1
|
Zhu H, Wang R, Cheng JH, Keener KM. Engineering pineapple peel cellulose nanofibrils with oxidase-mimic functionalities for antibacterial and fruit preservation. Food Chem 2024; 451:139417. [PMID: 38678651 DOI: 10.1016/j.foodchem.2024.139417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024]
Abstract
In this study, an antibacterial material (CNF@CoMn-NS) with oxidase-like activity was created using ultrathin cobalt‑manganese nanosheets (CoMn-NS) with a larger specific surface area grown onto pineapple peel cellulose nanofibrils (CNF). The results showed that the CoMn-NS grew well on the CNF, and the obtained CNF@CoMn-NS exhibited good oxidase-like activity. The imidazole salt framework of the CNF@CoMn-NS contained cobalt and manganese in multiple oxidation states, enabling an active redox cycle and generating active oxygen species (ROS) such as singlet molecular oxygen atoms (1O2) and superoxide radical (·O2-), resulting in the significant inactivation of Staphylococcus aureus (74.14%) and Escherichia coli (54.87%). Importantly, the CNF@CoMn-NS did not exhibit cytotoxicity. The CNF@CoMn-NS further self-assembled into a CNF@CoMn-NS paper with flexibility, stability, and antibacterial properties, which can effectively protect the wound of two varieties of pears from decay caused by microorganisms. This study demonstrated the potential of using renewable and degradable CNF as substrate combined with artificial enzymes as a promising approach to creating antibacterial materials for food preservation and even extending to textiles and biomedical applications.
Collapse
Affiliation(s)
- Hong Zhu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Ruilin Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China.
| | - Kevin M Keener
- School of Engineering, University of Guelph, Albert Thornbrough Building, Rm 2344, Guelph, Canada
| |
Collapse
|
2
|
Liu J, Ma W, Wang Y, Gu Q, Pan Q, Zong S, Qin M, Li J. Enhanced oxidase-mimic constructed by luminescent carbon dots loaded on MIL-53(Fe)-NO 2 for dual-mode detection of gallic acid and biothiols in food and humans. Food Chem 2024; 433:137241. [PMID: 37660599 DOI: 10.1016/j.foodchem.2023.137241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/30/2023] [Accepted: 08/21/2023] [Indexed: 09/05/2023]
Abstract
Monitoring of gallic acid (GA) in food and biothiols in humans is crucial for body health. Nanozyme-mediated colorimetric strategy for evaluating them has been widely applied nowadays, however, the inferior efficient and susceptible single-signal recognition limit its further application. Herein, a sensitive biosensor was first constructed for bimodal detection of GA and biothiols based on CDs@MIL-53(Fe)-NO2, prepared through a facile and time-saving microwave treatment. Benefiting from the excellent fluorescent and electron transfer properties of CDs, CDs@MIL-53(Fe)-NO2 exhibited significant enhanced blue fluorescence and oxidase-like activity, which could oxide colorless 3,3',5,5'-tetramethylbenzidine without H2O2, and the blue product could quench the fluorescence of composite. The dual-mode assay based on such bifunctional nanozyme showed an extremely sensitivity towards GA/l-cysteine/homocysteine with the detection limit of 62/65/124 nM and 17/16/27 nM in colorimetric/fluorescent modes, respectively. The practicability in real samples and portability based on a smartphone of the analysis has been investigated with reliable results.
Collapse
Affiliation(s)
- Junxue Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Wenyan Ma
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Yufei Wang
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Huanghe Road 850#, Dalian 116029, China
| | - Qinfen Gu
- The Australian Synchrotron (ANSTO), 800 Blackburn Road, Clayton, VIC 3168, Australia
| | - Qinhe Pan
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemical Engineering and Technology and College of Science, Hainan University, Haikou 570228, China
| | - Siyu Zong
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Minghao Qin
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Jiyang Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
| |
Collapse
|
3
|
Baranwal A, Polash SA, Aralappanavar VK, Behera BK, Bansal V, Shukla R. Recent Progress and Prospect of Metal-Organic Framework-Based Nanozymes in Biomedical Application. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:244. [PMID: 38334515 PMCID: PMC10856890 DOI: 10.3390/nano14030244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/10/2024]
Abstract
A nanozyme is a nanoscale material having enzyme-like properties. It exhibits several superior properties, including low preparation cost, robust catalytic activity, and long-term storage at ambient temperatures. Moreover, high stability enables repetitive use in multiple catalytic reactions. Hence, it is considered a potential replacement for natural enzymes. Enormous research interest in nanozymes in the past two decades has made it imperative to look for better enzyme-mimicking materials for biomedical applications. Given this, research on metal-organic frameworks (MOFs) as a potential nanozyme material has gained momentum. MOFs are advanced hybrid materials made of inorganic metal ions and organic ligands. Their distinct composition, adaptable pore size, structural diversity, and ease in the tunability of physicochemical properties enable MOFs to mimic enzyme-like activities and act as promising nanozyme candidates. This review aims to discuss recent advances in the development of MOF-based nanozymes (MOF-NZs) and highlight their applications in the field of biomedicine. Firstly, different enzyme-mimetic activities exhibited by MOFs are discussed, and insights are given into various strategies to achieve them. Modification and functionalization strategies are deliberated to obtain MOF-NZs with enhanced catalytic activity. Subsequently, applications of MOF-NZs in the biosensing and therapeutics domain are discussed. Finally, the review is concluded by giving insights into the challenges encountered with MOF-NZs and possible directions to overcome them in the future. With this review, we aim to encourage consolidated efforts across enzyme engineering, nanotechnology, materials science, and biomedicine disciplines to inspire exciting innovations in this emerging yet promising field.
Collapse
Affiliation(s)
- Anupriya Baranwal
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia (V.B.)
| | - Shakil Ahmed Polash
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia (V.B.)
| | - Vijay Kumar Aralappanavar
- NanoBiosensor Laboratory, Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700120, West Bengal, India
| | - Bijay Kumar Behera
- NanoBiosensor Laboratory, Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700120, West Bengal, India
| | - Vipul Bansal
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia (V.B.)
| | - Ravi Shukla
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia (V.B.)
- Centre for Advanced Materials & Industrial Chemistry, RMIT University, Melbourne, VIC 3000, Australia
| |
Collapse
|
4
|
Huang L, Zhang Z, Xing H, Sui X, Yang J, Wang Y. Quantitative and qualitative analyses of metal ions in food and water by using a multicolor sensor array and chemometrics. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:906-915. [PMID: 36541673 DOI: 10.1039/d2ay01771g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Rapid and accurate detection of toxic metal ions is the key to combating food contamination and environmental pollution. In sensor arrays, gold nanoparticles play a crucial role in monitoring metal ions based on surface plasmon resonance. However, identifying metal ions with unknown concentrations in a complex system through this assay is difficult because of its monotonous color change and weak anti-interference ability. To overcome these limitations, a sensitive, flexible, low-cost, and multicolor sensor array was designed herein. The applicability of the sensor array for the qualitative and quantitative analyses of metal ions in food and water was also verified. The developed sensor array could classify 14 metal ions (Cu2+, Fe2+, Fe3+, Mn2+, Ni2+, Zn2+, Cd2+, Cr3+, Co2+, Ba2+, K+, Tl+, Pb2+, and Hg2+) of unknown concentration with an accuracy of 100%. In addition, partial least squares models were established to quantify Tl+, Pb2+, and Hg2+ in water and rice samples, with square correlation coefficients (R2) of 0.9991, 0.9742, and 0.9731, respectively. This method can be used for accurate quantitative and qualitative analyses of heavy metal ions in water and food.
Collapse
Affiliation(s)
- Lijuan Huang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China.
| | - Zinan Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China.
| | - Huanchun Xing
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China.
| | - Xin Sui
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China.
| | - Jun Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China.
| | - Yongan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China.
| |
Collapse
|
5
|
Metal-organic frameworks-derived bimetallic oxide composite nanozyme fiber membrane and the application to colorimetric detection of phenol. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Biocompatible BSA-AuNP@ZnCo2O4 nanosheets with oxidase-like activity: Colorimetric biosensing and antitumor activity. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Teka S, Hajji M, Jebnouni A, Messaoudi O, Mansour D, Guerfel T. Non-covalent assembly of β-iminoamine-chlorocobaltate(II) hybrid material: Molecular structure, computational simulations and antimicrobial activity. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131967] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
8
|
Xu J, Xing Y, Liu Y, Liu M, Hou X. Facile in situ microwave synthesis of Fe 3O 4@MIL-100(Fe) exhibiting enhanced dual enzyme mimetic activities for colorimetric glutathione sensing. Anal Chim Acta 2021; 1179:338825. [PMID: 34535254 DOI: 10.1016/j.aca.2021.338825] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 11/29/2022]
Abstract
In recent decades, artificial nanozymes with excellent stability, low cost and availability have been gradually explored to avoid the limits of natural enzymes such as poor stability, high cost and difficult preparation. Herein, for the first time, we investigated the capability of nanoscale Fe3O4@MIL-100(Fe) as a nanozyme, which was quickly synthesized in situ by a microwave-assisted method within 20 min using Fe3O4 as the metal precursor. The obtained Fe3O4@MIL-100(Fe) showed satisfactory intrinsic dual enzyme mimetic activities, including peroxidase (POD)- and catalase (CAT)-like activities. Moreover, a simple and effective colorimetric biosensor was fabricated to detect glutathione (GSH) based on its POD-like activity. The proposed measurement had a linear range of 1-45 μM and a limit of detection (LOD) of 0.26 μM (3.3 δ/S). It was proved that the established colorimetric sensing system could be successfully applied to detect GSH in actual biological samples. Importantly, the outstanding reusability and stability made it extremely valuable as a catalyst. The present work implied that Fe3O4@MIL-100(Fe) synthesized in situ by the microwave-assisted method was a very promising candidate for biocatalyst and biosensing.
Collapse
Affiliation(s)
- Jiabi Xu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, 110016, PR China
| | - Yanyan Xing
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, 110016, PR China
| | - Yutong Liu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, 110016, PR China
| | - Mingzhe Liu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, 110016, PR China.
| | - Xiaohong Hou
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, 110016, PR China.
| |
Collapse
|
9
|
Lai Y, Li M, Liao X, Zou L. Smartphone-Assisted Colorimetric Detection of Glutathione and Glutathione Reductase Activity in Human Serum and Mouse Liver Using Hemin/G-Quadruplex DNAzyme. Molecules 2021; 26:5016. [PMID: 34443603 PMCID: PMC8398021 DOI: 10.3390/molecules26165016] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 11/26/2022] Open
Abstract
Abnormal levels of reduced glutathione (GSH) and glutathione reductase (GR) are usually related to a variety of diseases, so it is of great significance to determine the GSH concentration and GR activity. We herein develop a smartphone-assisted colorimetric biosensor for the detection of GSH and GR activity in human serum and mouse liver using hemin/G-quadruplex DNAzyme. Firstly, an obvious color change from colorless to green can be observed, owing to the high peroxidase-like activity of hemin/G-quadruplex DNAzyme toward 2,2'-azino-bis(3-ethylbenzothiozoline-6-sulfonic acid) (ABTS). With the addition of GSH or GR, the H2O2-mediated oxidation of ABTS catalyzed by hemin/G-quadruplex DNAzyme is significantly inhibited, resulting in remarkable color fading. Therefore, the detection of GSH and GR activity can be achieved by observing the color transition or measuring the absorbance at 420 nm. The detection limit was estimated to be as low as 0.1 μM and 10 μU/mL for GSH and GR, respectively. More interestingly, the RGB values of the sensing system can be identified by the smartphone application (APP, color collect), which makes it an ideal format for on-site determination and point-of-care testing (POCT). In addition, the proposed method shows excellent selectivity and acceptable applicability for the determination of GSH concentration and GR activity in human serum samples and mouse liver tissues, which might hold great application potential in clinical diagnosis and drug screening.
Collapse
Affiliation(s)
| | | | | | - Li Zou
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; (Y.L.); (M.L.); (X.L.)
| |
Collapse
|
10
|
Qiu Y, Tan G, Fang Y, Liu S, Zhou Y, Kumar A, Trivedi M, Liu D, Liu J. Biomedical applications of metal–organic framework (MOF)-based nano-enzymes. NEW J CHEM 2021. [DOI: 10.1039/d1nj04045f] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the present review, the types and activities of nanometer-sized enzymes are summarized, with recent progress of nanometer-sized enzymes in the field of biomedical detection.
Collapse
Affiliation(s)
- Yuzhi Qiu
- Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Guijian Tan
- Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Yuqian Fang
- Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Si Liu
- Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Yubin Zhou
- Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Abhinav Kumar
- Department of Chemistry, Faculty of Science, University of Lucknow, Lucknow, 226 007, India
| | - Manoj Trivedi
- Department of Chemistry, Sri Venkateswara College, University of Delhi, NewDelhi-110021, India
| | - Dong Liu
- Shenzhen Huachuang Bio-pharmaceutical Technology Co. Ltd., Shenzhen, 518112, Guangdong, China
| | - Jianqiang Liu
- Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| |
Collapse
|
11
|
|
12
|
Liu D, Tu Q, Han Y, Wang X, Kang Q, Wang P, Guo W. A dual-modal colorimetric and photothermal assay for glutathione based on MnO2 nanosheets synthesized with eco-friendly materials. Anal Bioanal Chem 2020; 412:8443-8450. [DOI: 10.1007/s00216-020-02982-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/16/2020] [Accepted: 09/30/2020] [Indexed: 12/29/2022]
|
13
|
Liang L, Huang Y, Liu W, Zuo W, Ye F, Zhao S. Colorimetric Detection of Salicylic Acid in Aspirin Using MIL-53(Fe) Nanozyme. Front Chem 2020; 8:671. [PMID: 33062632 PMCID: PMC7530239 DOI: 10.3389/fchem.2020.00671] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 06/29/2020] [Indexed: 01/04/2023] Open
Abstract
The impurity of salicylic acid (SA) in aspirin is a required inspection item for drug quality control. Since free SA is significantly toxic for humans, the content determination of free SA is absolutely necessary to ensure people's health. In this work, a facile colorimetric method was developed for the detection of SA in aspirin by utilizing the MIL-53(Fe) nanozyme. As MIL-53(Fe) possesses enzyme mimicking catalytic activity, 3,3,5,5-tetramethylbenzidine (TMB) can be easily oxidized to blue-oxidized TMB (oxTMB) with the existence of H2O2. Moreover, an inhibition effect on the catalytic activity of the MIL-53(Fe) nanozyme is induced due to the specific complexation between SA and Fe3+ in the center of MIL-53(Fe), which results in a lighter color in the oxTMB. The color change of oxTMB can be seen easily by the naked eye with the addition of different concentrations of SA. Thus, a simple colorimetric platform was established for effectively monitoring SA. A good linear relationship (R 2 = 0.9990) was obtained in the concentration range of 0.4-28 μmol L-1, and the detection limit was 0.26 μmol L-1. In particular, the rationally designed system has been well-applied to the detection of SA impurity in aspirin. Satisfyingly, the detection results are highly in accord with those of HPLC. This novel colorimetric platform broadens the application prospects of nanozymes in the field of pharmaceutical analysis.
Collapse
Affiliation(s)
- Ling Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and Pharmaceutical Science of Guangxi Normal University, Guilin, China
| | - Yaojing Huang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and Pharmaceutical Science of Guangxi Normal University, Guilin, China
| | - Wenren Liu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and Pharmaceutical Science of Guangxi Normal University, Guilin, China
| | - Weiyuan Zuo
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and Pharmaceutical Science of Guangxi Normal University, Guilin, China
| | - Fanggui Ye
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and Pharmaceutical Science of Guangxi Normal University, Guilin, China
| | - Shulin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and Pharmaceutical Science of Guangxi Normal University, Guilin, China
| |
Collapse
|
14
|
Zhang L, Hou Y, Guo X, Liu W, Lv C, Zhang C, Jin Y, Li B. Fe(III) bipyridyl or phenanthroline complexes with oxidase-like activity for sensitive colorimetric detection of glutathione. LUMINESCENCE 2020; 35:1350-1359. [PMID: 32515064 DOI: 10.1002/bio.3897] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/22/2020] [Accepted: 06/02/2020] [Indexed: 12/17/2022]
Abstract
In this study, three types of Fe(III) bipyridyl or phenanthroline (Fe(III)-L3 ) complex could directly catalyze 3,3',5,5'-tetramethylbenzidine (TMB) to induce blue chromogenic changes without H2 O2 . Fe(III)-L3 complex could induce a colour change in TMB directly after a short incubation time. Due to the high oxidase-like activity of the Fe(III)-L3 complexes, superoxide anion radicals (O2 •- ) were formed in solution. Intermediates radical involving oxo-iron species were then produced that oxidized TMB to its oxidation products (oxTMB), which had an absorbance maximum at 652 nm. Glutathione (GSH) could inhibit the oxidation reaction of the Fe(III)-L3 complex-TMB system, a rapidly colorimetric method was established for the specific detection of GSH that had a detection limit of 0.1 μM. Furthermore, Fe(III)-L3 complexes could catalyze TMB to oxTMB directly without H2 O2 . This fast and simple colorimetric method may open a new avenue for application in the point-of-care diagnosis field using the TMB chromogenic system.
Collapse
Affiliation(s)
- Liu Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, China
| | - Yue Hou
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, China
| | - Xiaoyan Guo
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, China
| | - Wei Liu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, China
| | - Congcong Lv
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, China
| | - Chunyang Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, China
| | - Yan Jin
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, China
| | - Baoxin Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
15
|
Niu X, Li X, Lyu Z, Pan J, Ding S, Ruan X, Zhu W, Du D, Lin Y. Metal–organic framework based nanozymes: promising materials for biochemical analysis. Chem Commun (Camb) 2020; 56:11338-11353. [DOI: 10.1039/d0cc04890a] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Metal–organic frameworks with enzyme-like catalytic features (MOF nanozymes) exhibit great promise in detecting various analytes with amplified signal outputs.
Collapse
Affiliation(s)
- Xiangheng Niu
- School of Mechanical and Materials Engineering
- Washington State University
- Pullman
- USA
- Institute of Green Chemistry and Chemical Technology
| | - Xin Li
- School of Mechanical and Materials Engineering
- Washington State University
- Pullman
- USA
- Institute of Green Chemistry and Chemical Technology
| | - Zhaoyuan Lyu
- School of Mechanical and Materials Engineering
- Washington State University
- Pullman
- USA
| | - Jianming Pan
- Institute of Green Chemistry and Chemical Technology
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Shichao Ding
- School of Mechanical and Materials Engineering
- Washington State University
- Pullman
- USA
| | - Xiaofan Ruan
- School of Mechanical and Materials Engineering
- Washington State University
- Pullman
- USA
| | - Wenlei Zhu
- School of Mechanical and Materials Engineering
- Washington State University
- Pullman
- USA
| | - Dan Du
- School of Mechanical and Materials Engineering
- Washington State University
- Pullman
- USA
| | - Yuehe Lin
- School of Mechanical and Materials Engineering
- Washington State University
- Pullman
- USA
| |
Collapse
|
16
|
Tan H, Zhao Y, Xu X, Sun Y, Li Y, Du J. A covalent triazine framework as an oxidase mimetic in the luminol chemiluminescence system: application to the determination of the antioxidant rutin. Mikrochim Acta 2019; 187:42. [PMID: 31832861 DOI: 10.1007/s00604-019-4058-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 11/30/2019] [Indexed: 01/30/2023]
Abstract
It is found that a covalent triazine framework (CTF-1) (that was prepared from 1,4-dicyanobenzene) exhibits oxidase-like activity toward the oxidation of luminol with dissolved oxygen in alkaline condition to produce intense blue chemiluminescence (CL). The reaction follows Michaelis-Menten kinetics and shows strong specificity for luminol. Reactive oxygen species including 1O2, •OH and O2•- are testified to be involved in the reaction and responsible for the CL. The reaction was applied to the determination of the radical-scavenging activity of antioxidants, with rutin, kaempferol and ferulic acid serving as model scavengers. A sensitive CL method was developed for the determination of rutin based on its inhibitory effect on the reaction. The CL system gave a linear response to the concentration of rutin in the range of 0.03-0.25 μmol·L-1 with a limit of detection of 0.015 μmol·L-1. The practicability of the method was demonstrated by successful determination of rutin in tablets and in Flos Sophorae Immaturus. Graphical Abstract.
Collapse
Affiliation(s)
- Haonan Tan
- Department of Chemistry, School of Science, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yaxin Zhao
- Department of Chemistry, School of Science, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xiaotong Xu
- Department of Chemistry, School of Science, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yuan Sun
- Department of Chemistry, School of Science, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yinhuan Li
- Department of Chemistry, School of Science, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Jianxiu Du
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China.
| |
Collapse
|
17
|
Zhuo S, Fang J, Li M, Wang J, Zhu C, Du J. Manganese(II)-doped carbon dots as effective oxidase mimics for sensitive colorimetric determination of ascorbic acid. Mikrochim Acta 2019; 186:745. [DOI: 10.1007/s00604-019-3887-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 09/30/2019] [Indexed: 02/06/2023]
|
18
|
Fan C, Liu J, Zhao H, Li L, Liu M, Gao J, Ma L. Molecular imprinting on PtPd nanoflowers for selective recognition and determination of hydrogen peroxide and glucose. RSC Adv 2019; 9:33678-33683. [PMID: 35528877 PMCID: PMC9073546 DOI: 10.1039/c9ra05677g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/02/2019] [Indexed: 12/26/2022] Open
Abstract
PtPd nanoflowers (PtPd NFs) exhibit intrinsic peroxidase-like activity as nanozymes, but the nanozymes lack substrate specificity and have low catalytic activity. Herein, a molecularly imprinted nanogel on PtPd NFs was prepared by using 3,3',5,5'-tetramethylbenzidine (TMB) as the template through the aqueous precipitation polymerization method. After the TMB was washed out, many substrate binding pockets were retained in the PtPd NFs. Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and powder X-ray diffraction (XRD) were employed to characterize the molecularly imprinted polymer (MIP) PtPd nanoflowers (T-MIP-PtPd NFs). The obtained T-MIP-PtPd NFs exhibited enhanced catalytic activity and specific recognition for TMB. Compared with PtPd NFs, T-MIP-PtPd NFs showed a linear range from 0.01-5000 μM and a detection limit of 0.005 μM toward the detection of H2O2. Glucose can also be sensitively detected through cascade reaction by the T-MIP-PtPd NFs and glucose oxidase. Therefore, molecular imprinting on nanozymes technology shows promising application in biocatalysis and sensing fields.
Collapse
Affiliation(s)
- Caini Fan
- Department of Hypertension, Henan Provincial People's Hospital Zheng Zhou 450003 China
| | - Junjia Liu
- School of Chemical Engineering and Technology, Hebei University of Technology Tianjin 300130 China
| | - Haiying Zhao
- Department of Hypertension, Henan Provincial People's Hospital Zheng Zhou 450003 China
| | - Ling Li
- Department of Hypertension, Henan Provincial People's Hospital Zheng Zhou 450003 China
| | - Min Liu
- Department of Hypertension, Henan Provincial People's Hospital Zheng Zhou 450003 China
| | - Jing Gao
- School of Chemical Engineering and Technology, Hebei University of Technology Tianjin 300130 China
| | - Li Ma
- School of Chemical Engineering and Technology, Hebei University of Technology Tianjin 300130 China
| |
Collapse
|