Kumar V, Guleria P. Application of DNA-Nanosensor for Environmental Monitoring: Recent Advances and Perspectives.
CURRENT POLLUTION REPORTS 2020:1-21. [PMID:
33344145 PMCID:
PMC7732738 DOI:
10.1007/s40726-020-00165-1]
[Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/04/2020] [Indexed: 05/24/2023]
Abstract
PURPOSE OF REVIEW
Environmental pollutants are threat to human beings. Pollutants can lead to human health and environment hazards. The purpose of this review is to summarize the work done on detection of environmental pollutants using DNA nanosensors and challenges in the areas that can be focused for safe environment.
RECENT FINDINGS
Most of the DNA-based nanosensors designed so far use DNA as recognition element. ssDNA, dsDNA, complementary mismatched DNA, aptamers, and G-quadruplex DNA are commonly used as probes in nanosensors. More and more DNA sequences are being designed that can specifically detect various pollutants even simultaneously in complex milk, wastewater, soil, blood, tap water, river, and pond water samples. The feasibility of direct detection, ease of designing, and analysis makes DNA nanosensors fit for future point-of-care applications.
SUMMARY
DNA nanosensors are easy to design and have good sensitivity. DNA component and nanomaterials can be designed in a controlled manner to detect various environmental pollutants. This review identifies the recent advances in DNA nanosensor designing and opportunities available to design nanosensors for unexplored pathogens, antibiotics, pesticides, GMO, heavy metals, and other toxic pollutant.
Collapse