1
|
Chiou YR, Pang HM, Huang YF, Chen CF. A Semi-Automatic Environmental Monitoring Device for Mercury and Cobalt Ion Detection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2303871. [PMID: 37817349 DOI: 10.1002/smll.202303871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/22/2023] [Indexed: 10/12/2023]
Abstract
A syringe-based, semi-automatic environmental monitoring device is developed for on-site detection of harmful heavy metal ions in water. This portable device consists of a spring-embedded syringe and a polydimethylsiloxane (PDMS) membrane-based flow regulator for semi-automatic fix-and-release fluidic valve actuation, and a paper-based analytical device (PAD) with two kinds of gold nanoclusters (AuNCs) for sensitive Hg2+ and Co2+ ion detection, respectively. The thickness of the elastic PDMS membrane can be adjusted to stabilize and modulate the flow rates generated by the pushing force provided by the spring attached to the plunger. Also, different spring constants can drastically alter the response time. People of all ages can extract the fix-volume sample solutions and then release them to automatically complete the detection process, ensuring high reliability and repeatability. The PAD comprises two layers of modified paper, and each layer is immobilized with bovine serum albumin-capped gold nanoclusters (R-AuNCs) and glutathione-capped gold clusters (G-AuNCs), respectively. The ligands functionalized on the surface of the AuNCs not only can fine-tune the optical properties of the nanoclusters but also enable specific and simultaneous detection of Hg2+ and Co2+ ions via metallophilic Au+ -Hg2+ interaction and the Co2+ -thiol complexation effect, respectively. The feasibility of the device for detecting heavy metal ions at low concentrations in various environmental water samples is demonstrated. The Hg2+ and Co2+ ions can be seen simultaneously within 20 min with detection limits as low as 1.76 nm and 0.27 µm, respectively, lower than those of the regulatory restrictions on water by the US Environmental Protection Agency and the European Union. we expect this sensitive, selective, portable, and easy-to-use device to be valid for on-site multiple heavy metal ion pollution screenings in resource-constrained settings.
Collapse
Affiliation(s)
- Yi-Ru Chiou
- Institute of Applied Mechanics, National Taiwan University, Taipei, 106, Taiwan
- Graduate School of Advanced Technology, National Taiwan University, 106, Taipei, Taiwan
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Hao-Ming Pang
- Institute of Applied Mechanics, National Taiwan University, Taipei, 106, Taiwan
| | - Yu-Fen Huang
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu, 300, Taiwan
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Chien-Fu Chen
- Institute of Applied Mechanics, National Taiwan University, Taipei, 106, Taiwan
- Graduate School of Advanced Technology, National Taiwan University, 106, Taipei, Taiwan
| |
Collapse
|
2
|
Lopes RC, Rocha BG, Maçôas EM, Marques EF, Martinho JM. Combining metal nanoclusters and carbon nanomaterials: Opportunities and challenges in advanced nanohybrids. Adv Colloid Interface Sci 2022; 304:102667. [PMID: 35462268 DOI: 10.1016/j.cis.2022.102667] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 12/11/2022]
Abstract
The development of functional materials with uniquely advanced properties lies at the core of nanoscience and nanotechnology. From the myriad possible combinations of organic and/or inorganic blocks, hybrids combining metal nanoclusters and carbon nanomaterials have emerged as highly attractive colloidal materials for imaging, sensing (optical and electrochemical) and catalysis, among other applications. While the metal nanoclusters provide extraordinary luminescent and electronic properties, the carbon nanomaterials (of zero, one or two dimensions) convey versatility, as well as unique interfacial, electronic, thermal, optical, and mechanical properties, which altogether can be put to use for the desired application. Herein, we present an overview of the field, for experts and non-experts, encompassing the basic properties of the building blocks, a systematic view of the chemical preparation routes and physicochemical properties of the hybrids, and a critical analysis of their ongoing and emerging applications. Challenges and opportunities, including directions towards green chemistry approaches, are also discussed.
Collapse
|
3
|
Mei H, Wang Q, Jiang J, Zhu X, Wang H, Qu S, Wang X. A novel ratiometric nanoprobe based on copper nanoclusters and graphitic carbon nitride nanosheets using Ce(III) as crosslinking agent and aggregation-induced effect initiator for sensitive detection of hydrogen peroxide and glucose. Talanta 2022; 248:123604. [PMID: 35653960 DOI: 10.1016/j.talanta.2022.123604] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 03/14/2022] [Accepted: 05/25/2022] [Indexed: 11/30/2022]
Abstract
Herein, glutathione-capped copper nanoclusters (CuNCs) and graphitic carbon nitride nanosheets (g-C3N4 NSs) were synthesized by a facile one-pot chemical reduction and directly thermal pyrolysis following ultrasonic exfoliation approaches, respectively. The introduction of Ce(III) (Ce3+) played dual functions in constructing a fluorescence-enhanced ratiometric nanoprobe (g-C3N4 NSs-Ce3+-CuNCs), i.e., triggering aggregation-induced emission of CuNCs and conjugating g-C3N4 NSs with CuNCs by virtue of electrostatic and coordination interactions. The as-fabricated nanohybrid displayed 460 and 625 nm dual-emitting peaks, attributing to the emission of g-C3N4 NSs and CuNCs, respectively. Upon addition of H2O2, the 625 nm emission was dramatically quenched, whereas the 460 nm emission remained nearly unchanged, thereby causing obvious color changes from purple to blue under a 365-nm UV lamp. A ratiometric fluorescent assay, based on g-C3N4 NSs-Ce3+-CuNCs, was devised for sensitive and visual detection of H2O2, which spanned the linear range of 2-100 μM with a detection limit of 0.6 μM. In the presence of glucose oxidase, the ratiometric nanoprobe could be simultaneously employed to detect glucose across the linear range of 1.6-320 μM with a detection limit of 0.48 μM. In milk and human serum samples, the fortified recoveries for H2O2 and glucose by the nanoprobe were in the range of 95.5-103.6% with RSDs <3.8%. The real detection levels for glucose are consistent with those by a standard glucometer. As such, the ratiometric nanoprobe offers a promising methodology for several practical applications, such as point-of-care diagnosis and workplace health evaluations.
Collapse
Affiliation(s)
- He Mei
- Health Assessment Center, Zhejiang Provincial Key Laboratory of Watershed Science and Health, College of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China; South Zhejiang Institute of Radiation Medicine and Nuclear Technology, Wenzhou Medical University, Wenzhou 325014, China.
| | - Qing Wang
- Health Assessment Center, Zhejiang Provincial Key Laboratory of Watershed Science and Health, College of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Jiahui Jiang
- Health Assessment Center, Zhejiang Provincial Key Laboratory of Watershed Science and Health, College of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiaolei Zhu
- Health Assessment Center, Zhejiang Provincial Key Laboratory of Watershed Science and Health, College of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Huili Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Shugen Qu
- Health Assessment Center, Zhejiang Provincial Key Laboratory of Watershed Science and Health, College of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China; South Zhejiang Institute of Radiation Medicine and Nuclear Technology, Wenzhou Medical University, Wenzhou 325014, China.
| | - Xuedong Wang
- Health Assessment Center, Zhejiang Provincial Key Laboratory of Watershed Science and Health, College of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
4
|
Wu L, Pan W, Ye H, Liang N, Zhao L. Sensitive fluorescence detection for hydrogen peroxide and glucose using biomass carbon dots: Dual-quenching mechanism insight. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128330] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Determination of xanthine using a ratiometric fluorescence probe based on boron-doped carbon quantum dots and gold nanoclusters. Mikrochim Acta 2022; 189:148. [PMID: 35299262 DOI: 10.1007/s00604-021-05139-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/07/2021] [Indexed: 10/18/2022]
Abstract
A dual-emission ratiometric fluorescent sensing system based on boron-doped carbon quantum dots (B-CQDs) and gold nanoclusters (AuNCs) has been developed for the determination of xanthine. The blue fluorescence of B-CQDs at 445 nm is then reduced by the AuNCs through the inner filter effect (IFE) under a single excitation wavelength of 370 nm. By the catalysis of xanthine oxidase (XOD), xanthine is oxidized by oxygen dissolved in the solution to produce H2O2. The horseradish peroxidase (HRP) catalyzes H2O2 to generate hydroxyl radicals, which can quench the fluorescence of AuNCs, leading to the recovery of the fluorescence of B-CQDs. Based on the relationship between the fluorescence intensity ratio (F445/F665) and the concentration of xanthine, the designed method exhibits a good linearity range of 1.2-500.0 μmol L -1 and a limit of detection of 0.37 μmol L -1. The ratiometric fluorescent is applied to determine xanthine in human urine samples. Good recoveries of spiked samples in the range 99.2-105.0% are obtained by the proposed assay, with relative standard deviations (RSD) ranging from 0.9 to 2.6%.
Collapse
|
6
|
Yu X, Zhu W, Ouyang W, Zhang X, Qiu H, Zhang Z, Xing B. Protein-Mediated Fluorescence Resonance Energy Transfer (P-FRET) Probe: Fabrication and Hydroxyl Radical Detection. Photochem Photobiol 2022; 98:371-377. [PMID: 35064566 DOI: 10.1111/php.13595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 11/30/2022]
Abstract
Fluorescent probes based on fluorescence resonance energy transfer (FRET) are highly promising for diverse bioapplications. The key to constructing FRET probes is to confine the donor and acceptor within a sufficiently close distance. However, the commonly used covalent linkage often requires elaborate design and complex organic synthesis, and sometimes causes changes in the fluorescence properties of the donor and acceptor. Inspired by the binding between small molecules and protein in nature, herein, we propose a protein-mediated strategy to fabricate FRET probe. In such protein-mediated FRET (P-FRET) probe, protein acts as a carrier to simultaneously confine donor and acceptor in its cavity. As a proof of concept, we use bovine serum albumin (BSA) as a model protein, coumarin derivative as a donor and hydroxyl radical (·OH)-responsive dye fluorescein as an acceptor. Through a series of investigations, including binding parameters, fluorescence properties and detection performance, we prove that the construction of P-FRET probe is simple and feasible and the detection is sensitive. Our P-FRET strategy will provide new insights for the design of FRET probes.
Collapse
Affiliation(s)
- Xiaokan Yu
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Weisheng Zhu
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Wenao Ouyang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xiaojia Zhang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Hao Qiu
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Zhijun Zhang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Bengang Xing
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore.,School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| |
Collapse
|
7
|
Lu J, Ji L, Yu Y. Rational design of a selective and sensitive "turn-on" fluorescent probe for monitoring and imaging hydrogen peroxide in living cells. RSC Adv 2021; 11:35093-35098. [PMID: 35493133 PMCID: PMC9042858 DOI: 10.1039/d1ra06620j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/16/2021] [Indexed: 12/12/2022] Open
Abstract
As one type of reactive oxygen species (ROS), hydrogen peroxide (H2O2) plays a key role in regulating a variety of cellular functions. Herein, a fluorescent probe N-Py-BO was well designed and synthesized and its ability for detecting H2O2 by fluorescence intensity was evaluated. In the design, the arylboronate ester group was acted as a reaction site for H2O2. Upon reaction with H2O2 under physiological conditions, the boronate moiety in the probe was oxidized, followed by detachment from the probe and as a result, a "turn-on" fluorescence response for H2O2 was acquired. Due to the D-A structure formation between N,N'-dimethylaminobenzene and the -CN group and the linkage by thiophene and C[double bond, length as m-dash]C bonds to increase the conjugate length, this probe showed a remarkable red shift of emission wavelength (650 nm) as well as a large Stokes shift (214 nm). An excellent linear relation with concentrations of H2O2 ranging from 2.0 to 200 μM and a good selectivity over other biological species were obtained. Importantly, taking advantage of the low toxicity and good biocompatibility, the developed probe was successfully applied to monitoring and imaging H2O2 and its level fluctuation in living cells, which provided a powerful tool for evaluation of cellular oxidative stress and understanding the pathophysiological process of H2O2-related diseases.
Collapse
Affiliation(s)
- Jing Lu
- The First Clinical Medical College, Xuzhou Medical University 209 Tongshan Road Xuzhou 221004 Jiangsu China
| | - Liang Ji
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University 209 Tongshan Road Xuzhou 221004 Jiangsu China +86 516 83262138
| | - Yanyan Yu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University 209 Tongshan Road Xuzhou 221004 Jiangsu China +86 516 83262138
| |
Collapse
|
8
|
Zhang Y, Xu H, Yang Y, Zhu F, Pu Y, You X, Liao X. Efficient fluorescence resonance energy transfer-based ratiometric fluorescent probe for detection of dopamine using a dual-emission carbon dot-gold nanocluster nanohybrid. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
9
|
Fluorescent and visual assay of H 2O 2 and glucose based on a highly sensitive copper nanoclusters-Ce(III) fluoroprobe. Anal Bioanal Chem 2021; 413:2135-2146. [PMID: 33511458 DOI: 10.1007/s00216-021-03181-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/21/2020] [Accepted: 01/15/2021] [Indexed: 02/07/2023]
Abstract
Herein, we synthesized and characterized glutathione-capped copper nanoclusters (CuNCs) using a convenient one-pot chemical reduction approach based on glutathione as capping and reducing agents. The Ce(III) induced aggregation-induced emission of CuNCs to form a CuNCs-Ce3+ fluoroprobe due to electrostatic and coordination interactions between Ce3+ and CuNCs. In contrast to CuNCs, the fluorescent intensities (FLs) of CuNCs-Ce3+ were enhanced by ~ 40-fold concomitant with 20-nm blue-shift of the maximum emission, and a 3.45-fold lengthening of the average fluorescent lifetime. The FLs of CuNCs-Ce3+ were selectively quenched at 650 nm by hydrogen peroxide (H2O2) via the redox reaction. Based on this phenomenon, the sensitive assay of H2O2 was realized, and the linear range spanned over the range of 14-140 μM. Notably, the visualization of the fluorescence quenched effect of H2O2 could be easily attained. Additionally, glucose could be specifically oxidized by glucose oxidase to produce H2O2, and thus the detection of glucose was achieved according to changes in the concentrations of H2O2. Under optimized conditions, the fluorescent assay of glucose based on the CuNCs-Ce3+ system offered the linear range of 8-48 μM with detection limit of 2.4 μM. Meanwhile, high selectivity of the as-constructed fluorescent assay allows the sensitive detection of H2O2 and glucose in real-world care products and human serum samples, showing a great application potential in their conventional monitoring.
Collapse
|
10
|
Wang D, Li P, Li J, Dong C. An efficient fluorescent nano-sensor of N-doped carbon dots for the determination of 2,4,6-trinitrophenol and other applications. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:5195-5201. [PMID: 33090130 DOI: 10.1039/d0ay01702g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
N-Doped carbon dots (CDs) had been simply produced by a one-pot synthesis process using amygdalic acid and threonine. The resulting product was water-soluble and exhibited strong luminescence emission with a fluorescence quantum yield of 19.25%. The emission of CDs was obviously and selectively decreased upon adding 2,4,6-trinitrophenol (TNP). It was proved that the fluorescence resonance energy transfer was the main mechanism for quenching. An efficient fluorescence probe with satisfied sensitivity for TNP determination was found. The range of the linear response for TNP detection was 0.5-40.0 μmol L-1, and the limit of detection was 20 nmol L-1. The content of trace TNP in water samples was successfully detected with this method. The CDs were also applied in HepG2 cell imaging and the fabrication of fluorescent films by dispersing the solid freeze-drying CD (SCD) powder into PMMA, which exhibited some application value in biology and photovoltaics.
Collapse
Affiliation(s)
- Dongxiu Wang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China.
| | | | | | | |
Collapse
|
11
|
Liu P, Liu J, Xu Y. Ratiometric fluorescence determination of hydrogen peroxide using carbon dot-embedded Ag@EuWO 4(OH) nanocomposites. Mikrochim Acta 2020; 187:369. [PMID: 32504354 DOI: 10.1007/s00604-020-04344-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 05/18/2020] [Indexed: 12/27/2022]
Abstract
A sheet-like carbon dot-embedded Ag@EuWO4(OH) luminescent nanoprobe was successfully developed for assaying hydrogen peroxide. Firstly, the carbon dot-embedded EuWO4(OH) nanosheets were prepared in a Eu(NO3)3·6H2O-(NH4)10H2(W2O7)6·xH2O-CS(NH2)2 hydrothermal synthetic system. Subsequently, the carbon dot-embedded EuWO4(OH) was functionalized by Ag nanoparticles using an in situ photochemical deposition strategy upon ultraviolet light irradiation. Taking advantage of the dual emissions of the luminescence from carbon dots and characteristic red transitions of Eu3+ ions in the integrated system, the carbon dot-embedded Ag@EuWO4(OH) luminescent composites exhibit ratiometric fluorescence responsive activity towards hydrogen peroxide. The luminescent intensity ratio of Eu3+ (614 nm) to carbon dots (389 nm) shows a polynomial function with changing hydrogen peroxide concentration. The corresponding detection limit is 60 μM at a signal-to-noise ratio of 3 (S/N = 3) implying the potential use of the carbon dot-embedded Ag@EuWO4(OH) as nanoprobe. The method was applied to the quantification of H2O2 in real samples with satisfactory results. Graphical abstract A carbon dot-embedded Ag@EuWO4(OH) luminescence ratiometric probe was successfully prepared through hydrothermal method and in situ photochemical deposition strategy. The luminescence intensity ratio of Eu3+ to carbon dots shows synergistic luminescence response activity towards H2O2 with detection limit of 60 μM.
Collapse
Affiliation(s)
- Peng Liu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, Liaoning, China
| | - Jiaqiang Liu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, Liaoning, China
| | - Yan Xu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, Liaoning, China.
| |
Collapse
|
12
|
Tong L, Wang X, Chen Z, Liang Y, Yang Y, Gao W, Liu Z, Tang B. One-Step Fabrication of Functional Carbon Dots with 90% Fluorescence Quantum Yield for Long-Term Lysosome Imaging. Anal Chem 2020; 92:6430-6436. [DOI: 10.1021/acs.analchem.9b05553] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Lili Tong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, Shandong 250014, P.R. China
| | - Xiuxiu Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, Shandong 250014, P.R. China
| | - Zhenzhen Chen
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, Shandong 250014, P.R. China
| | - Yuhua Liang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, Shandong 250014, P.R. China
| | - Yapei Yang
- Key Laboratory of Oral Maxillofacial-Head and Neck Medical Biology of Shandong Province, Liaocheng People’s Hospital, Liaocheng, Shandong 252000, P. R. China
| | - Wen Gao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, Shandong 250014, P.R. China
| | - Zhenhua Liu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, Shandong 250014, P.R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, Shandong 250014, P.R. China
| |
Collapse
|
13
|
Zhu G, Huang D, Liu L, Yi Y, Wu Y, Huang Y. One-Step Green Preparation of N-Doped Silicon Quantum Dots for the on-off Fluorescent Determination of Hydrogen Peroxide. ANAL LETT 2020. [DOI: 10.1080/00032719.2020.1720222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Gangbing Zhu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Dongyan Huang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Lirong Liu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Yinhui Yi
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
| | - Yuntao Wu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Yongqiang Huang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
14
|
Nitrogen-doped graphene oxide as a catalyst for the oxidation of Rhodamine B by hydrogen peroxide: application to a sensitive fluorometric assay for hydrogen peroxide. Mikrochim Acta 2019; 187:47. [PMID: 31845299 DOI: 10.1007/s00604-019-3994-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/31/2019] [Indexed: 10/25/2022]
Abstract
The authors report that nitrogen-doped graphene oxide (NGO) catalyzes the oxidative decomposition of the fluorophore Rhodamine B (RhB) by hydrogen peroxide. The catalytic decomposition of hydrogen peroxide yields free hydroxyl radicals that destroy RhB so that the intensity of the yellow fluorescence is reduced. Nitrogen doping enhances the electronic and optical properties and surface chemical reactivities of GO such as widening of bandgap, increase in conductivity, enhanced quenching and adsorbing capabilities etc. The catalytic properties of NGO are attributed to its large specific surface and high electron affinity of nitrogen atoms. The chemical and structural properties of GO and NGO were characterized by XRD, FTIR, SEM, UV-visible and Raman spectroscopies. The method was optimized by varying the concentration of RhB, nitrogen dopant and hydrogen peroxide. The fluorescent probe, best operated at excitation/emission wavelengths of 554/577 nm, allows hydrogen peroxide to be determined in concentrations as low as 94 pM with a linear range spanning from 1 nM to 1 μM. Graphical abstract Schematic illustration of a fluorescence quenching method for the determination of H2O2. Upon addition of H2O2, nitrogen-doped graphene oxide (NGO) catalyzes the oxidation of Rhodamine B dye due to hydroxyl radical generation, which leads to a sensitive quenchometric methd for H2 O2.
Collapse
|
15
|
Khan IM, Niazi S, Yu Y, Mohsin A, Mushtaq BS, Iqbal MW, Rehman A, Akhtar W, Wang Z. Aptamer Induced Multicolored AuNCs-WS 2 "Turn on" FRET Nano Platform for Dual-Color Simultaneous Detection of AflatoxinB 1 and Zearalenone. Anal Chem 2019; 91:14085-14092. [PMID: 31585033 DOI: 10.1021/acs.analchem.9b03880] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mycotoxins posit serious threats to human and animal health, and numerous efforts have been performed to detect the multiple toxins by a single diagnostic approach. To best of our knowledge, for the first time, we synthesized an aptamer induced "turn on" fluorescence resonance energy transfer (FRET) biosensor using dual-color gold nanoclusters (AuNCs), l-proline, and BSA synthesized AuNCs (Lp-AuNCs and BSA-AuNCs), with WS2 nanosheet for simultaneous recognition of aflatoxinB1 (AFB1) and zearalenone (ZEN) by single excitation. Here, AFB1 aptamer stabilized blue-emitting AuNCs (AFB1-apt-Lp-AuNCs) (at 442 nm) and ZEN aptamer functionalized with red-colored AuNCs (ZEN-apt-BSA-AuNCs) (at 650 nm) were employed as an energy donor and WS2 nanosheet as a fluorescence quencher. With the addition of AFB1 and ZEN, the change in fluorescence intensity (F.I) was recorded at 442 and 650 nm and can be used for simultaneous recognition with a detection limit of 0.34 pg mL-1 (R2 = 0.9931) and 0.53 pg mL-1 (R2 = 0.9934), respectively. Most importantly, the semiquantitative determination of AFB1 and ZEN can also be realized through photovisualization. The current approach paves a new way to develop sensitive, selective, and convenient metal nanocluster-based fluorescent "switch-on" probes with potential applications in multipurpose biosensing.
Collapse
Affiliation(s)
- Imran Mahmood Khan
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi , 214122 , China.,School of Food Science and Technology , Jiangnan University , Wuxi , 214122 , China.,International Joint Laboratory on Food Safety , Jiangnan University , Wuxi , 214122 , China.,Synergetic Innovation Center of Food Safety and Quality Control of Jiangsu Province , Wuxi 214122 , China
| | - Sobia Niazi
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi , 214122 , China.,School of Food Science and Technology , Jiangnan University , Wuxi , 214122 , China.,International Joint Laboratory on Food Safety , Jiangnan University , Wuxi , 214122 , China.,Synergetic Innovation Center of Food Safety and Quality Control of Jiangsu Province , Wuxi 214122 , China
| | - Ye Yu
- Technology Center of Zhangjiagang Entry-Exit Inspection and Quarantine Bureau , Zhangjiagang , 214114 , China
| | - Ali Mohsin
- East China University of Science and Technology , Shanghai , 200000 , China
| | - Bilal Sajid Mushtaq
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi , 214122 , China.,School of Food Science and Technology , Jiangnan University , Wuxi , 214122 , China
| | - Muhammad Waheed Iqbal
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi , 214122 , China.,School of Food Science and Technology , Jiangnan University , Wuxi , 214122 , China
| | - Abdur Rehman
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi , 214122 , China.,School of Food Science and Technology , Jiangnan University , Wuxi , 214122 , China
| | - Wasim Akhtar
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi , 214122 , China.,School of Food Science and Technology , Jiangnan University , Wuxi , 214122 , China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi , 214122 , China.,School of Food Science and Technology , Jiangnan University , Wuxi , 214122 , China.,International Joint Laboratory on Food Safety , Jiangnan University , Wuxi , 214122 , China.,Synergetic Innovation Center of Food Safety and Quality Control of Jiangsu Province , Wuxi 214122 , China
| |
Collapse
|
16
|
Aptamer and nanomaterial based FRET biosensors: a review on recent advances (2014-2019). Mikrochim Acta 2019; 186:563. [PMID: 31338623 DOI: 10.1007/s00604-019-3659-3] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/02/2019] [Indexed: 12/17/2022]
Abstract
Fluorescence resonance energy transfer, one of the most powerful phenomena for elucidating molecular interactions, has been extensively utilized as a biosensing tool to provide accurate information at the nanoscale. Numerous aptamer- and nanomaterial-based FRET bioassays has been developed for detection of a large variety of molecules. Affinity probes are widely used in biosensors, in which aptamers have emerged as advantageous biorecognition elements, due to their chemical and structural stability. Similarly, optically active nanomaterials offer significant advantages over conventional organic dyes, such as superior photophysical properties, large surface-to-volume ratios, photostability, and longer shelf life. In this report (with 175 references), the use of aptamer-modified nanomaterials as FRET couples is reviewed: quantum dots, upconverting nanoparticles, graphene, reduced graphene oxide, gold nanoparticles, molybdenum disulfide, graphene quantum dots, carbon dots, and metal-organic frameworks. Tabulated summaries provide the reader with useful information on the current state of research in the field. Graphical abstract Schematic representation of a fluorescence resonance energy transfer-based aptamer nanoprobe in the absence and presence of a given target molecule (analyte). Structures are not drawn to their original scales.
Collapse
|