains functional monomer (3-acrylamido phenylboronic acid), cross-linker (ethylene dimethacrylate), porogenic solvent (methanol with poly ethylene glycol) and initiator (2,2-dimethoxy-2-phenyl-acetophenone). Following the optimization of time exposure to UV lamp with 365 nm, the macroporous organic boronate monolith was selected. Several approaches including SEM and BET analysis, FT-IR spectroscopy and measuring contact angle were applied in the characterization of the morphology of the monolith. Several cis-diol compounds that include catechol and galactose are applied in the assessment of the boronate affinity of the organic monolithic material. Additionally, the capture of glucose from urine sample is also conducted. The basic principle of the
approach is that boronic acid forms covalent bond with cis-diols in basic solutions whereas the ester bonds are dissociated under acidic media. By using the study results, monolith demonstrate good selectivity towards cis-diol containing compounds. Due to the hydrophilic property of monolith, the affinity chromatography monolith can be performed for several cis-diol compounds including glycoproteins and nucleosides. Also, fabrication of the organic boronate monolithic in microfluidic equipment is essential in facilitating the extraction of boronate affinity using small-volume samples.
Collapse
Affiliation(s)
- Eman Alzahrani
- Department of Chemistry, Faculty of Science, Taif University, Taif, Kingdom of Saudi Arabia
| |
Collapse
|
15
|
Electrospun polyacrylonitrile fibers with and without magnetic nanoparticles for selective and efficient separation of glycoproteins. Mikrochim Acta 2019; 186:542. [DOI: 10.1007/s00604-019-3655-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 07/02/2019] [Indexed: 01/23/2023]
|
16
|
Magnetite nanoparticles coated with mercaptosuccinic acid-modified mesoporous titania as a hydrophilic sorbent for glycopeptides and phosphopeptides prior to their quantitation by LC-MS/MS. Mikrochim Acta 2019; 186:159. [DOI: 10.1007/s00604-019-3274-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/20/2019] [Indexed: 11/26/2022]
|
17
|
Magnetic boronate modified molecularly imprinted polymers on magnetite microspheres modified with porous TiO 2 (Fe 3O 4@pTiO 2@MIP) with enhanced adsorption capacity for glycoproteins and with wide operational pH range. Mikrochim Acta 2018; 185:565. [PMID: 30498865 DOI: 10.1007/s00604-018-3092-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/09/2018] [Indexed: 10/27/2022]
Abstract
Boronate-affinity based molecularly imprinted polymers (MIPs) are beset by the unsatisfied adsorption capacity and narrow working pH ranges. A magnetic molecularly imprinted polymer containing phenylboronic acid groups was placed on the surface of Fe3O4 (magnetite) microspheres coated with porous TiO2 (Fe3O4@pTiO2@MIP). In contrast to its silica analog (Fe3O4@SiO2@MIP), the flowerlike Fe3O4@pTiO2 offers more binding sites for templates. Thus, the adsorption capacity of the Fe3O4@pTiO2@MIP is strongly enhanced. The strong electron-withdrawing effects of Ti(IV) enable the boronic acid of the MIP to have better affinity for glycoproteins at a wide pH range from 6.0 to 9.0. Consequently, the Fe3O4@pTiO2@MIP exhibits higher adsorption for glycoproteins than Fe3O4@SiO2@MIP in both basic and acidic medium. The Fe3O4@pTiO2@MIPs were eluted with 5% acetic acid aqueous solution containing 30% acetonitrile, and the eluate was analyzed by MALDI-TOF MS. The method was applied to the selective extraction and quantitation of horseradish peroxidase (HRP) in spiked fetal bovine serum (FBS). The linear range is 0.40-10 μg·mL-1 with the limit of detection of 0.31 μg·mL-1. In our perception, this work has a wide scope in that is paves the way to a more widespread application of boronate affinity based MIPs for analysis of glycoproteins and related glyco compounds even at moderately acidic pH values. Graphical abstract Schematic presentation of the magnetic boronate modified molecularly imprinted polymer on magnetic spheres modified with porous TiO2 (Fe3O4@pTiO2@MIP). It was applied to extract glycoprotein in spiked both basic fetal bovine serum (FBS) and acidic urine samples prior to quantitation by MALDI-TOF mass spectrometry.
Collapse
|