1
|
Guo X, Wang J, Bu J, Zhang H, Arshad M, Kanwal A, Majeed MK, Chen WX, Saxena KK, Liu X. Designing Nanocomposite-Based Electrochemical Biosensors for Diabetes Mellitus Detection: A Review. ACS OMEGA 2024; 9:30071-30086. [PMID: 39035943 PMCID: PMC11256292 DOI: 10.1021/acsomega.4c02540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/08/2024] [Accepted: 06/21/2024] [Indexed: 07/23/2024]
Abstract
This review will unveil the development of a new generation of electrochemical sensors utilizing a transition-metal-oxide-based nanocomposite with varying morphology. There has been considerable discussion on the role of transition metal oxide-based nanocomposite, including iron, nickel, copper, cobalt, zinc, platinum, manganese, conducting polymers, and their composites, in electrochemical and biosensing applications. Utilizing these materials to detect glucose and hydrogen peroxide selectively and sensitively with the correct chemical functionalization is possible. These transition metals and their oxide nanoparticles offer a potential method for electrode modification in sensors. Nanotechnology has made it feasible to develop nanostructured materials for glucose and H2O2 biosensor applications. Highly sensitive and selective biosensors with a low detection limit can detect biomolecules at nanomolar to picomolar (10-9 to 10-12 molar) concentrations to assess physiological and metabolic parameters. By mixing carbon-based materials (graphene oxide) with inorganic nanoparticles, nanocomposite biosensor devices with increased sensitivity can be made using semiconducting nanoparticles, quantum dots, organic polymers, and biomolecules.
Collapse
Affiliation(s)
- Xiang Guo
- Science and
Technology on Aerospace Chemical Power Laboratory, Laboratory of Emergency
Safety and Rescue Technology, Hubei Institute
of Aerospace Chemotechnology, Xiangyang 441003, China
| | - Jiaxin Wang
- Science and
Technology on Aerospace Chemical Power Laboratory, Laboratory of Emergency
Safety and Rescue Technology, Hubei Institute
of Aerospace Chemotechnology, Xiangyang 441003, China
| | - Jinyan Bu
- Science and
Technology on Aerospace Chemical Power Laboratory, Laboratory of Emergency
Safety and Rescue Technology, Hubei Institute
of Aerospace Chemotechnology, Xiangyang 441003, China
| | - Huichao Zhang
- Science and
Technology on Aerospace Chemical Power Laboratory, Laboratory of Emergency
Safety and Rescue Technology, Hubei Institute
of Aerospace Chemotechnology, Xiangyang 441003, China
| | - Muhammad Arshad
- Department
of Chemistry, National Sun Yat-sen University, 70 Lien-Hai Road, Kaohsiung 80424, Taiwan China
- CAS Key Laboratory
for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
| | - Ayesha Kanwal
- Department
of Chemistry, IRCBM, COSMAT University Islamabad, Lahore campus 54000, Lahore, Pakistan
| | - Muhammad K. Majeed
- Department
of Materials Science and Engineering, The
University of Texas at Arlington, 76019 Arlington, Texas, United States
| | - Wu-Xing Chen
- Institute
of Environmental Engineering, National Sun
Yat-Sen University, 80424 Kaohsiung, Taiwan
| | - Kuldeep K Saxena
- Division
of Research and Development, Lovely Professional
University, 144411 Phagwara, India
| | - Xinghui Liu
- Science and
Technology on Aerospace Chemical Power Laboratory, Laboratory of Emergency
Safety and Rescue Technology, Hubei Institute
of Aerospace Chemotechnology, Xiangyang 441003, China
| |
Collapse
|
2
|
Sharma A, Kaur N, Singh N. An Encyclopedic Compendium on Chemosensing Supramolecular Metal-Organic Gels. Chem Asian J 2024; 19:e202400258. [PMID: 38629210 DOI: 10.1002/asia.202400258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/16/2024] [Indexed: 05/16/2024]
Abstract
Chemosensing, an interdisciplinary scientific domain, plays a pivotal role ranging from environmental monitoring to healthcare diagnostics and (inter)national security. Metal-organic gels (MOGs) are recognized for their stability, selectivity, and responsiveness, making them valuable for chemosensing applications. Researchers have explored the development of MOGs based on different metal ions and ligands, allowing for tailored properties and sensitivities, and have even demonstrated their applications as portable sensors such as paper-based test strips for practical use. Herein, several studies related to MOGs development and their applications in the chemosensing field via UV-visible or luminance along with electrochemical approach are presented. These papers explored MOGs as versatile materials with their use in sensing bio or environmental analytes. This review provides a foundational understanding of key concepts, methodologies, and recent advancements in this field, fostering the scientific community.
Collapse
Affiliation(s)
- Arun Sharma
- Department of Chemistry, Indian Institute of Technology Ropar, 140001, Rupnagar, Panjab, India
| | - Navneet Kaur
- Department of Chemistry, Panjab University, 160014, Chandigarh, India
| | - Narinder Singh
- Department of Chemistry, Indian Institute of Technology Ropar, 140001, Rupnagar, Panjab, India
| |
Collapse
|
3
|
Wang M, Zhu X, Yin Y, Ling G, Zhang P. Porous reticular Co@Fe metal-organic gel: dual-function simulated peroxidase nanozyme for both colorimetric sensing and antibacterial applications. J Mater Chem B 2024; 12:5418-5430. [PMID: 38716837 DOI: 10.1039/d4tb00446a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Constructing metal-organic gels (MOGs) with enzyme-catalyzed activity and studying their catalytic mechanism are crucial for the development of novel nanozyme materials. In this study, a Co@Fe MOG with excellent peroxidase activity was developed by a simple and mild one-pot process. The results showed that the material exhibited almost a single peroxidase activity under optimal pH conditions, which allowed it to attract and oxidize the chromogenic substrate 3,3',5,5'-tetramethylbenzidine (TMB). Based on the active electron transfer between the metal centers and the organic ligand in the synthetic material, the Co@Fe MOG-H2O2-TMB system was verified to be able to detect H2O2 and citric acid (CA). The catalytic microenvironment formed by the adsorption and the catalytic center accelerated the electron-transfer rate, which expedited the generation of hydroxyl radicals (˙OH, a kind of reactive oxygen species (ROS)) in the presence of H2O2. The persistence and high intensity of ˙OH generation were proven, which would endow Co@Fe MOG with a certain antibacterial ability, promoting the healing of bacteria-infected wounds. In conclusion, this study contributes to the development efforts toward the application systems of nanozymes for marker detection and antibacterial activity.
Collapse
Affiliation(s)
- Meng Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| | - Xiaoguang Zhu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| | - Yannan Yin
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| | - Guixia Ling
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| | - Peng Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
4
|
Liu G, Li S, Shi C, Huo M, Lin Y. Progress in Research and Application of Metal-Organic Gels: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1178. [PMID: 37049272 PMCID: PMC10096755 DOI: 10.3390/nano13071178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
In recent years, metal-organic gels (MOGs) have attracted much attention due to their hierarchical porous structure, large specific surface area, and good surface modifiability. Compared with MOFs, the synthesis conditions of MOGs are gentler and more stable. At present, MOGs are widely used in the fields of catalysis, adsorption, energy storage, electrochromic devices, sensing, analysis, and detection. In this paper, literature metrology and knowledge graph visualization analysis are adopted to analyze and summarize the literature data in the field of MOGs. The visualization maps of the temporal distribution, spatial distribution, authors and institutions' distribution, influence of highly cited literature and journals, keyword clustering, and research trends are helpful to clearly grasp the content and development trend of MOG materials research, point out the future research direction for scholars, and promote the practical application of MOGs. At the same time, the paper reviews the research and application progress of MOGs in recent years by combining keyword clustering, time lines, and emergence maps, and looks forward to their challenges, future development trend, and application prospects.
Collapse
Affiliation(s)
- Gen Liu
- School of Environment, Northeast Normal University, Changchun 130117, China
- Engineering Lab for Water Pollution Control and Resources Recovery, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Siwen Li
- School of Environment, Northeast Normal University, Changchun 130117, China
- Engineering Lab for Water Pollution Control and Resources Recovery, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Chunyan Shi
- Faculty of Environmental Engineering, The University of Kitakyushu, Kitakyushu 808-0135, Japan
| | - Mingxin Huo
- School of Environment, Northeast Normal University, Changchun 130117, China
- Engineering Lab for Water Pollution Control and Resources Recovery, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Yingzi Lin
- School of Municipal & Environmental Engineering, Jilin Jianzhu University, Changchun 130118, China
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China
| |
Collapse
|
5
|
Khashkhashi-Moghadam S, Ezazi-Toroghi S, Kamkar-Vatanparast M, Jouyaeian P, Mokaberi P, Yazdyani H, Amiri-Tehranizadeh Z, Reza Saberi M, Chamani J. Novel perspective into the interaction behavior study of the cyanidin with human serum albumin-holo transferrin complex: Spectroscopic, calorimetric and molecular modeling approaches. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119042] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
6
|
Sharma P, Wang G. 4,6- O-Phenylethylidene Acetal Protected D-Glucosamine Carbamate-Based Gelators and Their Applications for Multi-Component Gels. Gels 2022; 8:191. [PMID: 35323304 PMCID: PMC8953293 DOI: 10.3390/gels8030191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/11/2022] [Accepted: 03/12/2022] [Indexed: 11/21/2022] Open
Abstract
The self-assembly of carbohydrate-based low molecular weight gelators has led to useful advanced soft materials. The interactions of the gelators with various cations and anions are important in creating novel molecular architectures and expanding the scope of the small molecular gelators. In this study, a series of thirteen new C-2 carbamates of the 4,6-O-phenylethylidene acetal-protected D-glucosamine derivatives has been synthesized and characterized. These compounds are rationally designed from a common sugar template. All carbamates synthesized were found to be efficient gelators and three compounds are also hydrogelators. The resulting gels were characterized using optical microscopy, atomic force microscopy, and rheology. The gelation mechanisms were further elucidated using 1H NMR spectroscopy at different temperatures. The isopropyl carbamate hydrogelator 7 formed hydrogels at 0.2 wt% and also formed gels with several tetra alkyl ammonium salts, and showed effectiveness in the creation of gel electrolytes. The formation of metallogels using earth-abundant metal ions such as copper, nickel, iron, zinc, as well as silver and lead salts was evaluated for a few gelators. Using chemiluminescence spectroscopy, the metal-organic xerogels showed enzyme-like properties and enhanced luminescence for luminol. In addition, we also studied the applications of several gels for drug immobilizations and the gels showed sustained release of naproxen from the gel matrices. This robust sugar carbamate-derived gelator system can be used as the scaffold for the design of other functional materials with various types of applications.
Collapse
Affiliation(s)
| | - Guijun Wang
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA;
| |
Collapse
|
7
|
Wychowaniec JK, Saini H, Scheibe B, Dubal DP, Schneemann A, Jayaramulu K. Hierarchical porous metal–organic gels and derived materials: from fundamentals to potential applications. Chem Soc Rev 2022; 51:9068-9126. [DOI: 10.1039/d2cs00585a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review summarizes recent progress in the development and applications of metal–organic gels (MOGs) and their hybrids and derivatives dividing them into subclasses and discussing their synthesis, design and structure–property relationship.
Collapse
Affiliation(s)
- Jacek K. Wychowaniec
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos, Switzerland
| | - Haneesh Saini
- Department of Chemistry, Indian Institute of Technology Jammu, Nagrota Bypass Road, Jammu & Kashmir, 181221, India
| | - Błażej Scheibe
- Adam Mickiewicz University in Poznań, NanoBioMedical Centre, Wszechnicy Piastowskiej 3, PL61614 Poznań, Poland
| | - Deepak P. Dubal
- School of Chemistry and Physics, Queensland University of Technology, Gardens Point Campus, Brisbane, QLD 4001, Australia
| | - Andreas Schneemann
- Lehrstuhl für Anorganische Chemie I, Technische Universität Dresden, Bergstr. 66, 01067 Dresden, Germany
| | - Kolleboyina Jayaramulu
- Department of Chemistry, Indian Institute of Technology Jammu, Nagrota Bypass Road, Jammu & Kashmir, 181221, India
| |
Collapse
|
8
|
Zambrano G, Nastri F, Pavone V, Lombardi A, Chino M. Use of an Artificial Miniaturized Enzyme in Hydrogen Peroxide Detection by Chemiluminescence. SENSORS (BASEL, SWITZERLAND) 2020; 20:E3793. [PMID: 32640736 PMCID: PMC7374304 DOI: 10.3390/s20133793] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/25/2020] [Accepted: 07/03/2020] [Indexed: 11/16/2022]
Abstract
Advanced oxidation processes represent a viable alternative in water reclamation for potable reuse. Sensing methods of hydrogen peroxide are, therefore, needed to test both process progress and final quality of the produced water. Several bio-based assays have been developed so far, mainly relying on peroxidase enzymes, which have the advantage of being fast, efficient, reusable, and environmentally safe. However, their production/purification and, most of all, batch-to-batch consistency may inherently prevent their standardization. Here, we provide evidence that a synthetic de novo miniaturized designed heme-enzyme, namely Mimochrome VI*a, can be proficiently used in hydrogen peroxide assays. Furthermore, a fast and automated assay has been developed by using a lab-bench microplate reader. Under the best working conditions, the assay showed a linear response in the 10.0-120 μM range, together with a second linearity range between 120 and 500 μM for higher hydrogen peroxide concentrations. The detection limit was 4.6 μM and quantitation limits for the two datasets were 15.5 and 186 μM, respectively. In perspective, Mimochrome VI*a could be used as an active biological sensing unit in different sensor configurations.
Collapse
Affiliation(s)
| | | | | | | | - Marco Chino
- Department of Chemical Sciences, University of Naples “Federico II”. Via Cintia, 80126 Napoli, Italy; (G.Z.); (F.N.); (V.P.); (A.L.)
| |
Collapse
|
9
|
Yao L, Kong FY, Wang ZX, Li HY, Zhang R, Fang HL, Wang W. UV-assisted one-pot synthesis of bimetallic Ag-Pt decorated reduced graphene oxide for colorimetric determination of hydrogen peroxide. Mikrochim Acta 2020; 187:410. [PMID: 32601916 DOI: 10.1007/s00604-020-04350-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 05/22/2020] [Indexed: 01/18/2023]
Abstract
Bimetallic Ag-Pt nanoparticles decorated on the surface of reduced graphene oxide (Ag-Pt/rGO) were designed and selected as a nanozyme for the assay of hydrogen peroxide. The nanocomposites were prepared through a one-pot reduction of potassium chloroplatinate, silver nitrate, and graphene oxide under ultraviolet irradiation without using any extra chemical reducing agents or surfactants. The successful formation of Ag-Pt/rGO nanocomposites was confirmed by transmission electron microscopy, energy disperse spectroscopy mapping, X-ray photoelectron spectroscopy, and X-ray diffraction analysis. Significantly, Ag-Pt/rGO nanocomposites possessed excellent peroxidase-like activity toward the catalytic oxidation of 3,3',5,5'-tetramethylbenzidine to form a blue product in the presence of hydrogen peroxide. Steady-state kinetics studies suggested that Ag-Pt/rGO nanocomposites had high affinity to hydrogen peroxide. Based on these properties, a convenient and sensitive method for the colorimetric determination of hydrogen peroxide was developed. Under optimal conditions, the absorbance at 652 nm increases linearly in the 10-100 μM and 100 μM-1 mM ranges of hydrogen peroxide concentration, and the detection limit is 0.9 μM (S/N = 3). The method was successfully applied to the determination of hydrogen peroxide in real water samples. Graphical abstract Ag-Pt/rGO nanocomposites were prepared by a one-pot UV irradiation method and used as a novel nanozyme for colorimetric determination of H2O2.
Collapse
Affiliation(s)
- Lei Yao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Fen-Ying Kong
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China.
| | - Zhong-Xia Wang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Heng-Ye Li
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Rui Zhang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Hai-Lin Fang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Wei Wang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China.
| |
Collapse
|
10
|
Li D, Guo Q, Ding L, Zhang W, Cheng L, Wang Y, Xu Z, Wang H, Gao L. Bimetallic CuCo 2 S 4 Nanozymes with Enhanced Peroxidase Activity at Neutral pH for Combating Burn Infections. Chembiochem 2020; 21:2620-2627. [PMID: 32346945 DOI: 10.1002/cbic.202000066] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 04/27/2020] [Indexed: 11/07/2022]
Abstract
Peroxidase-mimicking nanozymes that can generate toxic hydroxyl radicals (. OH) hold great promise as antibacterial alternatives. However, most of them display optimal performance under strongly acidic conditions (pH 3-4), and are thus not feasible for many medical uses, including burn infections with a wound pH close to neutral. Herein, we report a copper-based nanozyme (CuCo2 S4 ) that exhibits intrinsic peroxidase-like activity and can convert H2 O2 into . OH at neutral pH. In particular, bimetallic CuCo2 S4 nanoparticles (NPs) exhibited enhanced peroxidase-like activity and antibacterial capacity, superior to that of the corresponding monometallic CuS and CoS NPs. The CuCo2 S4 nanozymes possessed excellent ability to kill various bacteria, including methicillin-resistant Staphylococcus aureus (MRSA). Furthermore, this CuCo2 S4 nanozymes could effectively disrupt MRSA biofilms in vitro and accelerate MRSA-infected burn healing in vivo. This work provides a new peroxidase mimic to combat bacteria in neutral pH milieu and this CuCo2 S4 nanozyme could be a promising antibacterial agent for the treatment of burn infections.
Collapse
Affiliation(s)
- Dandan Li
- Department Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, P. R. China.,Jiangsu Key laboratory of integrated traditional Chinese and Western Medicine for prevention and treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, Jiangsu, P. R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225001, Jiangsu, P. R. China
| | - Qianqian Guo
- Department Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, P. R. China
| | - Liming Ding
- Department Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, P. R. China
| | - Wei Zhang
- Department Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, P. R. China
| | - Lu Cheng
- Department Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, P. R. China
| | - Yanqiu Wang
- Department Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, P. R. China
| | - Zhuobin Xu
- Department Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, P. R. China.,Jiangsu Key laboratory of integrated traditional Chinese and Western Medicine for prevention and treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, Jiangsu, P. R. China
| | - Huihui Wang
- Department Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, P. R. China.,Jiangsu Key laboratory of integrated traditional Chinese and Western Medicine for prevention and treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, Jiangsu, P. R. China
| | - Lizeng Gao
- Department Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, P. R. China.,CAS Engineering Laboratory for Nanozyme, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| |
Collapse
|
11
|
Zarif F, Khurshid S, Muhammad N, Zahid Qureshi M, Shah NS. Colorimetric Sensing of Hydrogen Peroxide Using Ionic‐Liquid‐Sensitized Zero‐Valent Copper Nanoparticle (nZVCu). ChemistrySelect 2020. [DOI: 10.1002/slct.202001470] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Faiza Zarif
- Department of Chemistry Government College University Katchery road Lahore 54000 Pakistan
| | - Shazia Khurshid
- Department of Chemistry Government College University Katchery road Lahore 54000 Pakistan
| | - Nawshad Muhammad
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM) COMSATS University Islamabad Lahore Campus 54000 Pakistan
| | - Muhammad Zahid Qureshi
- Department of Chemistry Government College University Katchery road Lahore 54000 Pakistan
| | - Noor S. Shah
- Department of Environmental Sciences COMSATS University Islamabad Vehari Campus 61100 Pakistan
| |
Collapse
|
12
|
Zhang Q, Zhang F, Yu L, Kang Q, Chen Y, Shen D. A differential photoelectrochemical method for glucose determination based on alkali-soaked zeolite imidazole framework-67 as both glucose oxidase and peroxidase mimics. Mikrochim Acta 2020; 187:244. [PMID: 32206911 DOI: 10.1007/s00604-020-4177-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 02/21/2020] [Indexed: 10/24/2022]
Abstract
A differential photoelectrochemical (PEC) method for glucose determination is reported using a nanocomposite with double mimic enzymes of glucose oxidase (GOx) and peroxidase. The nanocomposite was prepared by soaking zeolite imidazole framework-67 (ZIF-67) in 0.1 M NaOH solution at room temperature for 30 min, abbreviated as CoxOyHz@ZIF-67. The Michaelis-Menten constant of CoxOyHz@ZIF-67 to H2O2 and glucose is 121 μM and 3.95 mM, respectively. Using the photoelectrode of CoxOyHz@ZIF-67/TiO2 nanotubes (NTs), glucose was oxidized firstly by dissolved oxygen to generate H2O2 under the catalysis of CoxOyHz film as the mimics of GOx. The product of H2O2 enhanced the photocurrent of TiO2 NTs under the catalysis of ZIF-67 as the mimics of peroxidase. The molecular sieve effect of ZIF-67 frameworks reduces the interferences from molecules with size larger than the apertures in ZIF-67. Under the excitation of a 150 W xenon lamp with full spectrum, the photocurrent was measured in a two-electrode system without external additional potential. By using the photocurrent difference between two photocells, i.e CoxOyHz@ZIF-67/TiO2 NTs and Pt electrode, ZIF-67/TiO2 NTs and Pt electrode, as the signal, the selectivity for glucose determination is improved further. The differential PEC method was applied to the determination of glucose with a linear range 0.1 μM~1 mM and a detection limit of 0.03 μM. Graphical abstract.
Collapse
Affiliation(s)
- Qiao Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Fengxia Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Lei Yu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Qi Kang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Yuqin Chen
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, People's Republic of China.
| | - Dazhong Shen
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, People's Republic of China.
| |
Collapse
|
13
|
Zhang X, Han G, Zhang R, Huang Z, Shen H, Su P, Song J, Yang Y. Co2V2O7 Particles with Intrinsic Multienzyme Mimetic Activities as an Effective Bioplatform for Ultrasensitive Fluorometric and Colorimetric Biosensing. ACS APPLIED BIO MATERIALS 2020; 3:1469-1480. [DOI: 10.1021/acsabm.9b01107] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xiaotong Zhang
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Gaojie Han
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Ruiqi Zhang
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Ze Huang
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Hao Shen
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Ping Su
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Jiayi Song
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Yi Yang
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| |
Collapse
|
14
|
Silica microspheres functionalized with the iminodiacetic acid/copper(II) complex as a peroxidase mimic for use in metal affinity chromatography-based colorimetric determination of histidine-tagged proteins. Mikrochim Acta 2020; 187:121. [DOI: 10.1007/s00604-019-4087-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 12/16/2019] [Indexed: 01/11/2023]
|
15
|
He SB, Chen RT, Wu YY, Wu GW, Peng HP, Liu AL, Deng HH, Xia XH, Chen W. Improved enzymatic assay for hydrogen peroxide and glucose by exploiting the enzyme-mimicking properties of BSA-coated platinum nanoparticles. Mikrochim Acta 2019; 186:778. [DOI: 10.1007/s00604-019-3939-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 10/12/2019] [Indexed: 11/28/2022]
|
16
|
Aziz A, Asif M, Ashraf G, Azeem M, Majeed I, Ajmal M, Wang J, Liu H. Advancements in electrochemical sensing of hydrogen peroxide, glucose and dopamine by using 2D nanoarchitectures of layered double hydroxides or metal dichalcogenides. A review. Mikrochim Acta 2019; 186:671. [DOI: 10.1007/s00604-019-3776-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 08/21/2019] [Indexed: 01/19/2023]
|
17
|
Gu D, Yang W, Wang F, Li M, Liu L, Li H, Pan Q. A metal–organic gel‐based fluorescent chemosensor for selective Al
3+
detection. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5179] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Dongxu Gu
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of ScienceHainan University Haikou 570228 China
| | - Weiting Yang
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of ScienceHainan University Haikou 570228 China
| | - Fuxiang Wang
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of ScienceHainan University Haikou 570228 China
| | - Meiling Li
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of ScienceHainan University Haikou 570228 China
| | - Lijuan Liu
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of ScienceHainan University Haikou 570228 China
| | - Huihui Li
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of ScienceHainan University Haikou 570228 China
| | - Qinhe Pan
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of ScienceHainan University Haikou 570228 China
| |
Collapse
|
18
|
Wu X, Lai T, Jiang J, Ma Y, Tao G, Liu F, Li N. An on-site bacterial detection strategy based on broad-spectrum antibacterial ε-polylysine functionalized magnetic nanoparticles combined with a portable fluorometer. Mikrochim Acta 2019; 186:526. [PMID: 31292779 DOI: 10.1007/s00604-019-3632-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 06/21/2019] [Indexed: 11/25/2022]
Abstract
A sensitive on-site bacterial detection strategy is presented that integrates the broad-spectrum capturing feature of ε-polylysine-functionalized magnetic nanoparticles with an in-house built portable fluorometer. Based on the electrostatic interaction, the functionalized magnetic nanoparticles (ε-PL-MNPs) were prepared for Gram-positive and Gram-negative bacterial separation and subsequent viable release. ε-PL-MNPs show a broad reactivity towards bacteria with the high capture efficiency from real-world sample media. They also enable controlled viable bacterial release with pH adjustment. Detection of bacteria is based on a combination of broad-spectrum capture with colorimetric and fluorimetric immunoassays. A portable fluorometer is built to enhance the applicability for sensitive on-site detection. A limit of detection of 98 CFU·mL-1 is achieved that is comparable to that of a known spectrofluorometric method for E. coli DH5α. Graphical abstract Schematic presentation of bacterial capture using cationic polymer functionalized magnetic nanoparticles and general fluorometric immunoassay with portable fluorometer. The limit of detection is 98 CFU·mL-1 for E. coli DH5α.
Collapse
Affiliation(s)
- Xi Wu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Tiancheng Lai
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jiezhang Jiang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yurou Ma
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Guangyu Tao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Feng Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Na Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
19
|
Qiao J, Liu Q, Wu H, Cai H, Qi L. Non-enzymatic detection of serum glucose using a fluorescent nanopolymer probe. Mikrochim Acta 2019; 186:366. [PMID: 31114937 DOI: 10.1007/s00604-019-3475-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 04/29/2019] [Indexed: 01/05/2023]
Abstract
A fluorescent probe is described for the determination of serum glucose after hepatotoxin-induced liver injury. The probe is based on the use of a water-soluble polymer and has been prepared from a multi-functional azlactone polymer as the linker, amino boronic acid, and Alizarin Red as the signalling moiety. The excitation/emission peaks of the polymeric fluorescent probe are at 468/567 nm. Fluorescence is reduced on addition of glucose. Intensity drops linearly in the 0.1 mM to 14 mM glucose concentration range. The probe was applied to non-enzymatic detection of glucose in rat serum after CCl4-induced liver damage. Graphical abstract A polymer based fluorescent probe has been constructed and applied for non-enzymatic monitoring of serum glucose following hepatotoxin induced liver injury.
Collapse
Affiliation(s)
- Juan Qiao
- Key Laboratory of Analytical Chemistry for Living Biosystems, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Zhongguancun Beiyijie, Beijing, 100190, China.,School of Chemical Sciences, University of Chinese Academy of Sciences, No.19A Yuquanlu, Beijing, 100049, China
| | - Qianrong Liu
- Key Laboratory of Analytical Chemistry for Living Biosystems, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Zhongguancun Beiyijie, Beijing, 100190, China.,College of Chemistry & Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Han Wu
- Key Laboratory of Analytical Chemistry for Living Biosystems, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Zhongguancun Beiyijie, Beijing, 100190, China.,College of Chemistry & Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Huiwu Cai
- College of Chemistry & Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Li Qi
- Key Laboratory of Analytical Chemistry for Living Biosystems, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Zhongguancun Beiyijie, Beijing, 100190, China. .,School of Chemical Sciences, University of Chinese Academy of Sciences, No.19A Yuquanlu, Beijing, 100049, China.
| |
Collapse
|