1
|
Wang J, Ding X, Lan Z, Liu G, Hou S, Hou S. Imidazole Compounds: Synthesis, Characterization and Application in Optical Analysis. Crit Rev Anal Chem 2024; 54:897-922. [PMID: 35001757 DOI: 10.1080/10408347.2021.2023459] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Imidazole is a five-membered heterocyclic ring containing three carbon atoms, two nitrogen atoms, and two double bonds. Among two nitrogen atoms, one of which carries with a hydrogen atom is a pyrrole-type nitrogen atom, another is a pyridine type nitrogen atom. Hence, the imidazole ring belongs to the π electron-rich aromatic ring and can accept strong suction to the electronic group. Moreover, the nitrogen atom of the imidazole ring is coordinated with metal ions to form metal-organic frameworks. In recent years, because of imidazole compounds' unique optical properties, their applications have attracted more and more attention in optical analysis. Thus, this review has summarized the synthesis, characterization, and application with emphasis on the research progress of imidazole compounds in optical analysis, including fluorescence probe, colorimetric probe, electrochemiluminescence sensor, fiber optical sensor, surface plasmon resonance, etc. This paper will suggest the direction for the development of imidazole-containing sensors with high sensitivity and selectivity.
Collapse
Affiliation(s)
- Junjie Wang
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, P.R. China
| | - Xin Ding
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, P.R. China
| | - Zhenni Lan
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, P.R. China
| | - Guangyan Liu
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, P.R. China
| | - Shili Hou
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, P.R. China
| | - Shifeng Hou
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, P.R. China
- National Engineering and Technology Research Center for Colloidal Materials, Shandong University, Jinan, P.R. China
| |
Collapse
|
2
|
Liu W, Huang Y, Ji C, Grimes CA, Liang Z, Hu H, Kang Q, Yan HL, Cai QY, Zhou YG. Eu 3+-Doped Anionic Zinc-Based Organic Framework Ratio Fluorescence Sensing Platform: Supersensitive Visual Identification of Prescription Drugs. ACS Sens 2024; 9:759-769. [PMID: 38306386 DOI: 10.1021/acssensors.3c02069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
Advanced techniques for both environmental and biological prescription drug monitoring are of ongoing interest. In this work, a fluorescent sensor based on an Eu3+-doped anionic zinc-based metal-organic framework (Eu3+@Zn-MOF) was constructed for rapid visual analysis of the prescription drug molecule demecycline (DEM), achieving both high sensitivity and selectivity. The ligand 2-amino-[1,1'-biphenyl]-4,4'-dicarboxylic acid (bpdc-NH2) not only provides stable cyan fluorescence (467 nm) for the framework through intramolecular charge transfer of bpdc-NH2 infinitesimal disturbanced by Zn2+ but also chelates Eu3+, resulting in red (617 nm) fluorescence. Through the synergy of photoinduced electron transfer and the antenna effect, a bidirectional response to DEM is achieved, enabling concentration quantification. The Eu3+@Zn-MOF platform exhibits a wide linear range (0.25-2.5 μM) to DEM and a detection limit (LOD) of 10.9 nM. Further, we integrated the DEM sensing platform into a paper-based system and utilized a smartphone for the visual detection of DEM in water samples and milk products, demonstrating the potential for large-scale, low-cost utilization of the technology.
Collapse
Affiliation(s)
- Wensheng Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yao Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Chenhui Ji
- Department of Chemistry, Baotou Teachers College, Baotou 014030, China
| | - Craig A Grimes
- Flux Photon Corporation, Alpharetta, Georgia 30005, United States
| | - Zerong Liang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Hairong Hu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Qing Kang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Hai-Long Yan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Qing-Yun Cai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yi-Ge Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
3
|
Oladipo AA, Derakhshan Oskouei S, Gazi M. Metal-organic framework-based nanomaterials as opto-electrochemical sensors for the detection of antibiotics and hormones: A review. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:631-673. [PMID: 37284550 PMCID: PMC10241095 DOI: 10.3762/bjnano.14.52] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/09/2023] [Indexed: 06/08/2023]
Abstract
Increasing trace levels of antibiotics and hormones in the environment and food samples are concerning and pose a threat. Opto-electrochemical sensors have received attention due to their low cost, portability, sensitivity, analytical performance, and ease of deployment in the field as compared to conventional expensive technologies that are time-consuming and require experienced professionals. Metal-organic frameworks (MOFs) with variable porosity, active functional sites, and fluorescence capacity are attractive materials for developing opto-electrochemical sensors. Herein, the insights into the capabilities of electrochemical and luminescent MOF sensors for detection and monitoring of antibiotics and hormones from various samples are critically reviewed. The detailed sensing mechanisms and detection limits of MOF sensors are addressed. The challenges, recent advances, and future directions for the development of stable, high-performance MOFs as commercially viable next-generation opto-electrochemical sensor materials for the detection and monitoring of diverse analytes are discussed.
Collapse
Affiliation(s)
- Akeem Adeyemi Oladipo
- Polymeric Materials Research Laboratory, Chemistry Department, Faculty of Arts and Science, Eastern Mediterranean University, TR North Cyprus, Famagusta, via Mersin 10, Türkiye
| | - Saba Derakhshan Oskouei
- Polymeric Materials Research Laboratory, Chemistry Department, Faculty of Arts and Science, Eastern Mediterranean University, TR North Cyprus, Famagusta, via Mersin 10, Türkiye
| | - Mustafa Gazi
- Polymeric Materials Research Laboratory, Chemistry Department, Faculty of Arts and Science, Eastern Mediterranean University, TR North Cyprus, Famagusta, via Mersin 10, Türkiye
| |
Collapse
|
4
|
Carbocyanine-Based Fluorescent and Colorimetric Sensor Array for the Discrimination of Medicinal Compounds. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10020088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Array-based optical sensing is an efficient technique for the determination and discrimination of small organic molecules. This study is aimed at the development of a simple and rapid strategy for obtaining an optical response from a wide range of low-molecular-weight organic compounds. We have suggested a colorimetric and fluorimetric sensing platform based on the combination of two response mechanisms using carbocyanine dyes: aggregation and oxidation. In the first one, the analyte forms ternary aggregates with an oppositely charged surfactant wherein the dye is solubilized in the hydrophobic domains of the surfactant accompanied with fluorescent enhancement. The second mechanism is based on the effect of the analyte on the catalytic reaction rate of dye oxidation with H2O2 in the presence of a metal ion (Cu2+, Pd2+), which entails fluorescence waning and color change. The reaction mixture in a 96-well plate is photographed in visible light (colorimetry) and the near-IR region under red light excitation (fluorimetry). In this proof-of-concept study, we demonstrated the feasibility of discrimination of nine medicinal compounds using principal component analysis: four cephalosporins (ceftriaxone, cefazolin, ceftazidime, cefotaxime), three phenothiazines (promethazine, promazine, chlorpromazine), and two penicillins (benzylpenicillin, ampicillin) in an aqueous solution and in the presence of turkey meat extract. The suggested platform allows simple and rapid recognition of analytes of various nature without using spectral equipment, except for a photo camera.
Collapse
|
5
|
Zn-mesoporous metal-organic framework incorporated with copper ions modified glassy carbon electrode: Electrocatalytic oxidation and determination of amoxicillin. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
6
|
Dou X, Sun K, Chen H, Jiang Y, Wu L, Mei J, Ding Z, Xie J. Nanoscale Metal-Organic Frameworks as Fluorescence Sensors for Food Safety. Antibiotics (Basel) 2021; 10:358. [PMID: 33800674 PMCID: PMC8067089 DOI: 10.3390/antibiotics10040358] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/21/2021] [Accepted: 03/21/2021] [Indexed: 01/12/2023] Open
Abstract
Food safety has attracted attention worldwide, and how to detect various kinds of hazardous substances in an efficient way has always been a focus. Metal-Organic Frameworks (MOFs) are a class of hybrid porous materials formed by organic ligand and metal ions. Nanoscale MOFs (NMOFs) exhibit great potential in serving as fluorescence sensors for food safety due to their superior properties including high accuracy, great stability, fast response, etc. In this review, we focus on the recent development of NMOFs sensing for food safety. Several typical methods of NMOFs synthesis are presented. NMOFs-based fluorescence sensors for contaminants and adulterants, such as antibiotics, food additives, ions and mycotoxin etc. are summarized, and the sensing mechanisms are also presented. We explore these challenges in detail and provide suggestions about how they may be surmounted. This review could help the exploration of NMOFs sensors in food related work.
Collapse
Affiliation(s)
- Xilin Dou
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (X.D.); (J.M.)
| | - Kai Sun
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA; (K.S.); (H.C.); (Y.J.)
| | - Haobin Chen
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA; (K.S.); (H.C.); (Y.J.)
| | - Yifei Jiang
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA; (K.S.); (H.C.); (Y.J.)
| | - Li Wu
- School of Public Health, Nantong University, Nantong 226019, China;
| | - Jun Mei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (X.D.); (J.M.)
| | - Zhaoyang Ding
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (X.D.); (J.M.)
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (X.D.); (J.M.)
| |
Collapse
|
7
|
Recent development of antibiotic detection in food and environment: the combination of sensors and nanomaterials. Mikrochim Acta 2021; 188:21. [PMID: 33404741 DOI: 10.1007/s00604-020-04671-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022]
Abstract
In recent years, the abuse of antibiotics has led to the pollution of soil and water environment, not only poultry husbandry and food manufacturing will be influenced to different degree, but also the human body will produce antibody. The detection of antibiotic content in production and life is imperative. In this review, we provide comprehensive information about chemical sensors and biosensors for antibiotic detection. We classify the currently reported antibiotic detection technologies into chromatography, mass spectrometry, capillary electrophoresis, optical detection, and electrochemistry, introduce some representative examples for each technology, and conclude the advantages and limitations. In particular, the optical and electrochemical methods based on nanomaterials are discussed and evaluated in detail. In addition, the latest research in the detection of antibiotics by photosensitive materials is discussed. Finally, we summarize the pros and cons of various antibiotic detection methods and present a discussion and outlook on the expansion of cross-scientific areas. The synthesis and application of optoelectronic nanomaterials and aptamer screening are discussed and prospected, and the future trends and potential impact of biosensors in antibiotic detection are outlined.Graphical abstract.
Collapse
|
8
|
Lu Z, Jiang Y, Wang P, Xiong W, Qi B, Zhang Y, Xiang D, Zhai K. Bimetallic organic framework-based aptamer sensors: a new platform for fluorescence detection of chloramphenicol. Anal Bioanal Chem 2020; 412:5273-5281. [PMID: 32514850 DOI: 10.1007/s00216-020-02737-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/05/2020] [Accepted: 05/25/2020] [Indexed: 12/25/2022]
Abstract
A fluorescence method for the quantitative detection of chloramphenicol (CAP) has been developed using phosphate and fluorescent dye 6-carboxy-x-rhodamine (ROX) double-labeled aptamers of CAP and the bimetallic organic framework nanomaterial Cu/UiO-66. Cu/UiO-66 was prepared by coordinate bonding of metal organic framework (MOF) nanomaterial UiO-66 with copper ions. Cu/UiO-66 contains a large number of metal defect sites, which can be combined with phosphate-modified nucleic acid aptamers through strong coordination between phosphate and zirconium to form "fluorescence turn-on" sensors. In the absence of CAP, all single-stranded aptamers were adsorbed on the surface of Cu/UiO-66 through π-π stacking between single-stranded DNA and Cu/UiO-66, which brings the ROX fluorophores and Cu/UiO-66 into close proximity. The ROX fluorescence of aptamers was then quenched by Cu/UiO-66 through photoinduced electron transfer (PET). In the presence of CAP, however, CAP reacted with nucleic acid aptamers to form a special spatial structure, in which the ROX fluorophores were far away from the MOF surface via a change in the spatial structure of the aptamers, and the fluorescence of ROX was able to be recovered. The quantitative detection of CAP can be achieved by measuring the fluorescence signal of ROX using synchronous scanning fluorescence spectrometry. Under optimum conditions, the fluorescence intensities of ROX exhibit a good linear dependence on the concentration of CAP in the range of 0.2-10 nmol/L, with a detection limit of 0.09 nmol/L. The method has advantages of high sensitivity, good selectivity, and a low limit of detection. Graphical abstract.
Collapse
Affiliation(s)
- Zijing Lu
- School of Chemical and Environmental Engineering, Hubei Minzu University, Enshi, 445000, Hubei, China.,Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, Enshi, 445000, Hubei, China
| | - Yansong Jiang
- College of Chemistry, Jilin University, Changchun, 130012, Jilin, China
| | - Peng Wang
- School of Chemical and Environmental Engineering, Hubei Minzu University, Enshi, 445000, Hubei, China.,Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, Enshi, 445000, Hubei, China
| | - Weiwei Xiong
- School of Chemical and Environmental Engineering, Hubei Minzu University, Enshi, 445000, Hubei, China.,Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, Enshi, 445000, Hubei, China
| | - Baoping Qi
- School of Chemical and Environmental Engineering, Hubei Minzu University, Enshi, 445000, Hubei, China
| | | | - Dongshan Xiang
- School of Chemical and Environmental Engineering, Hubei Minzu University, Enshi, 445000, Hubei, China. .,Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, Enshi, 445000, Hubei, China.
| | - Kun Zhai
- School of Chemical and Environmental Engineering, Hubei Minzu University, Enshi, 445000, Hubei, China. .,Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, Enshi, 445000, Hubei, China.
| |
Collapse
|