1
|
Ma W, Zhen S, Shan X, Liu Y, Liang Q, Yang C, Ding R, Meng L, Yao H. Multi-responsive biosensor prepared based on MXene and PDEA-HRP binary architecture films for H 2O 2 detection and logic gate construction. Talanta 2024; 285:127361. [PMID: 39700722 DOI: 10.1016/j.talanta.2024.127361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/27/2024] [Accepted: 12/08/2024] [Indexed: 12/21/2024]
Abstract
The quantitative detection of H2O2 is of great significance for preventing the occurrence of diseases. In this work, an electrochemical biosensor for detecting H2O2 was constructed through a step-by-step modification method. The PDEA-HRP/MXene/PG biosensor (PDEA = poly(N,N-dimethyl acrylamide), HRP = horseradish peroxidase, PG = pyrolytic graphite) was prepared with two-dimensional metal carbide (MXene) nano materials as the inner layer and PDEA-HRP hydrogel as the outer layer for the detection of H2O2. Due to the excellent conductivity and biocompatibility of MXene materials, the prepared PDEA-HRP/MXene/PG biosensors have high sensitivity, wide linear range, and good repeatability. The results indicated that under optimal conditions, the prepared biosensor can detect H2O2 concentration within a linear range of 0.04 mM ∼ 1.80 mM, with the detection limit of 1.08 × 10-3 mM (S/N = 3). The detection effect was good in actual samples. In addition, based on the switching properties of PDEA-HRP hydrogel under different conditions, combined with the characteristics of MXene nanomaterials. This study also constructed several biomolecule electrocatalytic logic gate systems, including binary 5-Input/5-Output logic gate network, 2-to-4 decoder, and a ternary AND logic gates.
Collapse
Affiliation(s)
- Wenzheng Ma
- College of Public Health, School of Basic Medicine, Ningxia Medical University, Yinchuan, 750004, China
| | - Shuxue Zhen
- College of Public Health, School of Basic Medicine, Ningxia Medical University, Yinchuan, 750004, China
| | - Xiaoyan Shan
- College of Public Health, School of Basic Medicine, Ningxia Medical University, Yinchuan, 750004, China
| | - Ying Liu
- College of Public Health, School of Basic Medicine, Ningxia Medical University, Yinchuan, 750004, China
| | - Qiulong Liang
- College of Public Health, School of Basic Medicine, Ningxia Medical University, Yinchuan, 750004, China
| | - Changyi Yang
- General Hospital of Ningxia Medical University, Ningxia Medical University, Yinchuan, 750004, China
| | - Runmei Ding
- College of Public Health, School of Basic Medicine, Ningxia Medical University, Yinchuan, 750004, China
| | - Lingchen Meng
- College of Public Health, School of Basic Medicine, Ningxia Medical University, Yinchuan, 750004, China.
| | - Huiqin Yao
- College of Public Health, School of Basic Medicine, Ningxia Medical University, Yinchuan, 750004, China.
| |
Collapse
|
2
|
TATAR N, AKGÖNÜLLÜ S, YAVUZ H, DENİZLİ A. Cibacron Blue F3GA ligand dye-based magnetic silica particles for the albumin purification. Turk J Chem 2023; 47:1125-1137. [PMID: 38173736 PMCID: PMC10760827 DOI: 10.55730/1300-0527.3599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 10/31/2023] [Accepted: 10/10/2023] [Indexed: 01/05/2024] Open
Abstract
Dye-ligand affinity chromatography is among the increasingly popular affinity chromatography based on molecular recognition for the purification of albumin. This study focuses on the binding of Cibacron Blue F3GA ligand dye with magnetic silica particles and purification by separation. Mono-disperse silica particles with bimodal pore size distribution were employed as a high-performance adsorbent for human serum albumin (HSA) protein purification under equilibrium conditions. The synthesized ligand-dye affinity based magnetic silica particles were characterized by electron spin resonance, Fourier-transform infrared spectroscopy, scanning electron microscopy, vibrating sample magnetometer, elemental analysis, and dispersive X-ray analysis. The HSA purification performance of the proposed material in the presence of a magnetic field was relatively investigated using magnetic-based particles with similar morphologies. The maximum adsorption capacity for HSA in an artificial plasma medium was defined as 48.6 mg/g magnetic silica particle. By using the designed magnetic silica particles, 1.0 M NaCl solution was successfully utilized for obtaining quantitative desorption with HSA. However, continued HSA purification performances of magnetic-based particles were significantly lower concerning the ligand-dye magnetic silica particles. The purity of the removed albumin was about 97%. The magnetic silica particles could be utilized many times without decreasing their protein adsorption capacities remarkably.
Collapse
Affiliation(s)
- Nurhak TATAR
- Institute of Nuclear Sciences, Hacettepe University, Ankara,
Turkiye
| | - Semra AKGÖNÜLLÜ
- Division of Biochemistry, Department of Chemistry, Hacettepe University, Ankara,
Turkiye
| | - Handan YAVUZ
- Division of Biochemistry, Department of Chemistry, Hacettepe University, Ankara,
Turkiye
| | - Adil DENİZLİ
- Division of Biochemistry, Department of Chemistry, Hacettepe University, Ankara,
Turkiye
| |
Collapse
|
3
|
Çambay Kuban F, Koçer İ, Kip Ç, Çelik E, Tuncel A. Ni(II) functionalized polyhedral oligomeric silsesquioxane based capillary monolith for purification of histidine-tagged proteins by immobilized metal affinity micro-chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1225:123759. [PMID: 37216763 DOI: 10.1016/j.jchromb.2023.123759] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/13/2023] [Accepted: 05/14/2023] [Indexed: 05/24/2023]
Abstract
A new capillary monolithic stationary phase was synthesized for the purification of histidine tagged proteins by immobilized metal affinity micro-chromatography (μ-IMAC). For this purpose, mercaptosuccinic acid (MSA) linked-polyhedral oligomeric silsesquioxane [MSA@poly(POSS-MA)] monolith 300 μm in diameter was obtained by thiol-methacrylate polymerization using methacryl substituted-polyhedral oligomeric silsesquioxane (POSS-MA) and MSA as the thiol functionalized agent in a fused silica capillary tubing. Ni(II) cations were immobilized onto the porous monolith via metal-chelate complex formation with double carboxyl functionality of bound MSA segments. μ-IMAC separations aiming the purification of histidine tagged-green fluorescent protein (His-GFP) from Escherichia coli extract were carried out on Ni(II)@MSA functionalized-poly(POSS-MA) [Ni(II)@MSA@poly(POSS-MA)] capillary monolith. His-GFP was succesfully isolated by μ-IMAC on Ni(II)@MSA@poly(POSS-MA) capillary monolith with the isolation yield of 85 % and the purity of 92 % from E. coli extract. Higher His-GFP isolation yields were obtained with lower His-GFP feed concentrations and lower feed flow rates. The monolith was used for consecutive His-GFP purifications with a tolerable decrease in equilibrium His-GFP adsorption over five runs.
Collapse
Affiliation(s)
- Fatma Çambay Kuban
- Hacettepe University, Graduate School of Science and Engineering, Division of Bioengineering, Ankara, Turkey
| | - İlkay Koçer
- Hacettepe University, Chemical Engineering Department, Ankara, Turkey
| | - Çiğdem Kip
- Hacettepe University, Chemical Engineering Department, Ankara, Turkey
| | - Eda Çelik
- Hacettepe University, Graduate School of Science and Engineering, Division of Bioengineering, Ankara, Turkey; Hacettepe University, Chemical Engineering Department, Ankara, Turkey
| | - Ali Tuncel
- Hacettepe University, Graduate School of Science and Engineering, Division of Bioengineering, Ankara, Turkey; Hacettepe University, Chemical Engineering Department, Ankara, Turkey.
| |
Collapse
|
4
|
Improving the catalytic and mechanical performance of alginate catalyst through functionalization by aminopolycarboxylic acids. J Colloid Interface Sci 2022; 628:1058-1066. [DOI: 10.1016/j.jcis.2022.07.181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/23/2022] [Accepted: 07/29/2022] [Indexed: 11/19/2022]
|
5
|
Lin JY, Cao XY, Xiao Y, Wang JX, Luo SH, Yang LT, Fang YG, Wang ZY. Controllable preparation and performance of bio-based poly(lactic acid-iminodiacetic acid) as sustained-release Pb 2+ chelating agent. iScience 2021; 24:102518. [PMID: 34142032 PMCID: PMC8188493 DOI: 10.1016/j.isci.2021.102518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/04/2021] [Accepted: 05/04/2021] [Indexed: 11/15/2022] Open
Abstract
The bio-based lactic acid (LA) and the common metal ion chelating agent iminodiacetic acid (IDA) are used to design and prepare a polymeric sustained-release Pb2+ chelating agent by a brief one-step reaction. After the analysis on theoretical calculation for this reaction, poly(lactic acid-iminodiacetic acid) [P(LA-co-IDA)] with different monomer molar feed ratios is synthesized via direct melt polycondensation. P(LA-co-IDA) mainly has star-shaped structure, and some of them have two-core or three-core structure. Thus, a possible mechanism of the polymerization is proposed. The degradation rate of P(LA-co-IDA)s can reach 70% in 4 weeks. The change of IDA release rate is consistent with the trend of the degradation rate, and the good Pb2+ chelating performance is confirmed. P(LA-co-IDA) is expected to be developed as a lead poisoning treatment drug or Pb2+ adsorbent in the environment with long-lasting effect, and this research provides a new strategy for the development of such drugs.
Collapse
Affiliation(s)
- Jian-Yun Lin
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou 510006, P. R. China
| | - Xi-Ying Cao
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou 510006, P. R. China
| | - Ying Xiao
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou 510006, P. R. China
| | - Jin-Xin Wang
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou 510006, P. R. China
| | - Shi-He Luo
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou 510006, P. R. China
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, P. R. China
| | - Li-Ting Yang
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou 510006, P. R. China
| | - Yong-Gan Fang
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou 510006, P. R. China
| | - Zhao-Yang Wang
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou 510006, P. R. China
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, P. R. China
| |
Collapse
|
6
|
Wang Y, Wei Y, Gao P, Sun S, Du Q, Wang Z, Jiang Y. Preparation of Fe 3O 4@PMAA@Ni Microspheres towards the Efficient and Selective Enrichment of Histidine-Rich Proteins. ACS APPLIED MATERIALS & INTERFACES 2021; 13:11166-11176. [PMID: 33635047 DOI: 10.1021/acsami.0c19734] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Magnetic material is considered to as a major concern material for the enrichment of histidine-rich proteins (His-proteins) via metal-ion affinity. In this work, magnetic polymer microspheres with core-shell structure (Fe3O4@PMAA@Ni) were successfully prepared via reflux-precipitation polymerization followed by in situ reduction and growth of Ni2+. The obtained Ni nanofoams with flower-like structure and uniform pore size (3.34 nm) provided numerous binding sites for His-proteins. The adsorption performance of Fe3O4@PMAA@Ni microspheres for His-proteins was estimated via selectively separating bovine hemoglobin (BHb) and bovine serum albumin (BSA) from a matrix composed of BHb, BSA, and lysozyme (LYZ). The results indicated that Fe3O4@PMAA@Ni microspheres could efficiently and selectively separate His-proteins from the matrix, with a maximum adsorption capacity of ∼2660 mg/g for BHb. Moreover, Fe3O4@PMAA@Ni microspheres exhibited good stability and recyclability for BHb separation over seven cycles. Therefore, this work reported a novel and facile strategy to prepare core-shell Fe3O4@PMAA@Ni microspheres, which was promising for practical applications of His-protein separation and purification in proteomics.
Collapse
Affiliation(s)
- Yang Wang
- School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, P. R. China
| | - Yingying Wei
- School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, P. R. China
| | - Pengcheng Gao
- School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, P. R. China
| | - Si Sun
- School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, P. R. China
| | - Qian Du
- School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, P. R. China
| | - Zhifei Wang
- School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, P. R. China
| | - Yong Jiang
- School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, P. R. China
| |
Collapse
|
7
|
Zhang X, Lin S, Liu S, Tan X, Dai Y, Xia F. Advances in organometallic/organic nanozymes and their applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213652] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
8
|
Highly Porous, Molecularly Imprinted Core–Shell Type Boronate Affinity Sorbent with a Large Surface Area for Enrichment and Detection of Sialic Acid Isomers. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-01890-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Kip C, Hamaloğlu KÖ, Demir C, Tuncel A. Recent trends in sorbents for bioaffinity chromatography. J Sep Sci 2021; 44:1273-1291. [PMID: 33370505 DOI: 10.1002/jssc.202001117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 12/24/2022]
Abstract
Isolation or enrichment of biological molecules from complex biological samples is mostly a prerequisite in proteomics, genomics, and glycomics. Different techniques have been used to advance the efficiency of the purification of biological molecules. Bioaffinity chromatography is one of the most powerful technique that plays an important role in the isolation of target biological molecules by the specific interactions with ligands that are immobilized on different support materials. This review examines the recent developments in bioaffinity chromatography particularly over the past 5 years in the literature. Also properties of supports, immobilization techniques, types of binding agents, and methods used in bioaffinity chromatography applications are summarized.
Collapse
Affiliation(s)
- Cigdem Kip
- Chemical Engineering Department, Hacettepe University, Ankara, Turkey
| | | | - Cihan Demir
- Chemical Engineering Department, Hacettepe University, Ankara, Turkey.,Nanotechnology and Nanomedicine Division, Hacettepe University, Ankara, Turkey
| | - Ali Tuncel
- Chemical Engineering Department, Hacettepe University, Ankara, Turkey
| |
Collapse
|
10
|
A synergistic catalyst based on a multivalence monodisperse-porous microspheres with oxygen vacancies for benzyl alcohol oxidation. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.111227] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Gökçal B, Hamaloğlu KÖ, Kip Ç, Güngör SY, Büber E, Tuncel A. Glutathione detection in human serum using gold nanoparticle decorated, monodisperse porous silica microspheres in the magnetic form. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:5219-5228. [PMID: 33079092 DOI: 10.1039/d0ay01292k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A nanozyme for glutathione (GSH) detection in a broad concentration range was synthesized. GSH is usually detected up to an upper limit of 100 μM using current noble metal nanozymes due to the sharp decrease in the colorimetric response with the increasing GSH concentration. Strong inhibition of colorimetric reactions by GSH adsorbed onto noble metal based nanozymes in the form of non-porous, nanoscale particulate materials dispersed in an aqueous medium is the reason for the sharp decrease in the colorimetric response. In the present study, a new magnetic nanozyme synthesized by immobilization of Au nanoparticles (Au NPs) on magnetic, monodisperse porous silica microspheres (>5 μm) obtained by a "staged-shape templating sol-gel protocol" exhibited peroxidase-like activity up to a GSH concentration of 5000 μM. A more controlled linear decrease in the peroxidase-like activity with a lower slope with respect to that of similar nanozymes was observed with the increasing GSH concentration. The proposed design allowed the GSH detection in a broader concentration range depending on the adsorption of GSH onto the Au NPs immobilized on magnetic, monodisperse porous silica microspheres. A calibration plot allowing the detection of GSH in a broad concentration range up to 3300 μM was obtained using the magnetic nanozyme. The GSH concentration was also determined in human serum by elevating the upper detection range and adjusting the sensitivity of detection via controlling the nanozyme concentration.
Collapse
Affiliation(s)
- Burcu Gökçal
- Chemical Engineering Department, Hacettepe University, Ankara, 06800, Turkey.
| | | | | | | | | | | |
Collapse
|