1
|
Lv M, Zong C, Chen X, Lin X, Kong L, Li C. A cathodic photoelectrochemical biosensor based on CRISPR/Cas12a trans-cleavage mediated p-n heterojunction quenching mode for microRNA determination. Anal Chim Acta 2023; 1268:341399. [PMID: 37268340 DOI: 10.1016/j.aca.2023.341399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 06/04/2023]
Abstract
In this study, a cathodic photoelectrochemical (PEC) bioanalysis for sensitive determination of microRNA (miRNA) has been constructed based on CRISPR/Cas12a trans-cleavage mediated [(C6)2Ir(dcbpy)]+PF6- (C6 represents coumarin-6 and dcbpy represents 4,4'-dicarboxyl-2,2'-bipyridine)-sensitized NiO photocathode and p-n heterojunction quenching mode. The [(C6)2Ir(dcbpy)]+PF6--sensitized NiO photocathode exhibits a stable and dramatically improved photocurrent signal due to highly effective photosensitization of [(C6)2Ir(dcbpy)]+ PF6-. Then Bi2S3 quantum dots (Bi2S3 QDs) is captured on the photocathode, resulting in markedly quenching of the photocurrent. When target miRNA is specifically recognized by the hairpin DNA to stimulate the trans-cleavage activity of CRISPR/Cas12a, leading to the leave of the Bi2S3 QDs. The photocurrent is gradually recovered with the increasing target concentration. Thus, the quantitative signal response to target is achieved. Benefiting from excellent performance of NiO photocathode, intense quenching effect of p-n heterojunction and accurate recognition ability of CRISPR/Cas12a, the cathodic PEC biosensor shows a wider linear range over 0.1 fM-10 nM, with a low detection limit of 36 aM. Also, the biosensor exhibits satisfying stability and selectivity.
Collapse
Affiliation(s)
- Mengwei Lv
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Chengxue Zong
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Xiaodong Chen
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Xiaojia Lin
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Linghui Kong
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Chunxiang Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| |
Collapse
|
2
|
Zhang L, Zhang H. Silver Halide-Based Nanomaterials in Biomedical Applications and Biosensing Diagnostics. NANOSCALE RESEARCH LETTERS 2022; 17:114. [PMID: 36437419 PMCID: PMC9702141 DOI: 10.1186/s11671-022-03752-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 11/19/2022] [Indexed: 06/16/2023]
Abstract
In recent years, silver halide (AgX, X = Cl, Br, I)-based photocatalytic materials have received increasing research attention owing to their excellent visible-light-driven photocatalytic performance for applications in organic pollutant degradation, HER, OER, and biomedical engineering. Ag as a noble metal has a surface plasma effect and can form Schottky junctions with AgX, which significantly promotes electron transport and increases photocatalytic efficiency. Therefore, Ag/AgX can reduce the recombination rate of electrons and holes more than pure AgX, leading to using AgX as a photocatalytic material in biomedical applications. The use of AgX-based materials in photocatalytic fields can be classified into three categories: AgX (Ag/AgX), AgX composites, and supported AgX materials. In this review, we introduce recent developments made in biomedical applications and biosensing diagnostics of AgX (Ag/AgX) photocatalytic materials. In addition, this review also discusses the photocatalytic mechanism and applications of AgX (Ag/AgX) and supported AgX materials.
Collapse
Affiliation(s)
- Lin Zhang
- Shandong University of Traditional Chinese Medicine Affiliated Hospital, No. 16369, Jingshi Road, Jinan, 250014 Shandong People’s Republic of China
| | - Hong Zhang
- Shandong University of Traditional Chinese Medicine Affiliated Hospital, No. 16369, Jingshi Road, Jinan, 250014 Shandong People’s Republic of China
| |
Collapse
|
3
|
Wu Y, Lu K, Pei F, Yan Y, Feng S, Hao Q, Xia M, Lei W. Construction of g-C3N4/Au/NH2-UiO-66 Z-scheme heterojunction for label-free photoelectrochemical recognition of D-penicillamine. Talanta 2022; 248:123617. [DOI: 10.1016/j.talanta.2022.123617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 05/05/2022] [Accepted: 05/25/2022] [Indexed: 01/23/2023]
|
4
|
A nano-enzymatic photoelectrochemical L-cysteine biosensor based on Bi2MoO6 modified honeycomb TiO2 nanotube arrays composite. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
5
|
Zeng Z, Tang J, Zhang M, Pu S, Tang D. Ultrasensitive zero-background photoelectrochemical biosensor for analysis of organophosphorus pesticide based on in situ formation of DNA-templated Ag 2S photoactive materials. Anal Bioanal Chem 2021; 413:6279-6288. [PMID: 34373932 DOI: 10.1007/s00216-021-03582-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/24/2021] [Accepted: 07/27/2021] [Indexed: 01/09/2023]
Abstract
Herein, a novel signal-on photoelectrochemical (PEC) biosensor with nearly zero background noise (ZBN) was first fabricated to determine the presence of organophosphorus pesticide based on in situ formation of DNA-templated Ag2S photoactive materials, accompanied by hybridization chain reaction (HCR) signal amplification. The capture probe (S1) on the gold nanoparticle-modified electrode can hybridize with the aptamer molecule to generate a simple PEC biosensor. In the presence of a target molecule, the aptamer molecule is released on the double-stranded DNA (dsDNA)-modified PEC biosensor. Meanwhile, the capture probe remains on the electrode and can open the DNA hairpins (H1, H2) which are rich in cytosine, to trigger the HCR reaction. The rich "C" strands are uncovered after formation of a long dsDNA polymer strand, which can assemble multiple silver ions (Ag+) by means of by C-Ag+-C chelation. Then, a large number of Ag2S can be generated by challenging with S2- solution, producing a satisfactory photocurrent signal. The photoactive material is formed in situ, which eliminates the laborious operation. Moreover, the signal can be highly amplified with nearly zero background noise and HCR signal amplification. Under optimal conditions, the ZBN aptasensor exhibited high sensitivity and selectivity, with a low detection limit of 2 pg mL-1 for malathion. Importantly, the sensing platform can also be applied to determine the presence of malathion in real samples. In this assay, a novel signal-on photoelectrochemical biosensor with nearly zero background noise was first fabricated to determine the presence of organophosphorus pesticide based on in situ formation of DNA-templated Ag2S photoactive materials, accompanied by hybridization chain reaction signal amplification.
Collapse
Affiliation(s)
- Zhiyao Zeng
- Key Laboratory for Green Chemistry of Jiangxi Province, Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, Jiangxi, People's Republic of China
| | - Juan Tang
- Key Laboratory for Green Chemistry of Jiangxi Province, Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, Jiangxi, People's Republic of China. .,Jiangxi Key Laboratory of Organic Chemistry, Nanchang, 330013, Jiangxi, People's Republic of China.
| | - Ming Zhang
- Key Laboratory for Green Chemistry of Jiangxi Province, Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, Jiangxi, People's Republic of China
| | - Shouzhi Pu
- Jiangxi Key Laboratory of Organic Chemistry, Nanchang, 330013, Jiangxi, People's Republic of China
| | - Dianping Tang
- Key Laboratory of Analysis and Detection for Food Safety (Ministry of Education of China and Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, Fujian, People's Republic of China
| |
Collapse
|
6
|
Dong Y, Xu C, Zhang L. Construction of 3D Bi/ZnSnO 3 hollow microspheres for label-free highly selective photoelectrochemical recognition of norepinephrine. NANOSCALE 2021; 13:9270-9279. [PMID: 33982739 DOI: 10.1039/d1nr00792k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Herein, we reported a label-free and reliable photoelectrochemical (PEC) platform for highly selective monitoring of norepinephrine (NE) based on metallic Bi nanoparticles anchored on hollow porous ZnSnO3 microspheres (3D Bi/ZnSnO3) via a simple solvothermal strategy. The designed 3D Bi/ZnSnO3 Schottky junction exhibited a unique photoanodic response toward NE among other catechol derivatives, such as epinephrine (EP) and dopamine (DA), and effectively shielded the interference from thirteen coexisting biomolecules like uric acid (UA) and ascorbic acid (AA). High selectivity and excellent sensitivity could be correlated to the unique chelating coordination interaction between NE and Zn2+ at surface sites as well as the efficient carrier separation of Bi/ZnSnO3, thereby developing a novel "signal-on" label-free and selective strategy for NE detection. The proposed Bi/ZnSnO3-based PEC sensor achieved remarkable NE biosensing with a low detection limit of 0.68 nmol L-1 and a wide response ranging from 0.002 to 350.0 μmol L-1. The applicability of this biosensor was realized for the selective analysis of NE in human serum, human urine and injection samples, laying the foundation for the label-free PEC monitoring of NE in biological fluids.
Collapse
Affiliation(s)
- Yuanyuan Dong
- College of Chemistry, Liaoning University, 66 Chongshan Middle Road, Shenyang, Liaoning 110036, People's Republic of China. and College of Materials and Chemical Engineering, Heilongjiang Institute of Technology, Harbin, 150050, People's Republic of China
| | - Chenxing Xu
- College of Chemistry, Liaoning University, 66 Chongshan Middle Road, Shenyang, Liaoning 110036, People's Republic of China.
| | - Lei Zhang
- College of Chemistry, Liaoning University, 66 Chongshan Middle Road, Shenyang, Liaoning 110036, People's Republic of China.
| |
Collapse
|
7
|
Xing Y, Chen X, Jin B, Chen P, Huang C, Jin Z. Photoelectrochemical Aptasensors Constructed with Photosensitive PbS Quantum Dots/TiO 2 Nanoparticles for Detection of Kanamycin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:3612-3619. [PMID: 33730504 DOI: 10.1021/acs.langmuir.0c03593] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Kanamycin (Kana) is widely used as a veterinary medicine and its abuse causes a serious threat to human health, raising the urgent demand for detection of residual Kana in animal-derived food with high specificity and sensitivity. Here, we developed a photoelectrochemical (PEC) biosensor for rapid quantification of Kana, with lead sulfide quantum dots/titanium dioxide nanoparticles (PbS QDs/TiO2 NPs) as a photosensitive composite, a Kana-specific DNA aptamer as a functional sensor, and ruthenium(III) hexaammine (Ru(NH3)63+) as a signal booster. To prepare the PEC aptasensor, TiO2 NPs, PbS QDs, and polyethyleneimine (PEI) were respectively used to modify the indium tin oxide electrode, and then the amine-terminated aptamer probe was connected to the PEI via glutaraldehyde. Finally, Ru(NH3)63+ was attached on the surface of the aptamer to increase the photocurrent intensity. When Kana binds competitively with Ru(NH3)63+ to the aptamer immobilized on the surface of the aptasensor, Ru(NH3)63+ will be released from the aptamer, resulting in a decrease of the photocurrent signal. This PEC aptasensor exhibits a good linear relationship between the photocurrent shift and the logarithm of Kana concentration within the range of 1.0-300.0 nmol L-1, and the detection limit is 0.161 nmol L-1. Importantly, the PEC aptasensor presented good detection selectivity owing to specific interaction with Kana and was successfully implemented to quantify Kana in honey and milk, suggesting that the PEC aptasensor has the potential of rapid detection of residual Kana in animal-derived foods.
Collapse
Affiliation(s)
- Yichen Xing
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China
| | - Xiaoxiao Chen
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China
| | - Boxing Jin
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China
| | - Piaopiao Chen
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China
| | - Chaobiao Huang
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China
- Xingzhi College, Zhejiang Normal University, Jinhua 321004, China
| | - Zhigang Jin
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
8
|
Peng B, Lu Y, Luo J, Zhang Z, Zhu X, Tang L, Wang L, Deng Y, Ouyang X, Tan J, Wang J. Visible light-activated self-powered photoelectrochemical aptasensor for ultrasensitive chloramphenicol detection based on DFT-proved Z-scheme Ag 2CrO 4/g-C 3N 4/graphene oxide. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123395. [PMID: 32653796 DOI: 10.1016/j.jhazmat.2020.123395] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
A visible light self-powered photoelectrochemical (PEC) aptasensor based on silver chromate particles, graphitic carbon nitride nanosheets and graphene oxide sheets (Ag2CrO4/g-C3N4/GO) for the ultrasensitive detection of chloramphenicol (CAP) was reported in this work. g-C3N4 was considered to be the fundamental photoelectric material because of its great oxidation ability of photogenerated hole as well as excellent biocompatibility and low toxicity. However, the narrow light absorption range and rapid carrier recombination rate limit the application of pure g-C3N4. Herein, Ag2CrO4 and GO as photosensitizer were introduced to improve the photoelectric properties of g-C3N4. The photocurrent of the developed ternary composite was about 3 times higher than that of pristine g-C3N4, which proves it can be used as a suitable photoelectric active material. Moreover, the mechanism of Z-scheme electron transfer path was proved by density functional theory (DFT) calculation. The fabricated PEC aptasensor exhibited high sensitivity toward CAP with a wide liner response of 0.5 pM to 50 nM and a detection limit of 0.29 pM. The specific recognition mechanism and excellent sensing performance indicated this aptasensor could serve as a useful tool for selective and ultrasensitive CAP detection in practical analysis.
Collapse
Affiliation(s)
- Bo Peng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China.
| | - Yue Lu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Jun Luo
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Ziling Zhang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Xu Zhu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Lin Tang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China.
| | - Lingling Wang
- Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha, 410082, China.
| | - Yaocheng Deng
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Xilian Ouyang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Jisui Tan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Jiajia Wang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| |
Collapse
|
9
|
Tang J, Li J, Xiong P, Sun Y, Zeng Z, Tian X, Tang D. Rolling circle amplification promoted magneto-controlled photoelectrochemical biosensor for organophosphorus pesticides based on dissolution of core-shell MnO 2 nanoflower@CdS mediated by butyrylcholinesterase. Mikrochim Acta 2020; 187:450. [PMID: 32676787 DOI: 10.1007/s00604-020-04434-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 07/07/2020] [Indexed: 12/11/2022]
Abstract
A photoelectrochemical (PEC) aptasensing platform is devised for sensitive detection of an organophosphorus pesticide based on dissolution of core-shell MnO2 nanoflower@CdS (MnO2 NF@CdS) by thiocholine (TCh). TCH is produced from the butyrylcholinesterase-acetylthiocholine system, accompanied by target-triggered rolling circle amplification (RCA). The core-shell MnO2 NF@CdS with excellent PEC performance was synthesized and employed as a photo-sensing platform. The target was detected on a functionalized magnetic probe with the corresponding aptamer. Upon malathion introduction, the aptamer was detached from the magnetic beads, while capture DNA (cDNA, with primer fragment) remained on the beads. The primer fragment in cDNA can trigger the RCA reaction to form a long single-stranded DNA (ssDNA). Furthermore, a large number of butyrylcholinesterase (BChE) were assembled on the long ssDNA strands through the hybridization with the S2-Au-BChE probe. Thereafter, TCh generated from hydrolysis of ATCh by BChE can reduce MnO2 NF (core) to Mn2+ and release the CdS nanoparticles (shell) from the platform electrode, significantly enhancing the PEC signal. Under optimal conditions, the proposed aptasensor exhibited high sensitivity for malathion with a low detection limit of 0.68 pg mL-1. Meanwhile, it also presents outstanding specificity, reproducibility, and stability. Importantly, the sensing platform provides a new concept for detection of pesticide. Graphical abstract Herein, this work devised a photoelectrochemical (PEC) aptasensing platform for sensitive detection of organophosphorus pesticide based on dissolution of core-shell MnO2 nanoflower@CdS (MnO2 NF@CdS) by the as-produced thiocholine (TCh) from the butyrylcholinesterase-acetylthiocholine system, accompanying with the target-triggered rolling circle amplification (RCA).
Collapse
Affiliation(s)
- Juan Tang
- Ministry of Education Key Laboratory of Functional Small Organic Molecule, Department of Chemistry and chemical engineering, Jiangxi Normal University, Nanchang, 330022, People's Republic of China.
| | - Jingjing Li
- Ministry of Education Key Laboratory of Functional Small Organic Molecule, Department of Chemistry and chemical engineering, Jiangxi Normal University, Nanchang, 330022, People's Republic of China
| | - Pengyuan Xiong
- Ministry of Education Key Laboratory of Functional Small Organic Molecule, Department of Chemistry and chemical engineering, Jiangxi Normal University, Nanchang, 330022, People's Republic of China
| | - Yuanfang Sun
- Ministry of Education Key Laboratory of Functional Small Organic Molecule, Department of Chemistry and chemical engineering, Jiangxi Normal University, Nanchang, 330022, People's Republic of China
| | - Zhiyao Zeng
- Ministry of Education Key Laboratory of Functional Small Organic Molecule, Department of Chemistry and chemical engineering, Jiangxi Normal University, Nanchang, 330022, People's Republic of China
| | - Xiaochun Tian
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, People's Republic of China
| | - Dianping Tang
- Key Laboratory of Analysis and Detection for Food Safety (Ministry of Education of China and Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, People's Republic of China
| |
Collapse
|
10
|
Tang J, Liu X, Yang C, Zhang Z, Sun R, Li H, Li C, Wang F. A carbon-rich nanofiber framework based on a conjugated arylacetylene polymer for photocathodic enzymatic bioanalysis. RSC Adv 2019; 9:42533-42542. [PMID: 35542846 PMCID: PMC9076658 DOI: 10.1039/c9ra09157b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 12/06/2019] [Indexed: 01/11/2023] Open
Abstract
The metal-free photocathode fabricated by porous carbon-rich nanofiber framework of PTEB film realized “signal-off” photocathodic bioanalysis of glucose.
Collapse
Affiliation(s)
- Junyan Tang
- Key Laboratory of Biomedical Functional Materials
- School of Science
- China Pharmaceutical University
- Nanjing
- P. R. China
| | - Xiaoya Liu
- Key Laboratory of Biomedical Functional Materials
- School of Science
- China Pharmaceutical University
- Nanjing
- P. R. China
| | - Chengwei Yang
- Key Laboratory of Biomedical Functional Materials
- School of Science
- China Pharmaceutical University
- Nanjing
- P. R. China
| | - Zhening Zhang
- Key Laboratory of Biomedical Functional Materials
- School of Science
- China Pharmaceutical University
- Nanjing
- P. R. China
| | - Rui Sun
- Key Laboratory of Biomedical Functional Materials
- School of Science
- China Pharmaceutical University
- Nanjing
- P. R. China
| | - Hongmei Li
- Key Laboratory of Biomedical Functional Materials
- School of Science
- China Pharmaceutical University
- Nanjing
- P. R. China
| | - Caolong Li
- Key Laboratory of Biomedical Functional Materials
- School of Science
- China Pharmaceutical University
- Nanjing
- P. R. China
| | - Fei Wang
- Key Laboratory of Biomedical Functional Materials
- School of Science
- China Pharmaceutical University
- Nanjing
- P. R. China
| |
Collapse
|