1
|
Wang S, Wang Y, Ning Y, Wang W, Liu Q. Multicolor emissive carbon dot-based fluorometric analysis platform for rapid quantification and discrimination of nitroimidazole antibiotic residues. Talanta 2024; 271:125679. [PMID: 38245958 DOI: 10.1016/j.talanta.2024.125679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/10/2024] [Accepted: 01/14/2024] [Indexed: 01/23/2024]
Abstract
The development of efficient, rapid, portable, and accurate analysis of veterinary drug residues in food matrices is in great demand for food safety assessment. Here, we have developed a smartphone-integrated platform for fluorometric quantification of metronidazole (MNZ) residues and constructed a sensor array for discrimination of different nitroimidazole antibiotics (NIIMs). Multicolor CDs (B-CDs, C-CDs, Y-CDs, and R-CD) were prepared and showed different fluorescence response to MNZ. The fluorescence of C-CDs was quenched Because of the inner filter effect (IFE) between the C-CDs and MNZ, while that of R-CDs was enhanced due to the passivation of surface defects by MNZ. Based on the response pattern, the fluorometric quantification of MNZ based on the fluorescence images of C-CD + R-CD system (R/G values) was achieved with a low detection limit of 0.45 μM. By designing a smartphone-integrated platform, the analysis can be completed within 20 min. In addition, a fluorescence sensor array based C-CDs and R-CDs was also developed. The unique fingerprint of each NIIMs was obtained by linear discriminant analysis (LDA) of the response patterns, indicating an effective discrimination of five NIIMs. Moreover, the platform was used for quantification of MNZ in food samples and the recoveries were within 84.0-106.3 % with relative standard deviations 1.2-10.2 %. Therefore, the proposed method shows great potential as a universal platform for rapid detection of veterinary drug residues.
Collapse
Affiliation(s)
- Shaojie Wang
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an, 710021, PR China
| | - Yongbo Wang
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an, 710021, PR China.
| | - Yuanna Ning
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an, 710021, PR China
| | - Wencai Wang
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an, 710021, PR China
| | - Qiming Liu
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an, 710021, PR China
| |
Collapse
|
2
|
Jitrangsri K, Lertsuphotvanit N, Kabthong N, Phaechamud T. Metronidazole-Loaded Camphor-Based In Situ Forming Matrix for Periodontitis Treatment. AAPS PharmSciTech 2023; 24:185. [PMID: 37700198 DOI: 10.1208/s12249-023-02640-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/10/2023] [Indexed: 09/14/2023] Open
Abstract
Periodontitis is a widespread oral health problem caused by bacterial infections that lead to tooth loss and other systemic diseases. The aim of this study was to provide an alternative treatment for periodontitis by developing a metronidazole-loaded in situ forming matrix (ISM) using camphor as its matrix former. Five-percent w/w metronidazole dissolved in N-methyl pyrrolidone (NMP) with varying concentrations of camphor (30-50% w/w) and triacetin (0-25% w/w) were used. The physicochemical properties and antimicrobial activities of formulations were evaluated. Results showed that as the percentage of camphor increased, viscosity, density, contact angle, surface tension, and force of injection increased, while water tolerance decreased. The same trend was observed when increasing the triacetin concentration. The optimal metronidazole-loaded ISM was obtained at 40% w/w camphor and 5% w/w triacetin, which prolonged the release of metronidazole up to 6 days with Fickian diffusion release profile. The higher concentration of triacetin slowed down the phase inversion that led to an incomplete formation of the matrix and resulted in an inefficiently prolonged release of the metronidazole. Antimicrobial activities demonstrated that the developed formulation efficiently inhibited periodontitis-induced microorganisms including Porphyromonas gingivalis, Staphylococcus aureus, Escherichia coli, and Candida albicans. The metronidazole-loaded camphor-based ISM has potential as a new drug delivery system for periodontitis treatment.
Collapse
Affiliation(s)
- Kritamorn Jitrangsri
- Department of Chemical Engineering and Pharmaceutical Chemistry, School of Engineering and Technology, Walailak University, Nakhon Srithammarat, 80160, Thailand
- Natural Bioactive and Material for Health Promotion and Drug Delivery System Group (NBM Group), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Nutdanai Lertsuphotvanit
- Program of Pharmaceutical Technology, Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Ngamsil Kabthong
- Natural Bioactive and Material for Health Promotion and Drug Delivery System Group (NBM Group), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand
- Secretary Office of Faculty, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Thawatchai Phaechamud
- Natural Bioactive and Material for Health Promotion and Drug Delivery System Group (NBM Group), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand.
- Program of Pharmaceutical Technology, Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand.
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand.
| |
Collapse
|
3
|
Lemon juice-derived nitrogen-doped carbon quantum dots for highly sensitive and selective determination of ferrous ions and cell imaging. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Zhu Y, Li J, Yan Z, Zhao N, Yang X. Developing Carbon Dots with Room-Temperature Phosphorescence for the Dual-Signal Detection of Metronidazole. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:15442-15450. [PMID: 36455258 DOI: 10.1021/acs.langmuir.2c02886] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Room-temperature phosphorescent carbon dots (CDs) show the advanced property owing to their dual signal; howbeit, acquiring the efficient phosphorescence of CDs is still challengeable. Here, we proposed one type of CD doped with nitrogen through the microwave method, which exhibited the obvious blue fluorescence in aqueous solution and green phosphorescence immobilized on filter paper, while diethylenetriamine pentamethylene phosphonic acid provided the source of carbon and nitrogen. Importantly, introducing metronidazole (MNZ) into the CDs leads to their simultaneous decrease in both fluorescence and phosphorescence, and thus, we successfully established a dual-signal strategy for detecting MNZ. Likewise, this fluorescent detection showed the linear range of 2-200 μM and the phosphorescent way of 50-2000 μM. Meanwhile, the corresponding detection mechanism was also explored, and both the quenched fluorescence and phosphorescence of CDs were mainly due to the occurrence of the electron transfer and internal filtration effect between CDs and MNZ. Additionally, we employed these CDs as the fluorescent and phosphorescent inks for painting and information encryption.
Collapse
Affiliation(s)
- Ying Zhu
- College of Pharmaceutical Sciences, Southwest University, Chongqing400715, China
| | - Jiankang Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing400715, China
| | - Zihao Yan
- College of Pharmaceutical Sciences, Southwest University, Chongqing400715, China
| | - Na Zhao
- Department of Respiratory and Critical Care Medicine, The Ninth People's Hospital of Chongqing, Chongqing400700, China
| | - Xiaoming Yang
- College of Pharmaceutical Sciences, Southwest University, Chongqing400715, China
| |
Collapse
|
5
|
Lan Y, Bao W, Liang C, Li G, Zhou L, Yang J, Wei L, Su Q. Synthesis of copper–nitrogen codoped carbon quantum dots using frangipani as a carbon source and application of metronidazole determination. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02487-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
He Z, Liu J, Zhang C, Sun Y, Chen Q, Zhang J, Liu S, Yue C, Ye M, Zhang K. Spectrally tunable humic acid-based carbon dots: a simple platform for metronidazole and ornidazole sensing in multiple real samples. Anal Bioanal Chem 2022:10.1007/s00216-022-04291-1. [PMID: 36002744 DOI: 10.1007/s00216-022-04291-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 11/01/2022]
Abstract
Humic acid-based carbon dots (HACDs) have excellent properties and are widely used in environmental detection, bioimaging, and optoelectronic materials. Herein, we investigated the structure-activity relationship between the morphology and optical properties of HACDs, and reported on a novel strategy for metronidazole (MNZ) and ornidazole (ONZ) sensing in multiple real samples. It was found that the average particle size decreased from 3.28 to 2.44 nm, optimal emission wavelength was blue-shifted from 500 to 440 nm, and the quantum yield (QY) improved from 5 to 23% with the temperature increasing from 110 to 400 °C. Under the oxidation of hydrogen peroxide (H2O2) and potassium permanganate (KMnO4), the UV-vis spectra of HACD aqueous solution showed time-dependent behavior, and the fluorescence emission of HACDs achieved spectrally tunable multi-color luminescence in the temporal dimension. The surface of HACDs contained a large number of hydroxyl (-OH) and carboxyl (-COOH) fluorophores, resulting in excellent pH sensing. Meanwhile, the synthesized HACDs revealed sensitive response to MNZ and ONZ with the limit of detection (LOD) of 60 nM and 50 nM in aqueous solutions, which had also been successfully applied in various actual samples such as lake water, honey, eggs, and milk with satisfactory results because of the inner filter effect (IFE). Our research is advantageous to enhance the potential applications of HACDs in advanced analytical systems.
Collapse
Affiliation(s)
- Ziguo He
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, 243032, China.,Engineering Technology Research Center of Optoelectronic Technology Appliance, School of Mechanical Engineering, Tongling University, Tongling, 244061, Anhui, China
| | - Jiaxu Liu
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, 243032, China
| | - Cheng Zhang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, 243032, China
| | - Yudie Sun
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, 243032, China
| | - Qian Chen
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, 243032, China
| | - Jian Zhang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, 243032, China
| | - Shengjun Liu
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, 243032, China
| | - Caibo Yue
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, 243032, China.
| | - Mingfu Ye
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, 243032, China.,Key Laboratory of Wind Energy and Solar Energy Technology (Ministry of Education), Inner Mongolia University of Technology, Hohhot, 010051, Inner Mongolia, China
| | - Kui Zhang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, 243032, China.
| |
Collapse
|
7
|
Shishavan YH, Amjadi M. Eco-friendly non-conjugated polymer dots for chemiluminometric determination of 4-nitrophenol. LUMINESCENCE 2022; 37:734-741. [PMID: 35194910 DOI: 10.1002/bio.4216] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 11/07/2022]
Abstract
Polymer dots (PDs) are a new family of quantum dots which their behavior and potential applications have not yet been completely explored. In this study, non-conjugated PDs were synthesized via a simple pyrolysis method and used for the chemiluminescence (CL) assay of 4-nitrophenol (4-NP). PDs increase the CL signal of the Ce (IV)-Na2 SO3 reaction 39-fold. Using the CL spectrum, it was concluded that the emission at 434 nm was generated by the excited PDs (PDs* ), which are produced via energy transfer from SO2 * to PDs. Our experiments showed that 4-NP enhanced the CL signal of the Ce (IV)-Na2 SO3 -PDs reaction. The mechanism of this effect was explored by obtaining CL, UV-Vis and FT-IR spectra. Due to the high sensitivity and selectivity of the CL system to 4-NP, a probe was designed to determine 4-NP in the linear range of 1.0-500 nmol/L with a detection limit of 0.33 nmol/L. Different spiked real samples were successfully analyzed by this probe.
Collapse
Affiliation(s)
| | - Mohammad Amjadi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| |
Collapse
|
8
|
Guan R, Zhang S, Fan X, Shao X, Hu Y, Liu T, Wang S, Yue Q. Construction of a Turn-off-on Fluorescent System Based On Aggregation Induced Emission of Acetaldehyde Using Carbonized Polymer dots and Tb 3. J Fluoresc 2022; 32:759-770. [PMID: 35089458 DOI: 10.1007/s10895-022-02891-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/07/2022] [Indexed: 12/24/2022]
Abstract
It was the first time to report the aggregation induced emission (AIE) of acetaldehyde (AA) on the surface of carbonized polymer dots (CPDs) with the auxiliary of Tb3+. Based on the AIE of AA, a turn-off-on fluorescence method was established for AA detection using the porous CPDs-Tb3+ system. The one-pot hydrothermal method was used to obtain CPDs, using milk and polyethyleneimine (PEI) as precursors. In the presence of Tb3+, CPDs aggregated immediately and even forming precipitate, and the fluorescence intensity decreased obviously. AA can effectively embed on the surface of CPDs-Tb3+ due to the porous structure. AA displayed obviously blue fluorescence with excitation wavelength at 370 nm (emission peak at 460 nm), while there was no fluorescence peak when excited at 460 nm. In the CPDs-Tb3+ solution, AA exhibits obvious fluorescence enhancement effect (λex 460 nm, λem 545 nm). And then, AA can be determined by the turn-off-on system based on the linear relationship between fluorescence enhancement and the concentration of AA ranging from 0.04 mM to 42.48 mM. The limit of detection (LOD) was 0.02 mM. The turn-off-on system was successfully applied to determine AA in wine samples. The strategy may be exploited to monitor AA in more drinking or foodstuff samples.
Collapse
Affiliation(s)
- Rentian Guan
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng, 252059, China
| | - Shuai Zhang
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng, 252059, China
| | - Xiaoyu Fan
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng, 252059, China
| | - Xiaodong Shao
- State Key Laboratory for Performance and Structure Safety of Petroleum Tubular Goods and Equipment Materials, Tubular Goods Research Institute, Xian, 710077, China
| | - Yingying Hu
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng, 252059, China
| | - Tao Liu
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng, 252059, China
| | - Shuhao Wang
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng, 252059, China
| | - Qiaoli Yue
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng, 252059, China.
| |
Collapse
|
9
|
Preparation of boronic acid-modified polymer dots under mild conditions and their applications in pH and glucose detection. Mikrochim Acta 2021; 189:36. [PMID: 34951680 DOI: 10.1007/s00604-021-05137-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/07/2021] [Indexed: 12/26/2022]
Abstract
For the first time, boronic acid-modified polymer dots (B-PDs) were fabricated by a "synthesis-modification integration" route using polyethylenimine (PEI) and phenylboronic acid as precursors. Under optimized preparation conditions, the B-PDs exhibited an average size of 2.2 nm, good water solubility, and high fluorescence quantum yield of 8.69%. The B-PDs showed reversible fluorescence response in acid solutions (blue emissions) and alkaline solutions (green emissions). The fluorescence emissions of B-PDs demonstrated an obvious red shift with varying the pH value from 1 - 13. Moreover, glucose could assemble on the surface of B-PDs due to the reversible reaction between boronic acid and cis-diols, which resulted in a blue shift of emission wavelength and an obvious increase of FL intensity at λex = 380 nm based on the aggregation-induced enhancement effect. The glucose sensing method was thus developed in the range 0.0001 - 1.0 mol L-1. Applications to real human blood and glucose injection samples demonstrated satisfactory results. The B-PDs based on the analytical method display good selectivity, wide detection range, and simplicity in preparation and detection, implying promising applications as a practical platform for biosensing.
Collapse
|
10
|
Xiong H, Huang Z, Lin Q, Yang B, Yan F, Liu B, Chen H, Kong J. Surface Plasmon Coupling Electrochemiluminescence Immunosensor Based on Polymer Dots and AuNPs for Ultrasensitive Detection of Pancreatic Cancer Exosomes. Anal Chem 2021; 94:837-846. [PMID: 34914878 DOI: 10.1021/acs.analchem.1c03535] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Polymer dots (Pdots) have become attractive electrochemiluminescence (ECL) luminophores due to their facile synthesis, easy modification, and stable electrochemical and optical properties. However, their ECL efficiency is not high enough for practical applications. In this work, we proposed an ECL immunosensor based on localized surface plasmon resonance (LSPR) between AuNPs and Pdots for the determination of pancreatic cancer exosomes. Based on the finite-difference time-domain simulations and the band energy of Pdots and AuNPs, we proposed the possible LSPR mechanism. The hot electrons of plasmonic AuNPs were photoexcited to surface plasmon states by ECL emission of Pdots, and then the excited hot electrons were transferred to the conduction band of Pdots, which significantly improved the ECL efficiency of Pdots. The ECL immunosensor displayed a wide calibration range of 1.0 × 103 to 1.0 × 106 particles/mL with a detection limit of 400 particles/mL. Cancer-related protein profiling revealed high selectivity toward different expressions of exosomal surface proteins from PANC-01, HeLa, MCF-7, and HPDE6-C7 cell lines. The proposed ECL system exhibits a promising prospect for protein biomarker profiling and early cancer-related diagnosis.
Collapse
Affiliation(s)
- Huiwen Xiong
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, Shanghai 200438, China
| | - Zhipeng Huang
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, Shanghai 200438, China
| | - Qiuyuan Lin
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, Shanghai 200438, China
| | - Bin Yang
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, Shanghai 200438, China
| | - Feng Yan
- Department of Clinical Laboratory, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting Road, Nanjing 210009, P. R. China
| | - Baohong Liu
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, Shanghai 200438, China
| | - Hui Chen
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, Shanghai 200438, China
| | - Jilie Kong
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, Shanghai 200438, China
| |
Collapse
|
11
|
Qin G, Cao D, Wan X, Wang X, Kong Y. Polyvinylpyrrolidone-assisted synthesis of highly water-stable cadmium-based metal-organic framework nanosheets for the detection of metronidazole. RSC Adv 2021; 11:34842-34848. [PMID: 35494769 PMCID: PMC9042684 DOI: 10.1039/d1ra05349c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/20/2021] [Indexed: 12/14/2022] Open
Abstract
Recently, much effort has been dedicated to ultra-thin two-dimensional metal–organic framework (2D MOF) nanosheets due to their outstanding properties, such as ultra-thin morphology, large specific surface area, abundant modifiable active sites, etc. However, the preparation of high-quality 2D MOF nanosheets in good yields still remains a huge challenge. Herein, we report 2D cadmium-based metal–organic framework (Cd-MOF) nanosheets prepared in a one-pot polyvinylpyrrolidone (PVP)-assisted synthesis method with high yield. The Cd-MOF nanosheets were characterized with good stability and dispersion in aqueous systems, and were highly selective and sensitive to the antibiotic metronidazole (MNZ) with low limit of detection (LOD: 0.10 μM), thus providing a new and promising fluorescent sensor for rapid detection of MNZ in aqueous solution. Except PVP was added for Cd-MOF nanosheets, the preparation process of bulk and Cd-MOF nanosheets was similar.![]()
Collapse
Affiliation(s)
- Guoxu Qin
- Engineering Technology Center of Department of Education of Anhui Province, Institute of Novel Functional Materials and Fine Chemicals, College of Chemistry and Materials Engineering, Chaohu University Chaohu 238024 P. R. China .,College of Chemistry and Materials Science, Anhui Normal University 189 Jiuhua Southern Road Wuhu 241002 P.R. China
| | - Duojun Cao
- Engineering Technology Center of Department of Education of Anhui Province, Institute of Novel Functional Materials and Fine Chemicals, College of Chemistry and Materials Engineering, Chaohu University Chaohu 238024 P. R. China
| | - Xinjun Wan
- Engineering Technology Center of Department of Education of Anhui Province, Institute of Novel Functional Materials and Fine Chemicals, College of Chemistry and Materials Engineering, Chaohu University Chaohu 238024 P. R. China
| | - Xinyun Wang
- Engineering Technology Center of Department of Education of Anhui Province, Institute of Novel Functional Materials and Fine Chemicals, College of Chemistry and Materials Engineering, Chaohu University Chaohu 238024 P. R. China
| | - Yaqiong Kong
- Engineering Technology Center of Department of Education of Anhui Province, Institute of Novel Functional Materials and Fine Chemicals, College of Chemistry and Materials Engineering, Chaohu University Chaohu 238024 P. R. China
| |
Collapse
|
12
|
Du J, Wang C, Yuan P, Shu Q, Xu N, Yang Y, Qi S, Ye Y, Zhu C. One-step hydrothermal synthesis of nitrogen-doped carbon dots as a super selective and sensitive probe for sensing metronidazole in multiple samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:4652-4661. [PMID: 34545380 DOI: 10.1039/d1ay01009c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A reliable, super selective and sensitive nitrogen-doped carbon dots (N-CDs) nanoprobe that can quantitatively and quickly detect the concentration of metronidazole (MTZ) in multiple samples was built. We first prepared the N-CDs using N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC·HCl) as the precursor via a green, facile one-step hydrothermal method. The as-synthesized N-CDs were characterized by a variety of analytical and spectroscopic techniques, which revealed excitation-dependent fluorescence behavior with the maximum excitation and emission wavelengths being 335 and 370 nm, respectively. Significantly, the fluorescence emission of N-CDs underwent initial quenching upon the addition of MTZ via the inner filter effect (IFE), indicating a prospective detection method for MTZ. The linear range for MTZ detection was 0.1-250 μM, and the corresponding limit of detection (LOD) and limit of quantification (LOQ) were calculated to be only 70 nM and 233.33 nM, respectively. Moreover, due to the negligible cytotoxicity and superior biocompatibility, the fabricated N-CDs show a promising prospect for detecting MTZ in living cells. In general, our proposed N-CDs-based fluorescence sensing platform possesses super low LOD and LOQ values, wide linear range, and satisfactory selectivity, and can be applied to the detection of MTZ in multiple real samples.
Collapse
Affiliation(s)
- Jinyan Du
- Anhui Key Laboratory of Chemo-Biosensing, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, PR China.
| | - Chaofeng Wang
- Anhui Key Laboratory of Chemo-Biosensing, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, PR China.
| | - Pingchuan Yuan
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, School of Pharmacy, Wannan Medical College, Wuhu 241000, China
| | - Qin Shu
- Anhui Key Laboratory of Chemo-Biosensing, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, PR China.
| | - Na Xu
- Anhui Key Laboratory of Chemo-Biosensing, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, PR China.
| | - Ying Yang
- Anhui Key Laboratory of Chemo-Biosensing, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, PR China.
| | - Shuangqing Qi
- Anhui Key Laboratory of Chemo-Biosensing, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, PR China.
| | - Yin Ye
- Anhui Key Laboratory of Chemo-Biosensing, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, PR China.
| | - Changqing Zhu
- Anhui Key Laboratory of Chemo-Biosensing, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, PR China.
| |
Collapse
|
13
|
Zhang S, Wang Y, Yang G. A Facile Strategy for the Preparation of Carboxymethylcellulose‐Derived Polymer Dots and Their Application to Detect Tetracyclines. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Siyu Zhang
- Department of Chemistry and Chemical Engineering, College of Chemistry, Chemical Engineering and Resource Utilization Northeast Forestry University Harbin 150040 China
| | - Ying Wang
- Department of Chemistry and Chemical Engineering, College of Chemistry, Chemical Engineering and Resource Utilization Northeast Forestry University Harbin 150040 China
| | - Guang Yang
- Department of Chemistry and Chemical Engineering, College of Chemistry, Chemical Engineering and Resource Utilization Northeast Forestry University Harbin 150040 China
| |
Collapse
|
14
|
Nanoscale Carbon-Polymer Dots for Theranostics and Biomedical Exploration. JOURNAL OF NANOTHERANOSTICS 2021. [DOI: 10.3390/jnt2030008] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
In recent years, new carbonized nanomaterials have emerged in imaging, sensing, and various biomedical applications. Published literature shows that carbon dots (CDs) have been explored more extensively than any other nanomaterials. However, its polymeric version, carbon polymer dots (CPDs), did not get much attention. The non-conjugated and single-particle CPDs have all the merits of polymer and CDs, such as photoluminescent properties. The partially carbonized CPDs can be applied like CDs without surface passivation and functionalization. This merit can be further enhanced through the selection of desired precursors and control of carbonization synthesis. CPDs can absorb UV-visible-NIR light and can enhance the photoresponsive chemical and biochemical interactions. This review aims to introduce this area of renewed interest and provide insights into current developments of CPDs nanoparticles and present an overview of chemical, biological, and therapeutic applications.
Collapse
|
15
|
Modified electrodes for electrochemical determination of metronidazole in drug formulations and biological samples: An overview. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106151] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
16
|
Yang J, Chen W, Chen X, Zhang X, Zhou H, Du H, Wang M, Ma Y, Jin X. Detection of Cu 2+ and S 2- with fluorescent polymer nanoparticles and bioimaging in HeLa cells. Anal Bioanal Chem 2021; 413:3945-3953. [PMID: 33954830 DOI: 10.1007/s00216-021-03345-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/03/2021] [Accepted: 04/13/2021] [Indexed: 11/26/2022]
Abstract
Novel spherical polymer nanoparticles were synthesized by hyperbranched polyethylenimine (hPEI) and 6-hydroxy-2-naphthaldehyde (HNA) via Schiff base reaction (one-pot reaction), which had great advantages in water solubility and green synthesis. Meanwhile, probe PEI-HNA could quickly detect Cu2+ in the range of 0-60 μM in 30 s with the detection limit of 243 nM. The fluorescence of PEI-HNA-Cu2+ could be recovered by the addition of S2- in 50 s with the detection limit of 227 nM. Based on the excellent optical properties, PEI-HNA has been used in the bioimaging of living cells with excellent cell penetrability and low toxicity. More importantly, PEI-HNA has been doped into filter paper, hydrogel, and nanofibrous film to prepare solid-phase sensors, displaying rapid response and excellent sensitivity. Moreover, the low-cost and simple preparation of these sensors offers great potential and possibilities for industrialization, which could help accelerate the development of sensors in environmental and biological fields.
Collapse
Affiliation(s)
- Jin Yang
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an, 710032, Shaanxi, China
| | - Weixing Chen
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an, 710032, Shaanxi, China.
| | - Xinyu Chen
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an, 710032, Shaanxi, China
| | - Xi Zhang
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an, 710032, Shaanxi, China
| | - Hongwei Zhou
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an, 710032, Shaanxi, China
| | - Haotian Du
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an, 710032, Shaanxi, China
| | - Mingcheng Wang
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an, 710032, Shaanxi, China
| | - Yiting Ma
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an, 710032, Shaanxi, China
| | - Xilang Jin
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
17
|
Tang J, Zhang Y, Liu Y, Liu D, Qin H, Lian N. Carbon quantum dots as a fluorophore for “inner filter effect” detection of metronidazole in pharmaceutical preparations. RSC Adv 2019; 9:38174-38182. [PMID: 35541821 PMCID: PMC9075884 DOI: 10.1039/c9ra08477k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 11/12/2019] [Indexed: 01/03/2023] Open
Abstract
With houttuynia cordata as carbon source, photoluminescent carbon quantum dots (CDs) were obtained via a one-step hydrothermal procedure. The absorption band of metronidazole (MNZ, maximum absorption wavelength at 319 nm) can well overlap with the excitation bands of CDs (maximum excitation wavelength at 320 nm). A fluorescent approach has been developed for detection of MNZ based on the inner filter effect (IFE), in which as-prepared CDs act as an IFE fluorophore and the MNZ as an IFE absorber. We have investigated the mechanism of quenching the fluorescence of CDs and found that the IFE leads to an exponential decay in fluorescence intensity of CDs with increasing concentration of MNZ, but showed a good linear relationship (R2 = 0.9930) between ln(F0/F) with the concentration of MNZ in the range of 3.3 × 10−6 to 2.4 × 10−4 mol L−1. Due to the absence of surface modification of the CDs or establishing any covalent linking between the absorber (MNZ) and the fluorophore (CDs), the developed method is simple, rapid, low-cost and less time-consuming. Meanwhile, it possesses a higher sensitivity, wider linear range, and satisfactory selectivity and has potential application for detection of MNZ in pharmaceutical preparations. CDs were prepared using Houttuynia cordata via hydrothermal process, the absorption band of MNZ can well overlap the excitation bands of CDs, a simple, rapid approach for detection of MNZ was established on the basis of IFE.![]()
Collapse
Affiliation(s)
- Jianghong Tang
- School of Chemistry and Environmental Engineering
- Jiangsu University of Technology
- Changzhou 213001
- China
| | - Yaheng Zhang
- School of Chemistry and Environmental Engineering
- Jiangsu University of Technology
- Changzhou 213001
- China
| | - Yuhai Liu
- School of Chemistry and Environmental Engineering
- Jiangsu University of Technology
- Changzhou 213001
- China
| | - Dan Liu
- School of Chemistry and Environmental Engineering
- Jiangsu University of Technology
- Changzhou 213001
- China
| | - Hengfei Qin
- School of Chemistry and Environmental Engineering
- Jiangsu University of Technology
- Changzhou 213001
- China
| | - Ning Lian
- School of Chemistry and Environmental Engineering
- Jiangsu University of Technology
- Changzhou 213001
- China
| |
Collapse
|