1
|
Ou Y, Zhu D. Enlarged pore of worm mesoporous silica nanoparticles improves anti-inflammatory drug absorption. Drug Deliv Transl Res 2023; 13:2475-2486. [PMID: 36940080 DOI: 10.1007/s13346-023-01326-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2023] [Indexed: 03/21/2023]
Abstract
Searching for an effective pore-enlarging agent to form mesoporous silica nanoparticles (MSN) with a creative surface frame is of great importance. Herein, several polymers were attempted to be pore-enlarging agents to form seven types of worm mesoporous silica nanoparticles (W-MSN) and analgesic indometacin that exerted functions on inflammatory diseases (breast disease, arthrophlogosis, etc.) was studied to enhance its delivery efficiency. The porous morphology differences between MSN and W-MSN were that MSN had independent mesopores while the enlarged mesopores of W-MSN were interrelated and shaped as a worm. Among all these W-MSN, WG-MSN templated by hydroxypropyl cellulose acetate succinate HG with the highest drug-loading capacity (24.78%), shortest loading time (10 h), drug dissolution improvement of almost 4 times compared to that of the raw drug, and highest bioavailability (5.48 times higher than that of raw drug and 1.52 times higher than that of MSN) was an outstanding drug carrier and can shoulder the mission to deliver drugs with high efficiency.
Collapse
Affiliation(s)
- Yuying Ou
- Department of Breast Surgery, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Demiao Zhu
- Department of Breast Surgery, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China.
| |
Collapse
|
2
|
Chen HY, Xin PL, Xu HB, Lv J, Qian RC, Li DW. Self-Assembled Plasmonic Nanojunctions Mediated by Host-Guest Interaction for Ultrasensitive Dual-Mode Detection of Cholesterol. ACS Sens 2023; 8:388-396. [PMID: 36617720 DOI: 10.1021/acssensors.2c02570] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Herein, a fluorescence and surface-enhanced Raman spectroscopy dual-mode system was designed for cholesterol detection based on self-assembled plasmonic nanojunctions mediated by the competition of rhodamine 6G (R6G) and cholesterol with β-cyclodextrin modified on gold nanoparticles (HS-β-CD@Au). The fluorescence of R6G was quenched by HS-β-CD@Au due to the fluorescence resonance energy transfer effect. When cholesterol was introduced as the competitive guest, R6G in the cavities of HS-β-CD@Au was displaced to recover its fluorescence. Moreover, two of HS-β-CD@Au can be linked by one cholesterol to form a more stable 2:1 complex, and then, plasmonic nanojunctions were generated, which resulted in the increasing SERS signal of R6G. In addition, fluorescence and SERS intensity of R6G increased linearly with the increase in the cholesterol concentrations with the limits of detection of 95 and 74 nM, respectively. Furthermore, the dual-mode strategy can realize the reliable and sensitive detection of cholesterol in the serum with good accuracy, and two sets of data can mutually validate each other, which demonstrated great application prospects in the surveillance of diseases related with cholesterol.
Collapse
Affiliation(s)
- Hua-Ying Chen
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, P. R. China
| | - Pei-Lin Xin
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, P. R. China
| | - Han-Bin Xu
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, P. R. China
| | - Jian Lv
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, P. R. China
| | - Ruo-Can Qian
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, P. R. China
| | - Da-Wei Li
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, P. R. China
| |
Collapse
|
3
|
Zhao X, Shen H, Huo B, Wang Y, Gao Z. A novel bionic magnetic SERS aptasensor for the ultrasensitive detection of Deoxynivalenol based on “dual antennae” nano-silver. Biosens Bioelectron 2022; 211:114383. [DOI: 10.1016/j.bios.2022.114383] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/20/2022] [Accepted: 05/14/2022] [Indexed: 12/27/2022]
|
4
|
Current Status of Quantum Chemical Studies of Cyclodextrin Host-Guest Complexes. Molecules 2022; 27:molecules27123874. [PMID: 35744998 PMCID: PMC9229288 DOI: 10.3390/molecules27123874] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 12/30/2022] Open
Abstract
This article aims to review the application of various quantum chemical methods (semi-empirical, density functional theory (DFT), second order Møller-Plesset perturbation theory (MP2)) in the studies of cyclodextrin host-guest complexes. The details of applied approaches such as functionals, basis sets, dispersion corrections or solvent treatment methods are analyzed, pointing to the best possible options for such theoretical studies. Apart from reviewing the ways that the computations are usually performed, the reasons for such studies are presented and discussed. The successful applications of theoretical calculations are not limited to the determination of stable conformations but also include the prediction of thermodynamic properties as well as UV-Vis, IR, and NMR spectra. It has been shown that quantum chemical calculations, when applied to the studies of CD complexes, can provide results unobtainable by any other methods, both experimental and computational.
Collapse
|
5
|
Shafaq S, Irfan Majeed M, Nawaz H, Rashid N, Akram M, Yaqoob N, Tariq A, Shakeel S, Ul Haq A, Saleem M, Zaman Nawaz M, Zaki Abdul Bari R. Quantitative analysis of solid dosage forms of Losartan potassium by Raman spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 272:120996. [PMID: 35149485 DOI: 10.1016/j.saa.2022.120996] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/25/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Raman spectroscopy is an outstanding analytical tool increasingly utilized in the pharmaceutical field for the solid-state pharmaceutical drug analysis. In current study, the potential of Raman spectroscopy has been investigated for qualitative and quantitative analysis of solid dosage form of Losartan potassium. For this purpose, different solid dosage forms/concentrations of losartan potassium were prepared to compensate the commercially available pharmaceutical drug formulations and their Raman spectral data showed a gradual change in the specific Raman spectral features associated with the active pharmaceutical ingredient (API) of Losartan potassium as a function of change in the concentration. The Raman spectral data was analyzed by using Principal Component Analysis (PCA) for the classification of different spectral data sets of different concentrations of drug. Moreover, partial least square regression (PLSR) analysis was performed for monitoring the quantitative relation among different concentrations of Losartan potassium API and spectral data by constructing a predictive model. From the model, the value of root mean square error of calibration (RMSEC) and root mean square error of prediction (RMSEP) were observed to be 0.38 and 2.98 respectively and the value of goodness of fit was found to be 0.99. Furthermore, the quantity of unknown/blind sample of Losartan potassium formulation was also estimated by using PLSR model. From these results, it is demonstrated that Raman spectroscopy can be considered to be used for quick and reliable quantitative analysis of pharmaceutical solids.
Collapse
Affiliation(s)
- Syeda Shafaq
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Irfan Majeed
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan.
| | - Haq Nawaz
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan.
| | - Nosheen Rashid
- Department of Chemistry, University of Education, Faisalabad Campus, Faisalabad 38000, Pakistan
| | - Maria Akram
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Nimra Yaqoob
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Ayesha Tariq
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Samra Shakeel
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Anwar Ul Haq
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Mudassar Saleem
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Zaman Nawaz
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Rana Zaki Abdul Bari
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| |
Collapse
|
6
|
Hu W, Chen Y, Xia L, Hu Y, Li G. Flexible membrane composite based on sepiolite/chitosan/(silver nanoparticles) for enrichment and surface-enhanced Raman scattering determination of sulfamethoxazole in animal-derived food. Mikrochim Acta 2022; 189:199. [PMID: 35469076 DOI: 10.1007/s00604-022-05265-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/07/2022] [Indexed: 11/29/2022]
Abstract
A sepiolite/chitosan/silver nanoparticles (Sep/CTs/AgNPs) membrane substrate has been developed for the fast separation, enrichment, and surface-enhanced Raman scattering (SERS) determination of sulfamethoxazole all-in-one. The Sep/CTs/AgNPs membrane substrate possessed the ability of rapid separation and enrichment to simplify the process for pretreatment and improve the efficiency of analysis. The grown AgNPs can provide abundant hot spots and plasmonic areas to amplify the Raman signals of target molecules effectively. The membrane substrate exhibited good stability with relative standard deviations of 5.8% and 7.1% to same batch and different batches membrane substrate, respectively, by detecting sulfamethoxazole. The SERS method based on Sep/CTs/AgNPs membrane substrate was used for the determination of sulfamethoxazole with a linear range of 0.05-2.0 mg/L, and the limit of detection was 0.020 mg/L. The established SERS method was finally applied to the quantification of sulfamethoxazole in animal-derived food samples. Sulfamethoxazole was actually found in crucian sample with 12.4 μg/kg, and the result was confirmed by a high-performance liquid chromatography method with relative error of 5.3%. The whole process of analysis can be finished within 25 min with recoveries of 89.3-102.2%. The SERS method based on Sep/CTs/AgNPs membrane substrate provided an integrated strategy for rapid and accurate SERS analysis in food safety issues.
Collapse
Affiliation(s)
- Wenyao Hu
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yanlong Chen
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Ling Xia
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yufei Hu
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China.
| | - Gongke Li
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China.
| |
Collapse
|
7
|
Moradifar N, Kiani AA, Veiskaramian A, Karami K. Role of Organic and Inorganic Nanoparticles in the Drug Delivery System for Hypertension Treatment: A Systematic Review. Curr Cardiol Rev 2022; 18:e110621194025. [PMID: 35297343 PMCID: PMC9241118 DOI: 10.2174/1573403x17666210611115823] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 03/03/2021] [Accepted: 03/16/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The present investigation was designed to systematically review the antihypertensive effects of all the organic and inorganic nanoparticles in the in vitro, in vivo, and clinical trials. METHODS The current study was carried out using 06-PRISMA guideline and registered in the CAMARADES- NC3Rs Preclinical Systematic Review and Meta-analysis Facility (SyRF) database. The search was performed on five English databases, including Scopus, PubMed, Web of Science, EMBASE, and Google Scholar, without time limitation for publications worldwide related to the anti-hypertensive effects of all the organic and inorganic nanoparticles without date limitation, so as to identify all the published articles (in vitro, in vivo, clinical, and case-control). Studies in any language were entered in the search step if they had an English abstract. RESULTS Out of 3602 papers, 60 including 25 werein vitro (41.7%), 17 in vitro / in vivo (28.3%), 16 in vivo (26.7%), and 2 in vitro / ex vivo (3.3%) up to 2020 met the inclusion criteria for discussion in this systematic review. The most widely used nanoparticles were organic nanoparticles such as polylactic acid, poly lactic-co-glycolic acid (PLGA), lipid, chitosan, etc., followed by inorganic nanoparticles such as silver and palladium nanoparticles. CONCLUSION This review demonstrated the anti-hypertensive effects of some organic and inorganic nanoparticles alone or in combination with the available anti-hypertensives. We found that organic nanoparticles such as PGLA and chitosan can be considered as preferred options in nanomedicine for treating high blood pressure. The results also showed these nanoparticles displayed antihypertensive effects through some mechanisms such as sustained release forms via increasing bioavailability, increasing oral bioavailability and improving oral and non-oral absorption, counteracting excessive superoxide, decreasing blood pressure, etc. However, further investigations are required to prove these effects, particularly in clinical settings, as well as their accurate possible mechanisms and toxicity.
Collapse
Affiliation(s)
- Nasrollah Moradifar
- Cardiovascular Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Ali Asghar Kiani
- Razi Herbal Medicine Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Atefe Veiskaramian
- Cardiovascular Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Kimia Karami
- Social Determinants of Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
- Department of Nursing, School of Nursing and Midwifery, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
8
|
Lai H, Zhang H, Li G, Hu Y. Bimetallic AgNPs@dopamine modified-halloysite nanotubes-AuNPs for adenine determination using surface-enhanced Raman scattering. Mikrochim Acta 2021; 188:127. [PMID: 33733686 DOI: 10.1007/s00604-021-04778-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 03/03/2021] [Indexed: 01/14/2023]
Abstract
A bimetallic nanoparticles modified halloysite nanotubes (HNTs) hybrid was prepared by embedding AgNPs and modifying AuNPs on the inner or outer wall of dopamine-modified HNTs (DHNTs) in sequence. The resulting bimetallic AgNPs@DHNTs-AuNPs hybrid as surface-enhanced Raman scattering (SERS) substrate exhibited improved enhancement ability over monometallic AgNPs@DHNTs, and DHNTs-AuNPs substrates, with intensity ratios of about 48:1:9 (crystal violet) and 11:1:2 (p-phenylenediamine). The giant SERS effect of AgNPs@DHNTs-AuNPs substrate is probably attributed to the synergetic enhancement of the electromagnetic field (Au/Ag), optical plasmon force, molecular enrichment (HNTs), and charge transfer (NPs-dopamine-molecules). The sensitive and reproductive AgNPs@DHNTs-AuNPs substrate was applied for SERS determination of adenine with a linear range of 0.010-0.50 mg·L-1 and a detection limit of 2.2 μg·L-1. The SERS method enables the rapid determination of adenine in fish, chicken kidney and heart, and serum samples, with recoveries of 83.5-121.6% and relative standard deviations of 2.5-7.9%. The SERS substrate has high value for rapid analysis of food and biomarker determinations. Schematic illustration of the preparation of AgNPs@HNTs-AuNPs for SERS analysis of adenine in complex sample.
Collapse
Affiliation(s)
- Huasheng Lai
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Huadong Zhang
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China.
| | - Yufei Hu
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
9
|
Zhang H, Lai H, Li G, Hu Y. 4-Aminothiophenol capped halloysite nanotubes/silver nanoparticles as surface-enhanced Raman scattering probe for in-situ derivatization and selective determination of nitrite ions in meat product. Talanta 2020; 220:121366. [DOI: 10.1016/j.talanta.2020.121366] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 01/03/2023]
|
10
|
Ren X, Li X. Flower-like Ag coated with molecularly imprinted polymers as a surface-enhanced Raman scattering substrate for the sensitive and selective detection of glibenclamide. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:2858-2864. [PMID: 32930209 DOI: 10.1039/d0ay00575d] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Flower-like Ag was formed by nanosheet self-assembly as a SERS-active substrate and was utilized for the preparation of flower-like Ag@molecularly imprinted polymers (MIPs) as a surface-enhanced Raman scattering (SERS) sensor. Based on the combination of the molecular imprinting technique and SERS technology, the flower-like Ag@MIPs with high sensitivity and excellent selectivity were used as SERS substrates for the detection of glibenclamide. The imprinted layer could effectively protect the flower-like Ag from oxidation and thereby may improve the stability of the SERS substrate. The intensities of the characteristic peaks obtained for the flower-like Ag@MIPs were higher than that of flower-like Ag. By applying the flower-like Ag@MIPs as an efficient and ultra-sensitive SERS platform, glibenclamide was quantitatively detected in trace concentrations as low as 1 ng mL-1. Furthermore, the SERS enhancement for the flower-like Ag@MIPs was due to the synergetic effect between electromagnetic enhancement and chemical enhancement. We believe that this reliable method can open up new opportunities for practical chemosensor or biosensor applications.
Collapse
Affiliation(s)
- Xiaohui Ren
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Xin Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| |
Collapse
|
11
|
Jouyban A, Rahimpour E. Optical sensors based on silver nanoparticles for determination of pharmaceuticals: An overview of advances in the last decade. Talanta 2020; 217:121071. [PMID: 32498884 DOI: 10.1016/j.talanta.2020.121071] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/18/2020] [Accepted: 04/20/2020] [Indexed: 01/01/2023]
Abstract
This review focuses on optical nanosensors based on silver nanoparticles (Ag NPs) and demonstrates their applications in the determination of pharmaceutical compounds in the last decade. Such optical sensors have received high attention in the analytical field owing to their low cost and simplicity since they do not require any complex or expensive instrumentation. This article reviews Ag NP-based optical methods for the determination of pharmaceutical compounds from 2010 to 2020. The reported optical methods are classified into four types: spectrophotometry, spectrofluorimetry, scattering and chemiluminescence. Ag NPs play different roles in the different sensing platforms used by these methods, the details of which are carefully explained in this review. Moreover, the relevant analytical parameters of the developed methods are categorized by role and tabulated. It is hoped that this review will stimulate further research in this field with similar nanostructures.
Collapse
Affiliation(s)
- Abolghasem Jouyban
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Elaheh Rahimpour
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|