1
|
Yang R, Zhao C, Ding S, Ruan J, Li D, Xiang Y, Zhou J, Su H, Li N. Label-free SELEX of aptamers for ultra-sensitive electrochemical aptasensor detection of amanitin in wild mushrooms. Anal Chim Acta 2024; 1326:343136. [PMID: 39260920 DOI: 10.1016/j.aca.2024.343136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/25/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND Mushroom poisoning poses a significant global health concern, with high morbidity and mortality rates. The primary lethal toxins responsible for this condition are alpha-amanitin (ɑ-AMA) and beta-amanitin (β-AMA). As a promising bio-recognition molecules in biosensors, aptamers, have been broadly used in the field of food detection. However, the current SELEX-based methods for screening aptamers for structurally similar small molecules were limited by the labelling or salt ion induction. In this study, we aimed to develop a novel label-free SELEX strategy for the screening of aptamers with high affinity and constructed new aptasensors for the detection of ɑ-AMA and β-AMA. RESULTS A novel label-free SELEX strategy based on the positively charged gold nanoparticles (AuNPs) was proposed to simultaneous screening of aptamers for ɑ-AMA and β-AMA. Only 18 rounds of SELEX were required to obtain new aptamers. The candidate aptamers were analyzed by colloidal gold assay, and the sequences of ɑ-30 and β-37 displayed great affinity with Kd values of 22.26 nM and 23.32 nM, respectively, without interference from botanical toxins. Notably, the truncated aptamers ɑ-30-2 (50 bp) and β-37-2 (57 bp) exhibited higher affinity than their original counterpart (79 bp). Subsequently, the selected aptamers were utilized to construct recognition probes for electrochemical aptasensors based on hairpin cyclic cleavage of substrates by Cu2+ dependent DNAzyme and Exo I-triggered recycling cascades. The detection platform showed excellent analytical performance with limits of detection as low as 4.57 pg/mL (ɑ-AMA) and 8.49 pg/mL (β-AMA). Moreover, the aptasensors exhibited superior performance in mushroom and urine samples. SIGNIFICANCE This work developed a simple and efficient label-free SELEX method for screening new aptamers for ɑ-AMA and β-AMA, which employed the positively charged AuNPs as the screening medium, without the need for chemical labelling of libraries or induction of salt ions. Furthermore, two novel electrochemical aptasensors were developed based on our newly obtained aptamers, which offer the new biosensing tool for ultrasensitive detection of the AMA poisoning, showing great potential in practical applications.
Collapse
Affiliation(s)
- Renxiang Yang
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan, 610500, China
| | - Changsong Zhao
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan, 610500, China
| | - Sheng Ding
- Clinical Medical College & Affiliated Hospital, Chengdu University, Chengdu, Sichuan, 610041, China
| | - Jia Ruan
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan, 610500, China
| | - Dongqiu Li
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, 610500, China
| | - Yijia Xiang
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan, 610500, China
| | - Jie Zhou
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan, 610500, China
| | - Huilan Su
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan, 610500, China
| | - Na Li
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan, 610500, China.
| |
Collapse
|
2
|
Monsalve Y, Cruz-Pacheco AF, Orozco J. Red and near-infrared light-activated photoelectrochemical nanobiosensors for biomedical target detection. Mikrochim Acta 2024; 191:535. [PMID: 39141139 PMCID: PMC11324696 DOI: 10.1007/s00604-024-06592-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 07/28/2024] [Indexed: 08/15/2024]
Abstract
Photoelectrochemical (PEC) nanobiosensors integrate molecular (bio)recognition elements with semiconductor/plasmonic photoactive nanomaterials to produce measurable signals after light-induced reactions. Recent advancements in PEC nanobiosensors, using light-matter interactions, have significantly improved sensitivity, specificity, and signal-to-noise ratio in detecting (bio)analytes. Tunable nanomaterials activated by a wide spectral radiation window coupled to electrochemical transduction platforms have further improved detection by stabilizing and amplifying electrical signals. This work reviews PEC biosensors based on nanomaterials like metal oxides, carbon nitrides, quantum dots, and transition metal chalcogenides (TMCs), showing their superior optoelectronic properties and analytical performance for the detection of clinically relevant biomarkers. Furthermore, it highlights the innovative role of red light and NIR-activated PEC nanobiosensors in enhancing charge transfer processes, protecting them from biomolecule photodamage in vitro and in vivo applications. Overall, advances in PEC detection systems have the potential to revolutionize rapid and accurate measurements in clinical diagnostic applications. Their integration into miniaturized devices also supports the development of portable, easy-to-use diagnostic tools, facilitating point-of-care (POC) testing solutions and real-time monitoring.
Collapse
Affiliation(s)
- Yeison Monsalve
- Max Planck Tandem Group in Nanobioengineering, Institute of Chemistry, Faculty of Natural and Exact Sciences, University of Antioquia, Complejo Ruta N, Calle 67 No. 52-20, 050010, Medellín, Colombia
| | - Andrés F Cruz-Pacheco
- Max Planck Tandem Group in Nanobioengineering, Institute of Chemistry, Faculty of Natural and Exact Sciences, University of Antioquia, Complejo Ruta N, Calle 67 No. 52-20, 050010, Medellín, Colombia
| | - Jahir Orozco
- Max Planck Tandem Group in Nanobioengineering, Institute of Chemistry, Faculty of Natural and Exact Sciences, University of Antioquia, Complejo Ruta N, Calle 67 No. 52-20, 050010, Medellín, Colombia.
| |
Collapse
|
3
|
Cui L, Yang Y, Jiang S, Cao X, Chu W, Chen J, Sun B, Ren K, Zhang CY. Exogenous Co-Reactant-Free Electrochemiluminescent Biosensor for Ratiometric Measurement of α-Glucosidase Based on a ZIF-67-Regulated Hydrogen-Bonded Organic Framework. ACS Sens 2024; 9:1023-1030. [PMID: 38353664 DOI: 10.1021/acssensors.4c00036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
The development of highly sensitive and selective analytical approaches for monitoring enzymatic activity is critical for disease diagnosis and biomedical research. Herein, we develop an exogenous co-reactant-free electrochemiluminescence (ECL) biosensor for the ratiometric measurement of α-glucosidase (α-Glu) based on a zeolitic imidazolate framework (ZIF-67)-regulated pyrene-based hydrogen-bonded organic framework (HOF-101). Target α-Glu can hydrolyze maltose to α-d-glucose, which can subsequently react with GOx to produce gluconic acid. The resultant gluconic acid can dissolve ZIF-67, leading to the recovery of the HOF-101 cathodic ECL signal and the decrease of the luminol anodic ECL signal. The long-range ordered structure of HOF-101 can speed up charge transfer, resulting in a stable and strong cathodic ECL signal. Moreover, ZIF-67 can not only efficiently quench the ECL signal of HOF-101 due to ECL resonance energy transfer between HOF-101 and ZIF-67 as well as the steric hindrance effect of ZIF-67 but also enhance the anodic ECL emission of luminol in dissolved O2 system because of its ordered and porous crystalline structure and the atomically dispersed Co2+. Notably, HOF-101 possesses a higher ECL efficiency (32.22%) compared with the Ru(bpy)32+ standard. Importantly, this ratiometric ECL biosensor shows high sensitivity (a detection limit of 0.19 U L-1) and a broad linear range (0.2-50 U L-1). This biosensor can efficiently eliminate systematic errors and enhance detection reliability without the involvement of exogenous co-reactants, and it displays good assay performance in human serum samples, holding great promise in biomedical research studies.
Collapse
Affiliation(s)
- Lin Cui
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Yuncong Yang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Su Jiang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Xueting Cao
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Wenqi Chu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Jianwei Chen
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Bing Sun
- School of Science, China University of Geosciences (Beijing), Beijing 100083, China
| | - Kewei Ren
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Chun-Yang Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
4
|
Marangoni JM, Ng KKS, Emadi A. Strategies for the Voltammetric Detection of Loop-Mediated Isothermal Amplification. MICROMACHINES 2023; 14:472. [PMID: 36838172 PMCID: PMC9960872 DOI: 10.3390/mi14020472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Loop-mediated isothermal amplification (LAMP) is rapidly developing into an important tool for the point-of-use detection of pathogens for both clinical and environmental samples, largely due to its sensitivity, rapidity, and adaptability to portable devices. Many methods are used to monitor LAMP, but not all are amenable to point-of-use applications. Common methods such as fluorescence often require bulky equipment, whereas colorimetric and turbidimetric methods can lack sensitivity. Electrochemical biosensors are becoming increasingly important for these applications due to their potential for low cost, high sensitivity, and capacity for miniaturization into integrated devices. This review provides an overview of the use of voltammetric sensors for monitoring LAMP, with a specific focus on how electroactive species are used to interface between the biochemical products of the LAMP reaction and the voltammetric sensor. Various strategies for the voltammetric detection of DNA amplicons as well as pyrophosphate and protons released during LAMP are presented, ranging from direct DNA binding by electroactive species to the creative use of pyrophosphate-detecting aptamers and pH-sensitive oligonucleotide structures. Hurdles for adapting these devices to point-of-use applications are also discussed.
Collapse
Affiliation(s)
- Jesse M. Marangoni
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Kenneth K. S. Ng
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Arezoo Emadi
- Department of Electrical and Computer Engineering, University of Windsor, Windsor, ON N9B 3P4, Canada
| |
Collapse
|
5
|
Recent development and application of ratiometric electrochemical biosensor. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Chen Q, Yuan C, He Z, Wang J, Zhai C, Bin D, Zhu M. A label-free photoelectrochemical sensor of S, N co-doped graphene quantum dot (S, N-GQD)-modified electrode for ultrasensitive detection of bisphenol A. Mikrochim Acta 2022; 189:208. [PMID: 35501498 DOI: 10.1007/s00604-022-05289-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/19/2022] [Indexed: 01/01/2023]
Abstract
S, N co-doped graphene quantum dot (S, N-GQD) materials have been composited via a one-pot pattern and used as photosensitive materials to construct a label-free photoelectrochemical (PEC) sensor. The PEC experiments show an enhanced photocurrent response toward Bisphenol A (BPA) sensing due to the increased charge transfer rate and the enhanced absorption of visible light. Compared with dark conditions, the photocurrent signal (- 0.2 V vs. SCE) is greatly increased because of the effective oxidation of BPA by photogenerated holes and the rapid electron transfer of S, N-GQDs on the PEC sensing platform. Under optimal conditions linear current response to BPA is in two ranges of 0.12-5 µM and 5-40 µM. The limit of detection is 0.04 µM (S/N = 3). The designed sensor has enduring stability and admirable interference immunity. It provides an alternative approach for BPA determination in real samples with recoveries of 99.3-103% and RSD of 2.0-4.1%.
Collapse
Affiliation(s)
- Qiaowei Chen
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Chen Yuan
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Zhilong He
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Jin Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, People's Republic of China.
| | - Chunyang Zhai
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, People's Republic of China.
| | - Duan Bin
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, People's Republic of China.
| | - Mingshan Zhu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, 510632, Guangzhou, People's Republic of China
| |
Collapse
|
7
|
Li H, Li Q, Zhao S, Wang X, Li F. Aptamer-Target Recognition-Promoted Ratiometric Electrochemical Strategy for Evaluating the Microcystin-LR Residue in Fish without Interferences. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:680-686. [PMID: 35012307 DOI: 10.1021/acs.jafc.1c06476] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Given the significance of food safety, it is highly urgent to develop a sensitive yet reliable sensor for the practical analysis of algal toxins. As most of the developed sensors are disturbed by interfering substances and the target toxin is detected in a single-signal manner based on the immunoassay technology. Herein, we developed an aptamer-based dual-signal ratiometric electrochemical sensor for the sensitive and accurate analysis of microcystin-LR (MC-LR), using it as a proof-of-concept analyte. Methylene blue-tagged ssDNA (MB-ssDNA) was immobilized at the gold electrode surface accompanied with the absence of ferrocene-tagged ssDNA (Fc-ssDNA), resulting in a high differential pulse voltammetry (DPV) current of MB and a low DPV current of Fc. The recognition of MB-ssDNA by MC-LR stimulated the formation of MC-LR@MB-ssDNA, which induced the removal of MB-ssDNA from the electrode and the exposure of SH-ssDNA, enabling Fc-ssDNA to be captured at the electrode surface via nucleic acid hybridization. In comparison with MC-LR deficiency, the DPV signal of MB dropped along with an improved DPV signal of Fc, contributing to the ratiometric detection of MC-LR, with the limit of detection down to 0.0015 nM. Furthermore, this ratiometric electrochemical sensor was successfully explored to assess the bioaccumulated amount of MC-LR in the liver and meat of fish. The aptamer-based ratiometric strategy to develop an electrochemical MC-LR assay will offer a promising avenue to develop high-performance sensors, and the sensor will find more useful application in MC-LR-related aquatic product safety studies.
Collapse
Affiliation(s)
- Haiyin Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Qian Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Suixin Zhao
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Xuemei Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| |
Collapse
|
8
|
Tang Q, Sun Z, Qing M, Wang L, Ling Y, Li NB, Luo HQ. An optical sensing system with ratiometric and turn-off dual-mode of CDs@MnO 2 nanosheets for the determination of H 2O 2 and glucose based on a combination of first-order scattering, fluorescence, and second-order scattering. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 264:120299. [PMID: 34474221 DOI: 10.1016/j.saa.2021.120299] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/14/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
The optical sensor with ratiometric and turn-off dual modes is constructed to detect H2O2 and glucose based on blue fluorescent carbon dots (CDs) and MnO2 nanosheets with great ability of fluorescence quenching and scattering. Employing CDs@MnO2 nanosheets nanocomposite as the probe, H2O2 is detected by simultaneously collecting first-order scattering (FOS, 353.5 nm), fluorescence (440 nm), and second-order scattering (SOS, 710 nm) under the excitation of 350 nm. H2O2 with strong oxidation property can etch the lamellar structure of MnO2 nanosheets into nano-fragments, which made the fluorescence of CDs in the system recover and the scattering intensity (FOS and SOS) of the system decrease significantly. Therefore, the optical sensor combined FOS and fluorescence signals in ratiometric mode, and SOS signal in turn-off mode to realize sensitive determination of H2O2. The linear ranges of ratiometric mode and turn-off mode for H2O2 detection were 0.2-40 and 0.2-15 μM, respectively. And the limits of detection (LODs) of two modes were 73 and 104 nM, respectively. Furthermore, the sensor was also successfully applied to the detection of glucose which can react to produce H2O2. Satisfactorily, the LODs of this sensor for glucose detection were 95 and 113 nM for ratiometric mode and turn-off mode, respectively. This work not only provides a new method for the accurate detection of H2O2 and glucose, but also extends a new idea for the study of the combination of scattering and fluorescence.
Collapse
Affiliation(s)
- Qian Tang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Zhe Sun
- Key Laboratory of Luminescence Analysis and Molecular Sensing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Min Qing
- Key Laboratory of Luminescence Analysis and Molecular Sensing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Lei Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Yu Ling
- Key Laboratory of Luminescence Analysis and Molecular Sensing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Nian Bing Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| | - Hong Qun Luo
- Key Laboratory of Luminescence Analysis and Molecular Sensing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
9
|
Khojastehnezhad A, Taghavi F, Yaghoobi E, Ramezani M, Alibolandi M, Abnous K, Taghdisi SM. Recent achievements and advances in optical and electrochemical aptasensing detection of ATP based on quantum dots. Talanta 2021; 235:122753. [PMID: 34517621 DOI: 10.1016/j.talanta.2021.122753] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/07/2021] [Accepted: 07/28/2021] [Indexed: 12/23/2022]
Abstract
The design and fabrication of high sensitive and selective biosensing platforms areessential goals to precisely recognize biomaterials in biological assays. In particular, determination of adenosine triphosphate (ATP) as the main energy currency of the cells and one of the most important biomolecules in living organisms is a pressing need in advanced biological detection. Recently, aptamer-based biosensors are introduced as a new direct strategy in which the aptamers (Apts) directly bind to the different targets and detect them on the basis of conformational changes and physical interactions. They can also be conjugated to optical and electronic probes such as quantum dot (QD) nanomaterials and provide unique QD aptasensing platforms. Currently, these Apt-based biosensors with excellent recognition features have attracted extensive attention due to the high specificity, rapid response and facile construction. Therefore, in this review article, recent achievements and advances in aptasensing detection of ATP based on different detection methods and types of QDs are discussed. In this regard, the optical and electrochemical aptasensors have been categorized based on detection methods; fluorescence (FL), electrochemiluminescence (ECL) and photoelectrochemical (PEC) and they have been also divided to two main groups based on QDs; metal-based (M-based) and carbon-based (C-based) materials. Then, their advantages and limitations have been highlighted, compared and discussed in detail.
Collapse
Affiliation(s)
- Amir Khojastehnezhad
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Faezeh Taghavi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elnaz Yaghoobi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
10
|
Li J, Zeng H, Zeng Z, Zeng Y, Xie T. Promising Graphene-Based Nanomaterials and Their Biomedical Applications and Potential Risks: A Comprehensive Review. ACS Biomater Sci Eng 2021; 7:5363-5396. [PMID: 34747591 DOI: 10.1021/acsbiomaterials.1c00875] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Graphene-based nanomaterials (GBNs) have been the subject of research focus in the scientific community because of their excellent physical, chemical, electrical, mechanical, thermal, and optical properties. Several studies have been conducted on GBNs, and they have provided a detailed review and summary of various applications. However, comprehensive comments on biomedical applications and potential risks and strategies to reduce toxicity are limited. In this review, we systematically summarized the following aspects of GBNs in order to fill the gaps: (1) the history, synthesis methods, structural characteristics, and surface modification; (2) the latest advances in biomedical applications (including drug/gene delivery, biosensors, bioimaging, tissue engineering, phototherapy, and antibacterial activity); and (3) biocompatibility, potential risks (toxicity in vivo/vitro and effects on human health and the environment), and strategies to reduce toxicity. Moreover, we have analyzed the challenges to be overcome in order to enhance application of GBNs in the biomedical field.
Collapse
Affiliation(s)
- Jie Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China.,School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang 311121, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang 311121, China
| | - Huamin Zeng
- Chengdu Ping An Healthcare Medical Examination Laboratory, Chengdu, Sichuan 611130, China
| | - Zhaowu Zeng
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang 311121, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang 311121, China
| | - Yiying Zeng
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang 311121, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang 311121, China
| | - Tian Xie
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China.,School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang 311121, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang 311121, China
| |
Collapse
|
11
|
Tu R, Wang Y, Peng J, Hou C, Wang Z. Integration of Multiple Redox Centers into Porous Coordination Networks for Ratiometric Sensing of Dissolved Oxygen. ACS APPLIED MATERIALS & INTERFACES 2021; 13:40847-40852. [PMID: 34403589 DOI: 10.1021/acsami.1c13601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The application of porphyrin metal-organic frameworks (MOFs) as a ratiometric electrochemical sensing platform is still unexplored. In this paper, we report a ratiometric electrochemical sensor by the integration of multiple redox centers into porphyrin MOFs for the detection of dissolved oxygen (DO). Specifically, the ferrocene (Fc) group was integrated into the nanosized PCN-222(Fe) (PCN = porous coordination networks) via acid-base reaction to synthesize the Fc@PCN-222(Fe) composite with two redox centers of the Fc group and Fe-porphyrin. The Fc group that is insensitive to DO serves as an internal reference, and the Fe-porphyrin in PCN-222(Fe) is a DO indicator. The ratios of the cathodic currents for the two redox centers exhibit a linear relationship with DO concentrations from 2.8 to 28.9 mg mL-1 and a limit of detection of 0.3 mg mL-1. In addition, the ratiometric electrochemical sensor has high selectivity and stability for DO sensing results from the Fc@PCN-222(Fe) composite. Because there are numerous redox centers, such as methylene blue and thionine, which can be integrated into MOFs, many MOF-based ratiometric electrochemical sensors can be simply developed for high-performance biosensing.
Collapse
Affiliation(s)
- Rongxiu Tu
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao 266071, P. R. China
| | - Yujun Wang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao 266071, P. R. China
| | - Jinyun Peng
- College of Chemistry and Chemical Engineering, Guangxi Normal University for Nationalities, Chongzuo 532200, P. R. China
| | - Chuantao Hou
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao 266071, P. R. China
| | - Zonghua Wang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao 266071, P. R. China
| |
Collapse
|
12
|
Ning Z, Chen M, Wu G, Zhang Y, Shen Y. Recent advances of functional nucleic acids-based electrochemiluminescent sensing. Biosens Bioelectron 2021; 191:113462. [PMID: 34198172 DOI: 10.1016/j.bios.2021.113462] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 06/12/2021] [Accepted: 06/21/2021] [Indexed: 12/19/2022]
Abstract
Electroluminescence (ECL) has been used in extensive applications ranging from bioanalysis to clinical diagnosis owing to its simple device requirement, low background, high sensitivity, and wide dynamic range. Nucleic acid is a significant theme in ECL bioanalysis. The inherent versatile selective molecular recognition of nucleic acids and their programmable self-assembly make it desirable for the robust construction of nanostructures. Benefiting from their unique structures and physiochemical properties, ECL biosensing based on nucleic acids has experienced rapid growth. This review focuses on recent applications of nucleic acids in ECL sensing systems, particularly concerning the employment of nucleic acids as molecular recognition elements, signal amplification units, and sensing interface schemes. In the end, an outlook of nucleic acid-based ECL biosensing will be provided for future developments and directions. We envision that nucleic acids, which act as an essential component for both bioanalysis and clinical diagnosis, will provide a new thinking model and driving force for developing next-generation sensing systems.
Collapse
Affiliation(s)
- Zhenqiang Ning
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China
| | - Mengyuan Chen
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China
| | - Guoqiu Wu
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China; Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China; Jiangsu Provincial Key Laboratory of Critical Care Medicine, Southeast University, Nanjing, 210009, China
| | - Yuanjian Zhang
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China
| | - Yanfei Shen
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China; Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China; Jiangsu Provincial Key Laboratory of Critical Care Medicine, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
13
|
Cheng Y, Liang L, Ye F, Zhao S. Ce-MOF with Intrinsic Haloperoxidase-Like Activity for Ratiometric Colorimetric Detection of Hydrogen Peroxide. BIOSENSORS-BASEL 2021; 11:bios11070204. [PMID: 34201518 PMCID: PMC8301872 DOI: 10.3390/bios11070204] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 11/25/2022]
Abstract
Metal–organic framework (MOF) nanozymes, as emerging members of the nanozymes, have received more and more attention due to their composition and structural characteristics. In this work, we report that mixed-valence state Ce-MOF (MVCM) has intrinsic haloperoxidase-mimicking activity. MVCM was synthesized by partial oxidation method using Ce-MOF as a precursor. In the presence of H2O2 and Br−, MVCM can catalyze oxidative bromination of chromogenic substrate phenol red (PR) to produce the blue product bromophenol blue (Br4PR), showing good haloperoxidase-like activity. Because of the special chromogenic substrate, we constructed a ratiometric colorimetric-sensing platform by detecting the absorbance of the MVCM-(PR, Br−) system at wavelengths of 590 and 430, for quantifying H2O2, where the detection limit of the H2O2 is 3.25 μM. In addition, the haloperoxidase-mimicking mechanism of the MVCM is proposed. Moreover, through enzyme kinetics monitoring, the Km (H2O2 and NH4Br) of the MVCM is lower than that of cerium oxide nanomaterials, indicating that the MVCM has a stronger binding affinity for H2O2 and NH4Br than other materials. This work provides more application prospects for the development of nanozymes in the field of biosensors in the future.
Collapse
Affiliation(s)
| | | | - Fanggui Ye
- Correspondence: ; Tel.: +86-773-585-6104
| | | |
Collapse
|
14
|
Li Y, Ding Z, Bao Y, Han K, Li G. Electrochemiluminescence Determination of a Specific Sequence of the BCR/ABL Gene Related to Chronic Myelogenous Leukemia with a Ferrocene-Labelled Molecular Beacon and a Gold Nanoparticle (AuNP)-Luminol-Silica Nanocomposite. ANAL LETT 2021. [DOI: 10.1080/00032719.2021.1921785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Yue Li
- Xinjiang Key Laboratory of Energy Storage and Photoelectrocatalytic Materials, School of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, Xinjiang, P.R. China
| | - Zhifang Ding
- Xinjiang Key Laboratory of Energy Storage and Photoelectrocatalytic Materials, School of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, Xinjiang, P.R. China
| | - Ying Bao
- Xinjiang Key Laboratory of Energy Storage and Photoelectrocatalytic Materials, School of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, Xinjiang, P.R. China
| | - Kexin Han
- Xinjiang Key Laboratory of Energy Storage and Photoelectrocatalytic Materials, School of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, Xinjiang, P.R. China
| | - Guixin Li
- Xinjiang Key Laboratory of Energy Storage and Photoelectrocatalytic Materials, School of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, Xinjiang, P.R. China
| |
Collapse
|
15
|
Wu X, Ma P, Sun Y, Du F, Song D, Xu G. Application of MXene in Electrochemical Sensors: A Review. ELECTROANAL 2021. [DOI: 10.1002/elan.202100192] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Xinzhao Wu
- College of Chemistry Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments Jilin University Qianjin Street 2699 Changchun Jilin 130012 P.R. China
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences 5625 Renmin Street Changchun Jilin 130022 P.R. China
| | - Pinyi Ma
- College of Chemistry Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments Jilin University Qianjin Street 2699 Changchun Jilin 130012 P.R. China
| | - Ying Sun
- College of Chemistry Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments Jilin University Qianjin Street 2699 Changchun Jilin 130012 P.R. China
| | - Fangxin Du
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences 5625 Renmin Street Changchun Jilin 130022 P.R. China
- University of Chinese Academy of Sciences Beijing 100049 P.R. China
| | - Daqian Song
- College of Chemistry Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments Jilin University Qianjin Street 2699 Changchun Jilin 130012 P.R. China
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences 5625 Renmin Street Changchun Jilin 130022 P.R. China
- University of Chinese Academy of Sciences Beijing 100049 P.R. China
| |
Collapse
|
16
|
Phosphorescence-based ratiometric probes: Design, preparation and applications in sensing, imaging and biomedicine therapy. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213694] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
17
|
Jin H, Sun Z, Sun Y, Gui R. Dual-signal ratiometric platforms: Construction principles and electrochemical biosensing applications at the live cell and small animal levels. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116124] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
18
|
XIE HZ, YANG B, LI JP. A Molecularly Imprinted Electrochemical Luminescence Sensor for Detection of Gibberellin Based on Energy Transfer. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1016/s1872-2040(20)60065-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
19
|
Metal-organic framework-based materials as an emerging platform for advanced electrochemical sensing. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213222] [Citation(s) in RCA: 216] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
20
|
Fang D, Zeng B, Zhang S, Dai H, Lin Y. A self-enhanced electrochemiluminescent ratiometric zearalenone immunoassay based on the use of helical carbon nanotubes. Mikrochim Acta 2020; 187:303. [PMID: 32350687 DOI: 10.1007/s00604-020-04278-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 04/13/2020] [Indexed: 01/23/2023]
Abstract
A self-enhanced electrochemiluminescent ratiometric immunoassay for zearalenone is described. A system composed of N-aminobutyl-N-ethylisoluminol (ABEI) and glutathione (GSH) produces a strong electrochemiluminescence (ECL) at an applied potential of 0.8 V, probably because of short electron transfer distance and reduced energy loss. The method also uses octahedral anatase mesocrystals (OAM) with a large specific surface facilitating immobilization of ABEI and GSH. Helical carbon nanotubes, possessing a large specific surface, superior mechanical stability, and excellent electrical conductivity which serve as a solid support, greatly enhanced the loading capacity for g-C3N4 nanosheets and horseradish peroxidase-labeled anti-antibody. The peroxidase accelerates the decomposition of H2O2 to produce reactive oxygen species (ROSs), amplifying the blue ECL of ABEI and the green ECL of g-C3N4. The ratiometric sandwich immunoassay (performed by the ratio of ECL intensity at - 1.3 V and 0.8 V) allows for sensitive and reliable determination of ZEN in a wide linear range from 1.0 × 10-4 ng/mL to 10 ng/mL. The method was successfully applied to the analysis of corn hazelnut samples for ZEN. Graphical abstract Schematic presentation of a self-enhanced electrochemiluminescent ratiometric immunosensor based on octahedral anatase mesocrystals (OAM) supported ABEI-glutathione (GSH) and g-C3N4 functionalized helical carbon nanotubes (HCNT) for zearalenone (ZEN) determination.
Collapse
Affiliation(s)
- Dandan Fang
- College of Chemistry and Material, Fujian Normal University, Fuzhou, 350108, Fujian, China
| | - Baoshan Zeng
- College of Chemistry and Material, Fujian Normal University, Fuzhou, 350108, Fujian, China
| | - Shupei Zhang
- Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, 350108, Fujian, China
| | - Hong Dai
- College of Chemistry and Material, Fujian Normal University, Fuzhou, 350108, Fujian, China.
| | - Yanyu Lin
- College of Chemistry and Material, Fujian Normal University, Fuzhou, 350108, Fujian, China.,Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, 350108, Fujian, China
| |
Collapse
|
21
|
Zhang Y, Luo S, Situ B, Ye X, Huang Y, Li B, Jiang X, Chen X, Zheng L, Yan X. A fluorescent immunosensor for determination and imaging of circulating tumor cells based on a bifunctional DNA nanomachine. Mikrochim Acta 2020; 187:259. [PMID: 32248380 DOI: 10.1007/s00604-020-4205-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 02/28/2020] [Indexed: 02/06/2023]
Abstract
A fluorescent platform was developed for the determination and visualization of circulating tumor cells by a toehold-mediated bifunctional DNA nanomachine. In the presence of target tumor cells, the DNA nanomachine was activated. Multiple DNA products were formed, including dendritic DNA products and double-strand DNA products. Dendritic DNA products bound to their target cells for the visualization, while double-strand DNA products were released for the determination of tumor cells. At fluorescence excitation and emission wavelengths of 530 and 550 nm, this method could detect as low as 43 cells/mL (S/N = 3) with a linear range of 100 to 10,000 cells/mL. In clinical hydrothorax samples, this platform exhibited high reliability with a recovery of 93 to 116%. At the fluorescence excitation and emission wavelengths of 490 and 515 nm, the specificity and biocompatibility of this method were further verified by tumor cells imaging. Furthermore, the robustness of the toehold-mediated bifunctional DNA nanomachine was demonstrated by the specific gene mutation detection in single-cell analysis. Graphical abstract Schematic illustration of the fluorescent immunosensor for determination and imaging of circulating tumor cells. The method is based on aptamer-based recognition and toehold-mediated bifunctional DNA nanomachine.
Collapse
Affiliation(s)
- Ye Zhang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, Guangdong Province, People's Republic of China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, People's Republic of China
| | - Shihua Luo
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, Guangdong Province, People's Republic of China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, People's Republic of China
| | - Bo Situ
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, Guangdong Province, People's Republic of China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, People's Republic of China
| | - Xinyi Ye
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, Guangdong Province, People's Republic of China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, People's Republic of China
| | - Yifang Huang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, Guangdong Province, People's Republic of China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, People's Republic of China
| | - Bo Li
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, Guangdong Province, People's Republic of China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, People's Republic of China
| | - Xiujuan Jiang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, Guangdong Province, People's Republic of China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, People's Republic of China
| | - Xueping Chen
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, 400016, Chongqing, People's Republic of China
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, Guangdong Province, People's Republic of China.
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, People's Republic of China.
| | - Xiaohui Yan
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, Guangdong Province, People's Republic of China.
- Research Center of Clinical Medicine, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, People's Republic of China.
| |
Collapse
|
22
|
Irkham, Fiorani A, Valenti G, Kamoshida N, Paolucci F, Einaga Y. Electrogenerated Chemiluminescence by in Situ Production of Coreactant Hydrogen Peroxide in Carbonate Aqueous Solution at a Boron-Doped Diamond Electrode. J Am Chem Soc 2020; 142:1518-1525. [PMID: 31922404 DOI: 10.1021/jacs.9b11842] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An electrogenerated chemiluminescence (ECL) system by in situ coreactant production, where Ru(bpy)32+ emission is generated at a boron-doped diamond (BDD) electrode, is presented. The system takes advantage of the unique properties of BDD to promote oxidation of carbonate (CO32-) into peroxydicarbonate (C2O62-), which further reacts with water to form hydrogen peroxide (H2O2), which acts as a coreactant for Ru(bpy)32+ ECL. Investigation of the mechanism reveals that ECL emission is triggered by the reduction of H2O2 to hydroxyl radicals (OH•), which later react with the reduced Ru(bpy)3+ molecules to form excited states, followed by light emission. The ECL signal was found to increase with the concentration of CO32-; therefore, with the concentration of electrogenerated H2O2, although at the same time, higher concentrations of H2O2 can quench the ECL emission, resulting in a decrease in intensity. The carbonate concentration, pH, and oxidation parameters, such as potential and time, were optimized to find the best emission conditions.
Collapse
Affiliation(s)
- Irkham
- Department of Chemistry , Keio University , 3-14-1 Hiyoshi , Yokohama 223-8522 , Japan
| | - Andrea Fiorani
- Department of Chemistry , Keio University , 3-14-1 Hiyoshi , Yokohama 223-8522 , Japan
| | - Giovanni Valenti
- Department of Chemistry "G. Ciamician" , University of Bologna , Via Selmi, 2 , Bologna 40126 , Italy
| | - Naoki Kamoshida
- Department of Chemistry , Keio University , 3-14-1 Hiyoshi , Yokohama 223-8522 , Japan
| | - Francesco Paolucci
- Department of Chemistry "G. Ciamician" , University of Bologna , Via Selmi, 2 , Bologna 40126 , Italy
| | - Yasuaki Einaga
- Department of Chemistry , Keio University , 3-14-1 Hiyoshi , Yokohama 223-8522 , Japan.,JST-ACCEL , 3-14-1 Hiyoshi , Yokohama 223-8522 , Japan
| |
Collapse
|
23
|
Yu L, Cui X, Yue X, Yu Z. A ratiometric electrochemical sensor for lead ions based on bismuth film coated porous silicon nanoparticles. NEW J CHEM 2020. [DOI: 10.1039/c9nj05645a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A ratiometric electrochemical sensor for the detection of lead ions was developed based on porous silicon nanoparticles with in situ plated bismuth to improve the accuracy and reliability.
Collapse
Affiliation(s)
- Lei Yu
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization
- Weifang University of Science and Technology
- Weifang
- P. R. China
- College of Chemistry
| | - Xin Cui
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization
- Weifang University of Science and Technology
- Weifang
- P. R. China
| | - Xiangguo Yue
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization
- Weifang University of Science and Technology
- Weifang
- P. R. China
| | - Zhenguo Yu
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization
- Weifang University of Science and Technology
- Weifang
- P. R. China
- China UnionPay Data Services Company
| |
Collapse
|
24
|
Zhang Y, Chen X. Nanotechnology and nanomaterial-based no-wash electrochemical biosensors: from design to application. NANOSCALE 2019; 11:19105-19118. [PMID: 31549117 DOI: 10.1039/c9nr05696c] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Nanotechnology and nanomaterial based electrochemical biosensors (ECBs) have achieved great development in many fields, such as clinical diagnosis, food analysis, and environmental monitoring. Nowadays, the single-handed pursuit of sensitivity and accuracy cannot meet the demands of detection in many in situ and point-of-care (POC) circumstances. More and more attention has been focused on simplifying the operation procedure and reducing detection time, and thus no-wash assay has become one of the most effective ways for the continuous development of ECBs. However, there are many challenges to realize no-wash detection in the real analysis, such as redox interferences, multiple impurities, non-conducting protein macromolecules, etc. Furthermore, the complex detection circumstance in different application fields makes the realization of no-wash ECBs more complicated and difficult. Thanks to the updated nanotechnology and nanomaterials, in-depth analysis of the obstacles in the detection process and various methods for fabricating no-wash ECBs, most issues have been largely resolved. In this review, we have systematically analyzed the nanomaterial based design strategy of the state-of-the-art no-wash ECBs in the past few years. Following that, we summarized the challenges in the detection process of no-wash ECBs and their applications in different fields. Finally, based on the summary and analysis in this review, we also evaluated and discussed future prospects from the design to the application of ECBs.
Collapse
Affiliation(s)
- Yong Zhang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China. and Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA.
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA.
| |
Collapse
|