1
|
Yang M, Zhang M, Jia M. Optical sensor arrays for the detection and discrimination of natural products. Nat Prod Rep 2023; 40:628-645. [PMID: 36597853 DOI: 10.1039/d2np00065b] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Covering: up to the end of 2022Natural products (NPs) have found uses in medicine, food, cosmetics, materials science, environmental protection, and other fields related to our life. Their beneficial properties along with potential toxicities make the detection and discrimination of NPs crucial for their applications. Owing to the merits of low cost and simple operation, optical sensor arrays, including colorimetric and fluorometric sensor arrays, have been widely applied in the detection of small molecule NPs and discrimination of structurally similar small molecule NPs or complex mixtures of NPs. This review provides a brief introduction to the optical sensor array and focuses on its progress toward the detection and discrimination of NPs. We summarized the design principle of sensor arrays toward various NPs (i.e., saccharides and polyhydroxy compounds, organic acids, flavonoids, organic sulfur compounds, amines, amino acids, and saponins) based on their functional groups and characteristic chemical properties, along with representative examples. Moreover, the challenges and potential directions for further research of optical sensor arrays for NPs are proposed.
Collapse
Affiliation(s)
- Maohua Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| | - Mei Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| | - Mingyan Jia
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| |
Collapse
|
2
|
Liu S, Dong H, Jiang F, Li Y, Wei Q. Self-powered photoelectrochemical biosensor with inherent potential for charge carriers drive. Biosens Bioelectron 2022; 211:114361. [PMID: 35588637 DOI: 10.1016/j.bios.2022.114361] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/28/2022] [Accepted: 05/09/2022] [Indexed: 01/05/2023]
Abstract
Self-powered photoelectrochemical (PEC) sensing platform without external voltage has provided a breakthrough in the development of biosensors, however, it is necessary to find suitable Fermi energy level difference between photoanode materials and photocathode materials as the driving force. Herein, the self-powered PEC sensor was developed to combine the advantages of both the photoanode (SnS2/In2S3) and the photocathode (CuInS2). The sufficient Fermi level differentiation between the photoanode with the photocathode not only resulted in an evident photocurrent response vis tuning the electron transfer but avoided redox reactions of extra electron donors/acceptors to enhance the accuracy of the sensor. The biological target was immobilized on the photocathode, which allowed the sensor to possess a good anti-interference capability for the detection of real samples. The proposed PEC sensor exhibits good sensitivity for the cytokeratin 19 fragment (CYFRA21-1) detection and a low limit of detection (LOD) of 6.57 fg mL-1. Moreover, the as-purposed PEC system with good anti-interference capability and accuracy has implications for the detection of other biomarkers.
Collapse
Affiliation(s)
- Shanghua Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, PR China
| | - Hui Dong
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, PR China
| | - Feng Jiang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, PR China
| | - Yueyun Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, PR China.
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China.
| |
Collapse
|
3
|
Charoenkitamorn K, Siangproh W, Chailapakul O, Oyama M, Chaneam S. Simple Portable Voltammetric Sensor Using Anodized Screen-Printed Graphene Electrode for the Quantitative Analysis of p-Hydroxybenzoic Acid in Cosmetics. ACS OMEGA 2022; 7:16116-16126. [PMID: 35571801 PMCID: PMC9097212 DOI: 10.1021/acsomega.2c01434] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/21/2022] [Indexed: 06/01/2023]
Abstract
Screen-printed graphene electrodes (SPGEs) have become a potential option in electrochemical applications because of their outstanding properties and disposable approach to miniaturize the electrodes for onsite analysis. Herein, the detection of para-hydroxybenzoic acid (PHBA) in cosmetics using the anodized SPGE has been pioneered and reported. The simple anodization of the SPGE surface was operated by anodic pretreatment at a constant potential on SPGE. The surface morphologies and electrochemical behaviors of anodized SPGEs in different anodization electrolytes were examined. Using anodized SPGE in a phosphate-buffered solution, a nontoxic solution, the sensitivity of PHBA detection was significantly improved compared with pristine SPGE owing to the increase of the polar oxygen-containing functional group during the anodization. The anodized SPGE could detect a PHBA down to 0.073 μmol/L. Finally, the developed anodized SPGE presented high ability and feasibility for PHBA detection in cosmetics. Furthermore, a facile electrode preparation step with a nontoxic solution can present high reproducibility and compatibility with a portable potentiostat for onsite PHBA detection during manufacturing.
Collapse
Affiliation(s)
- Kanokwan Charoenkitamorn
- Department
of Chemistry, Faculty of Science, Silpakorn
University, Nakhon
Pathom 73000, Thailand
| | - Weena Siangproh
- Department
of Chemistry, Faculty of Science, Srinakharinwirot
University, Sukhumvit 23, Wattana, Bangkok 10110, Thailand
| | - Orawon Chailapakul
- Electrochemistry
and Optical Spectroscopy Center of Excellence, Department of Chemistry,
Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Munetaka Oyama
- Department
of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8520, Japan
| | - Sumonmarn Chaneam
- Department
of Chemistry, Faculty of Science, Silpakorn
University, Nakhon
Pathom 73000, Thailand
| |
Collapse
|
4
|
Michalkiewicz S, Skorupa A, Jakubczyk M. Carbon Materials in Electroanalysis of Preservatives: A Review. MATERIALS (BASEL, SWITZERLAND) 2021; 14:7630. [PMID: 34947225 PMCID: PMC8709479 DOI: 10.3390/ma14247630] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/02/2021] [Accepted: 12/09/2021] [Indexed: 12/24/2022]
Abstract
Electrochemical sensors in electroanalysis are a particularly useful and relatively simple way to identify electroactive substances. Among the materials used to design sensors, there is a growing interest in different types of carbon. This is mainly due to its non-toxic properties, low cost, good electrical conductivity, wide potential range, and the possibility of using it in both aqueous and nonaqueous media. The electrodes made of carbon, and especially of carbon modified with different materials, are currently most often used in the voltammetric analysis of various compounds, including preservatives. The objective of this paper is to present the characteristics and suitability of different carbon materials for the construction of working electrodes used in the voltammetric analysis. Various carbon materials were considered and briefly discussed. Their analytical application was presented on the example of the preservatives commonly used in food, cosmetic, and pharmaceutical preparations. It was shown that for the electroanalysis of preservatives, mainly carbon electrodes modified with various modifiers are used. These modifications ensure appropriate selectivity, high sensitivity, low limits of detection and quantification, as well as a wide linearity range of voltammetric methods of their identification and determination.
Collapse
Affiliation(s)
- Slawomir Michalkiewicz
- Institute of Chemistry, Jan Kochanowski University, PL-25406 Kielce, Poland; (A.S.); (M.J.)
| | | | | |
Collapse
|
5
|
Li S, Zhang Y, Mu S, Ma M, Liu X, Zhang H. Magnetic organic porous polymer as a solid-phase extraction adsorbent for enrichment and quantitation of gastric cancer biomarkers (P-cresol and 4-hydroxybenzoic acid) in urine samples by UPLC. Mikrochim Acta 2020; 187:388. [PMID: 32542460 DOI: 10.1007/s00604-020-04362-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/31/2020] [Indexed: 01/15/2023]
Abstract
A novel magnetic organic porous polymer (denoted as Fe3O4@PC-POP) was developed for magnetic solid-phase extraction (MSPE) of two gastric cancer biomarkers (P-cresol and 4-hydroxybenzoic acid) from urine samples prior to high-performance liquid chromatographic analysis. The adsorbent was characterized by scanning electron microscope, transmission electron microscope, FTIR, powder X-ray diffraction, and other techniques. The result of dynamic light scattering shows that the particle size of the adsorbent is mainly distributed around 400 nm. Based on the design concept of the Fe3O4@PC-POP, the proposed material can effectively capture the target analytes through electrostatic and hydrophobic interaction mechanism. Furthermore, the enrichment conditions were optimized by the response surface method, and the method was utilized for the determination of P-cresol and 4-hydroxybenzoic acid in real urine samples from health and gastric cancer patients with high enrichment factors (34.8 times for P-cresol and 38.7 times for 4-hydroxybenzoic acid), low limit of detection (0.9-5.0 μg L-1), wide linear ranges (3.0-1000 μg L-1), satisfactory relative standard deviation (2.5%-8.5%), and apparent recoveries (85.3-112% for healthy people's and 86.0-112% for gastric cancer patients' urine samples). This study provides a guided principle for design of the versatile polymer with specific capturing of the target compounds from complex biological samples. Graphical abstract.
Collapse
Affiliation(s)
- Shanshan Li
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Yintang Zhang
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, China
| | - Shuai Mu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Minrui Ma
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Xiaoyan Liu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.
| | - Haixia Zhang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
6
|
Class-selective voltammetric determination of hydroxycinnamic acids structural analogs using a WS 2/catechin-capped AuNPs/carbon black-based nanocomposite sensor. Mikrochim Acta 2020; 187:296. [PMID: 32347378 DOI: 10.1007/s00604-020-04281-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 04/13/2020] [Indexed: 12/13/2022]
Abstract
A high-performance screen-printed electrode (SPE) based nanocomposite sensor integrating tungsten disulfide (WS2) flakes decorated with catechin-capped gold nanoparticles (AuNP-CT) and carbon black (CB) has been developed. The excellent antifouling properties of WS2 decorated with AuNP-CT into a high conductivity network of CB results in high selectivity, sensitivity, and reproducibility for the simultaneous determination of hydroxycinnamic acid (hCN) structural analogs: caffeic (CF), sinapic (SP), and p-coumaric acids (CM). Using differential pulse voltammetry (DPV), the target hCNs resulted in three well-resolved oxidation peaks at SPE-CB-WS2/AuNP-CT sensor. Excellent antifouling performance (RSD ip,a ≤ 3%, n = 15 for three analytes' simultaneous measure) and low detection limits (CF 0.10 μmol L-1; SP, 0.40 μmol L-1; CM, 0.40 μmol L-1) are obtained despite the analyzed compounds having a high passivation tendency towards carbon-based sensors. The SPE-CB-WS2/AuNP-CT sensor was successfully applied to determine CF, SP, and CM in food samples with good precision (RSD ≤ 4%, n = 3) and recoveries (86-109%; RSD ≤ 5%, n = 3). The proposed sensor is the first example exploiting the simultaneous determination of these compounds in food samples. Given its excellent electrochemical performance, low cost, disposability, and ease of use, this SPE-CB-WS2/AuNP-CT nanocomposite sensor represents a powerful candidate for the realization of electrochemical devices for the determination of (bio)compounds with high passivation tendency. Graphical abstract.
Collapse
|
7
|
Electrode modified with graphene quantum dots supported in chitosan for electrochemical methods and non-linear deconvolution of spectra for spectrometric methods: approaches for simultaneous determination of triclosan and methylparaben. Mikrochim Acta 2020; 187:250. [PMID: 32222835 DOI: 10.1007/s00604-020-04225-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 03/16/2020] [Indexed: 10/24/2022]
Abstract
Two analytical methods were developed using electrochemical and spectrometric techniques for the simultaneous determination of endocrine disruptors triclosan and methylparaben in the monitoring of personal care products. For the electroanalytical analyses, a sensitive electrode based on graphene quantum dots supported in chitosan was employed. Under optimized conditions and a working potential of typically + 0.60 V for triclosan and + 0.81 V (vs. Ag/AgCl) for methylparaben, the calibration plots obtained by differential pulse voltammetry were linear in the range 0.10 to 10.0 μmol L-1. The detection limits were 0.03 and 0.04 μmol L-1 for triclosan and methylparaben, respectively. For the spectrometric method, UV/VIS spectrometry was used with a mathematical processing of non-linear deconvolution. This processing was used to solve the problem of overlapping absorption bands of triclosan (282 nm) and methylparaben (257 nm), which enabled simultaneous determination. The calibration plots by UV/VIS spectrometry were linear in the range 1.0 to 14.0 μmol L-1 with detection limits of 0.42 and 0.37 μmol L-1, respectively, for triclosan and methylparaben. Similar results obtained from the calibration plots of individual analytes suggest that the methods can be applied for individual or simultaneous determination of these species. Both methods were employed in the analysis of five samples of personal care products: toothpaste, antiseptic soap, antiseptic deodorant, shampoo, and a bath kit (soap and shampoo). The statistical tests indicated that there were no significant differences regarding the accuracy and precision of the data provided by the two methods described herein. Graphical abstract Schematic representation for simultaneous determination of triclosan and methylparaben: electrochemical method employing an electrode modified with graphene quantum dots supported in chitosan and spectrometric method applying a non-linear deconvolution of spectrum.
Collapse
|