1
|
Tian C, Tang F, Guo W, Wei M, Wang L, Zhuang X, Luan F. Electrochemiluminescence Sensor Based on CeO 2 Nanocrystalline for Hg 2+ Detection in Environmental Samples. Molecules 2023; 29:1. [PMID: 38202584 PMCID: PMC10779929 DOI: 10.3390/molecules29010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/05/2023] [Accepted: 12/10/2023] [Indexed: 01/12/2024] Open
Abstract
The excessive concentration of heavy-metal mercury ions (Hg2+) in the environment seriously affects the ecological environment and even threatens human health. Therefore, it is necessary to develop rapid and low-cost determination methods to achieve trace detection of Hg2+. In this paper, an Electrochemiluminescence (ECL) sensing platform using a functionalized rare-earth material (cerium oxide, CeO2) as the luminescent unit and an aptamer as a capture unit was designed and constructed. Using the specific asymmetric matching between Hg2+ and thymine (T) base pairs in the deoxyribonucleic acid (DNA) single strand, the "T-Hg-T" structure was formed to change the ECL signal, leading to a direct and sensitive response to Hg2+. The results show a good linear relationship between the concentration and the response signal within the range of 10 pM-100 µM for Hg2+, with a detection limit as low as 0.35 pM. In addition, the ECL probe exhibits a stable ECL performance and excellent specificity for identifying target Hg2+. It was then successfully used for spiked recovery tests of actual samples in the environment. The analytical method solves the problem of poor Hg2+ recognition specificity, provides a new idea for the efficient and low-cost detection of heavy-metal pollutant Hg2+ in the environment, and broadens the prospects for the development and application of rare-earth materials.
Collapse
Affiliation(s)
- Chunyuan Tian
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China; (C.T.); (F.T.); (M.W.); (L.W.); (X.Z.)
| | - Feiyan Tang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China; (C.T.); (F.T.); (M.W.); (L.W.); (X.Z.)
| | - Wei Guo
- Shandong Dyne Marine Biopharmaceutical Co., Ltd., Weihai 264300, China
| | - Minggang Wei
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China; (C.T.); (F.T.); (M.W.); (L.W.); (X.Z.)
| | - Li Wang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China; (C.T.); (F.T.); (M.W.); (L.W.); (X.Z.)
| | - Xuming Zhuang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China; (C.T.); (F.T.); (M.W.); (L.W.); (X.Z.)
| | - Feng Luan
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China; (C.T.); (F.T.); (M.W.); (L.W.); (X.Z.)
| |
Collapse
|
2
|
Li J, Qin J, Du F, Meng W, Tang D, Huang Y, Tang J. Multiorbital DNA walker nanoprobe for portable photothermal detection based on H 2S etching of cubic Prussian blue. Mikrochim Acta 2023; 190:382. [PMID: 37697070 DOI: 10.1007/s00604-023-05957-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/13/2023] [Indexed: 09/13/2023]
Abstract
In the developed assay, multiorbital 3D DNA walker (MO DNA walker) was applied as signal amplified protocol for enhancing the detection signal of the photothermal biosensor, which was designed for sensitive detection of miRNA based on the H2S triggered conversation of photothermal reagent. When the target molecule is present, the DNA walking strand was released and then hybridize with track strands. The landing of walking particles (WPT) on the tracking particles (TPT) promotes the relative movement of the WPT around TPT, thus releasing large amount of horseradish peroxidase (HRP) with the aid of DNAzyme. After reacting with Na2S2O3 and H2O2, multiple H2S can be generated in situ based on the catalytic ability of HRP. Meanwhile, cubic Prussian blue (CPB) was synthesized and exhibited superior photothermal response, which can be served as efficient photothermal reagent and H2S responsive acceptor. Significantly, the photothermal signal of CPB could be obviously reduced after challenged with H2S ascribed to synchronous reaction between the ferric ion (Fe3+) and H2S. The improved walking area and freedom enable significant signal amplification, enhancing the biosensor's performance. Under ideal circumstances, the proposed photothermal assay demonstrated excellent performance for determination of miRNA-21.
Collapse
Affiliation(s)
- Jinjin Li
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Department of Chemistry and Chemical Engineering, National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, 330022, People's Republic of China
| | - Jiao Qin
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Department of Chemistry and Chemical Engineering, National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, 330022, People's Republic of China
| | - Fan Du
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Department of Chemistry and Chemical Engineering, National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, 330022, People's Republic of China
| | - Wenqin Meng
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Department of Chemistry and Chemical Engineering, National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, 330022, People's Republic of China
| | - Dianping Tang
- Key Laboratory of Analysis and Detection for Food Safety (Ministry of Education of China and Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, People's Republic of China
| | - Yunhong Huang
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Department of Chemistry and Chemical Engineering, National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, 330022, People's Republic of China.
| | - Juan Tang
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Department of Chemistry and Chemical Engineering, National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, 330022, People's Republic of China.
| |
Collapse
|
3
|
Kang MJ, Cho YW, Kim TH. Progress in Nano-Biosensors for Non-Invasive Monitoring of Stem Cell Differentiation. BIOSENSORS 2023; 13:bios13050501. [PMID: 37232862 DOI: 10.3390/bios13050501] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/20/2023] [Accepted: 04/22/2023] [Indexed: 05/27/2023]
Abstract
Non-invasive, non-destructive, and label-free sensing techniques are required to monitor real-time stem cell differentiation. However, conventional analysis methods, such as immunocytochemistry, polymerase chain reaction, and Western blot, involve invasive processes and are complicated and time-consuming. Unlike traditional cellular sensing methods, electrochemical and optical sensing techniques allow non-invasive qualitative identification of cellular phenotypes and quantitative analysis of stem cell differentiation. In addition, various nano- and micromaterials with cell-friendly properties can greatly improve the performance of existing sensors. This review focuses on nano- and micromaterials that have been reported to improve sensing capabilities, including sensitivity and selectivity, of biosensors towards target analytes associated with specific stem cell differentiation. The information presented aims to motivate further research into nano-and micromaterials with advantageous properties for developing or improving existing nano-biosensors to achieve the practical evaluation of stem cell differentiation and efficient stem cell-based therapies.
Collapse
Affiliation(s)
- Min-Ji Kang
- School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Yeon-Woo Cho
- School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Tae-Hyung Kim
- School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| |
Collapse
|
4
|
Su C, Dong C, Jiang D, Shan X, Chen Z. Construction of electrochemiluminescence aptasensor for acetamiprid detection using flower-liked SnO2 nanocrystals encapsulated Ag3PO4 composite as luminophore. Microchem J 2023. [DOI: 10.1016/j.microc.2022.108374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
5
|
Jing L, Xie C, Li Q, Yang M, Li S, Li H, Xia F. Electrochemical Biosensors for the Analysis of Breast Cancer Biomarkers: From Design to Application. Anal Chem 2021; 94:269-296. [PMID: 34854296 DOI: 10.1021/acs.analchem.1c04475] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Le Jing
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Chongyu Xie
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Qianqian Li
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Meiqing Yang
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Shaoguang Li
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Hui Li
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xia
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
6
|
Chia YY, Theverajah TM, Alias Y, Khor SM. Three-dimensional porous calcium alginate fluorescence bead-based immunoassay for highly sensitive early diagnosis of breast cancer. Anal Bioanal Chem 2021; 414:1359-1373. [PMID: 34839383 DOI: 10.1007/s00216-021-03758-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 11/30/2022]
Abstract
A sensitive biosensor capable of detecting trace concentrations of several cancer biomarkers in clinical samples is critical for early detection of cancer because different cancer biomarkers may be expressed at different stages of cancer. Previous multiplex studies using microarrays or color-coded beads had limited multiplex detection in a single well, and difficulty in optimizing and unifying the incubation parameters for all tests made in different wells had posed challenges to small sample size and lengthened assay time. Herein, we proposed a novel approach to achieve multiplex analysis on a single three-dimensional porous calcium alginate bead. Because of the high surface area to volume ratio of the calcium alginate immuno-bead, the sensitivity and linear dynamic range of the as-proposed multiplex analysis method are significantly improved. Based on the direct sandwich immunoassay principle, dual-capturing antibodies were encapsulated into a single 3D porous calcium alginate bead as a proof-of-concept for multiplexity detection of serum-HER2 and serum-CA125 breast cancer biomarkers. High sensitivity was attained, with LODs of 0.004 ng mL-1 for serum HER2, and 0.005 U mL-1 for serum CA125, both of which are below the clinical cutoff values, enabling for early breast cancer diagnosis. Stability tests revealed that the 3D immuno-beads were stable at 4 °C and room temperature (25 °C) for at least 14 days. Most importantly, the results obtained using the developed system were in good agreement with those obtained using standard methods while analyzing real clinical samples. In addition, the analysis required only approximately 30 min, which was much less time than typical ELISA techniques. When endogenous interferences were introduced, no cross-reactivity was observed. We anticipate this approach to be potentially used in the multiplex assays and biosensors.
Collapse
Affiliation(s)
- Ying Yao Chia
- Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - T Malathi Theverajah
- Department of Pathology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Yatimah Alias
- Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Sook Mei Khor
- Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia. .,Centre for Innovation in Medical Engineering, Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
7
|
Wang F, Xu Y, Han H, Ma Z. In situ growth of electroactive polymers via ATRP to construct a biosensing interface for tumor marker. Mikrochim Acta 2021; 188:389. [PMID: 34676454 DOI: 10.1007/s00604-021-05048-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/04/2021] [Indexed: 11/24/2022]
Abstract
A novel biosensing interface for tumor markers was designed based on the atom transfer radical polymerization (ATRP) of poly(isopropenylphenol) (PPPL) in situ initiated by the fixing of p-chloromethyl benzoic acid on the surface of amino-modified electrodes. It was found that the electrochemical activity of PPPL itself can provide sufficient signals for these biosensors, which can avoid signal leakage and streamline the interface modification process. Cu(II) ions absorbed on the carbon spheres and then were released via acid stimulation to act as a catalyst to participate in the interface polymerization with ATRP. As the concentration of targets increased, more Cu(II) ions were released, and the electrochemical signal of polymers was enhanced. Therefore, the sensitive detection of carbohydrate antigen 19-9 (CA19-9) as a model target was achieved, with an ultralow limit of detection of 39 µU mL-1 and wide detection range from 100 µU mL-1 to 100 U mL-1 under optimal conditions. Furthermore, this method achieved satisfying performance in human blood serum with good inter-assay precision (RSD < 6%) and satisfactory recovery of ~ 99-105%. According to the results, this work is of great significance for constructing biosensor interfaces via in situ polymerization. A novel biosensing interface for tumor marker was designed based on atom transfer radical polymerization (ATRP), which poly(isopropenylphenol) with electrochemical signal was fabricated in situ on electrode.
Collapse
Affiliation(s)
- Fei Wang
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Yang Xu
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Hongliang Han
- Department of Chemistry, Capital Normal University, Beijing, 100048, China.
| | - Zhanfang Ma
- Department of Chemistry, Capital Normal University, Beijing, 100048, China.
| |
Collapse
|
8
|
Bordbar MM, Sheini A, Hashemi P, Hajian A, Bagheri H. Disposable Paper-Based Biosensors for the Point-of-Care Detection of Hazardous Contaminations-A Review. BIOSENSORS 2021; 11:316. [PMID: 34562906 PMCID: PMC8464915 DOI: 10.3390/bios11090316] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/29/2021] [Accepted: 09/01/2021] [Indexed: 02/07/2023]
Abstract
The fast detection of trace amounts of hazardous contaminations can prevent serious damage to the environment. Paper-based sensors offer a new perspective on the world of analytical methods, overcoming previous limitations by fabricating a simple device with valuable benefits such as flexibility, biocompatibility, disposability, biodegradability, easy operation, large surface-to-volume ratio, and cost-effectiveness. Depending on the performance type, the device can be used to analyze the analyte in the liquid or vapor phase. For liquid samples, various structures (including a dipstick, as well as microfluidic and lateral flow) have been constructed. Paper-based 3D sensors are prepared by gluing and folding different layers of a piece of paper, being more user-friendly, due to the combination of several preparation methods, the integration of different sensor elements, and the connection between two methods of detection in a small set. Paper sensors can be used in chromatographic, electrochemical, and colorimetric processes, depending on the type of transducer. Additionally, in recent years, the applicability of these sensors has been investigated in various applications, such as food and water quality, environmental monitoring, disease diagnosis, and medical sciences. Here, we review the development (from 2010 to 2021) of paper methods in the field of the detection and determination of toxic substances.
Collapse
Affiliation(s)
- Mohammad Mahdi Bordbar
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran 19945, Iran;
| | - Azarmidokht Sheini
- Department of Mechanical Engineering, Shohadaye Hoveizeh Campus of Technology, Shahid Chamran University of Ahvaz, Dashte Azadegan 78986, Iran;
| | - Pegah Hashemi
- Research and Development Department, Farin Behbood Tashkhis Ltd., Tehran 16471, Iran;
| | - Ali Hajian
- Institute of Sensor and Actuator Systems, TU Wien, Gusshausstrasse 27-29, 1040 Vienna, Austria;
| | - Hasan Bagheri
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran 19945, Iran;
| |
Collapse
|
9
|
Metal–organic frameworks (MOFs) based electrochemical biosensors for early cancer diagnosis in vitro. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213948] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
10
|
Electrochemiluminescence immunosensor for cytokeratin fragment antigen 21-1 detection using electrochemically mediated atom transfer radical polymerization. Mikrochim Acta 2021; 188:115. [PMID: 33686530 PMCID: PMC7940335 DOI: 10.1007/s00604-020-04677-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/30/2020] [Indexed: 12/14/2022]
Abstract
The cytokeratin fragment antigen 21-1 (CYFRA 21-1) protein is a critical tumor biomarker tightly related to non-small cell lung cancer (NSCLC). Herein, we prepared an effective electrochemiluminescence (ECL) immunosensor for CYFRA 21-1 detection using electrochemically mediated atom transfer radical polymerization (eATRP). The CYFRA 21-1 antigen was fixed on the electrode surface by constructing a sandwich type antibody-antigen-antibody immune system. The sensitivity of ECL was improved by using the eATRP reaction. In this method, eATRP was applied to CYFRA 21-1 detection antibody with N-acryloyloxysuccinimide as functional monomer. This is the first time that ECL and eATRP signal amplification technology had been combined. Under the optimized testing conditions, the immunosensor showed a good linear relation in the range from 1 fg mL−1 to 1 μg mL−1 at a limit of detection of 0.8 fg mL−1 (equivalent to ~ 134 molecules in a 10 μL sample). The ECL immunosensing system based on eATRP signal amplification technology provided a new way for rapid diagnosis of lung cancer by detecting CYFRA 21-1. The paper prepared an electrochemiluminescence biosensor for ultrasensitive detection of CYFRA 21-1 via eATRP signal amplification strategy, which had the advantages of high sensitivity, reproducibility, and held potential prospect for analysis of low-abundance. ![]()
Collapse
|
11
|
Sharifi M, Hasan A, Attar F, Taghizadeh A, Falahati M. Development of point-of-care nanobiosensors for breast cancers diagnosis. Talanta 2020; 217:121091. [DOI: 10.1016/j.talanta.2020.121091] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 02/07/2023]
|
12
|
Fu Y, Ma Q. Recent developments in electrochemiluminescence nanosensors for cancer diagnosis applications. NANOSCALE 2020; 12:13879-13898. [PMID: 32578649 DOI: 10.1039/d0nr02844d] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In recent years, electrochemiluminescence (ECL) nanosensing systems have undergone rapid development and made significant progress in ultrasensitive analysis and cell imaging. Because of the unique advantages of high selectivity, ultra-sensitivity, and good reproducibility, ECL nanosensors can open new paths for cancer diagnosis. With the development of ECL nanosensors, high-throughput analysis, visual detection and spatially resolved ECL imaging of single cells are being realized. The innovations of ECL nanosensors consist of electrochemical excitation, coreactant catalysis, light radiation and luminescence signal amplification, which involve several fields such as nanotechnology, catalysis, optics, and electrochemistry. The developments of ECL instruments also relate to imaging technology. Herein, we review the construction modes, sensing strategies and cancer diagnosis applications of ECL nanosenors. Firstly, the nano-components of the ECL sensing system are discussed. The construction and signal amplification methods of the nanosensing system are emphasized. Secondly, the high-efficiency cancer identification strategies are presented, including protein tumor marker detection, nucleic acid assay, cancer cell identification and exosome detection. The recent advances in representative examples of ECL nanosenors in cancer diagnosis are highlighted, including high-throughput ECL analysis, in situ assay, visual ECL detection, single-cell imaging diagnosis, and so on. Finally, the challenges are featured based on the recent development of the ECL nanosensing system in the clinical diagnosis. The ECL nanosensors provide effective and reliable analytical methods and open new paths for cancer diagnosis. It is noteworthy that the prospects of the ECL nanosensing system in clinical diagnosis are instructive to the developments of other nanosensor research.
Collapse
Affiliation(s)
- Yantao Fu
- Department of thyroid surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | | |
Collapse
|
13
|
Negahdary M. Aptamers in nanostructure-based electrochemical biosensors for cardiac biomarkers and cancer biomarkers: A review. Biosens Bioelectron 2020; 152:112018. [PMID: 32056737 DOI: 10.1016/j.bios.2020.112018] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/16/2019] [Accepted: 01/09/2020] [Indexed: 01/01/2023]
Abstract
Heart disease (especially myocardial infarction (MI)) and cancer are major causes of death. Recently, aptasensors with the applying of different nanostructures have been able to provide new windows for the early and inexpensive detection of these deadly diseases. Early, inexpensive, and accurate diagnosis by portable devices, especially aptasensors can increase the likelihood of survival as well as significantly reduce the cost of treatment. In this review, recent studies based on the designed aptasensors for the diagnosis of these diseases were collected, ordered, and reviewed. The biomarkers for the diagnosis of each disease were discussed separately. The primary constituent elements of these aptasensors including, analyte, aptamer sequence, type of nanostructure, diagnostic technique, analyte detection range, and limit of detection (LOD), were evaluated and compared.
Collapse
Affiliation(s)
- Masoud Negahdary
- Yazd Cardiovascular Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran; Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|