1
|
Syed A. A novel strategy for the synthesis of samarium/europium-metal organic frameworks, and their utilization for detection of Cr 3+, Pb 2+, and acetone as a luminescent sensor with superior selectivity and sensitivity properties. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 316:124345. [PMID: 38685161 DOI: 10.1016/j.saa.2024.124345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/15/2024] [Accepted: 04/23/2024] [Indexed: 05/02/2024]
Abstract
With outstanding detection selectivity and sensitivity characteristics, samarium/europium-metal organic frameworks (Sm/Eu-MOF) is capable of functioning as a versatile light-emitting sensor particularly for detecting acetone, Cr3+, and Pb2+ in aqueous environment. While considering maximum detectable concentrations of 0.85 μM, 0.46 μM, and 1.04 μM, respectively, competitive energy interactions for acetone, absorption of energy for Cr3+, and substitution of ions for Pb2+ are the elucidated mechanisms of detecting these substances by Sm/Eu-MOF. Successful formulation and synthesis of a core-shell structured Sm/Eu-MOF, which has endurance to acid/alkali conditions and hydration/heat-stability, can be accomplished by utilizing Samarium and Europium nitrate ions, terephthalic acid, and 2, 5-furandicarboxylic acid. The recovery rate of acetone, Cr3+, and Pb2+ detection from real samples were 95.0-101.0 %, 99.8-101.0 %, and 99.9-104.0 %, respectively.
Collapse
Affiliation(s)
- Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
2
|
Garg N, Deep A, Sharma AL. Recent Trends and Advances in Porous Metal-Organic Framework Nanostructures for the Electrochemical and Optical Sensing of Heavy Metals in Water. Crit Rev Anal Chem 2024; 54:1121-1145. [PMID: 35968634 DOI: 10.1080/10408347.2022.2106543] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
With the expansion and advancement in agricultural and chemical industries, various toxic heavy metals such as lead, cadmium, mercury, zinc, copper, arsenic etc. are continuously released into the environment. Intake of sources contaminated with such toxic metals leads to various health issues. Keeping the serious effects of these toxic metal ions in view, various organic-inorganic nanomaterials based sensors have been exploited for their detection via optical, electrochemical and colorimetric approaches. Since a chemical sensor works on the principle of interaction between the sensing layer and the analytes, a sensor material with large surface area is required to enable the largest possible interaction with the target molecules and hence the sensitivity of the chemical sensor. However, commonly employed materials such as metal oxides and conducting polymers tend to feature relatively low surface areas, and hence resulting in low sensitivity of the sensor. Metal-Organic Frameworks (MOFs) nanostructures are another category of organic-inorganic materials endowed with large surface area, ultra-high and tunable porosity, post-synthesis modification features, readily available active sites, catalytic activity, and chemical/thermal stability. These properties provide high sensitivity to the MOF based sensors due to the adsorption of large number of target analytes. The current review article focuses on MOFs based optical and electrochemical sensors for the detection of heavy metals.
Collapse
Affiliation(s)
- Naini Garg
- CSIO Analytical Facility (CAF) Division, CSIR-Central Scientific Instruments Organisation, Chandigarh 160030, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Akash Deep
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Materials Science & Sensor Applications (MSSA) Division, CSIR-Central Scientific Instruments Organisation, Chandigarh 160030, India
| | - Amit L Sharma
- CSIO Analytical Facility (CAF) Division, CSIR-Central Scientific Instruments Organisation, Chandigarh 160030, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
3
|
Zhao B, Li SL, Gu YN, Sun QZ, Liu H. A stable turn-off fluorescence sensor for nitroaromatic explosives and Fe3+ detection based on a 3D strontium coordination polymer. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
4
|
Arslan H, Eskikaya O, Bilici Z, Dizge N, Balakrishnan D. Comparison of Cr(VI) adsorption and photocatalytic reduction efficiency using leonardite powder. CHEMOSPHERE 2022; 300:134492. [PMID: 35398064 DOI: 10.1016/j.chemosphere.2022.134492] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/26/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
It is very important to treat Cr(VI) from the aquatic environment due to its toxic and harmful effects. Conventional treatment methodology involving biological pathways is generally ineffective for wastewater containing Cr(VI). Therefore, it is necessary to develop environmentally friendly and economical methods to remove Cr(VI) from the aquatic environment. In this study, leonardite, which is a natural mineral that has no harmful effects on the environment, was used for Cr(VI) removal. Leonardite was used in both adsorption and photocatalytic treatment systems by only pulverizing without any chemical treatment. Characterizations of leonardite were obtained using X-ray fluorescence (XRF), fouirer transform infrared spektrofotometre (FTIR), scanning electron microscopy (SEM) with energy dispersive X-ray analysis (EDX) analyses methods. The effects of solution pH (2-10), particle size (45-300 μm), adsorbent dose (0.25-3 g/L), and initial concentration (10-30 mg/L) on Cr(VI) removal efficiency were investigated in both adsorption and photocatalytic experiments. In the adsorption process, a complete removal efficiency (100%) was obtained for 3 g/L of adsorbent dose with an initial Cr(VI) concentration of 10 mg/L at pH 2 for 2 h. In the photocatalytic process, 100% removal efficiency of Cr(VI) was obtained when four times less adsorbent dosage was used under the same conditions. In addition, the reuse of leonardite powder was also investigated under optimum experimental conditions. Leonardite powder preserved approximately 70% of its activity in the photocatalytic process while it lost 50% of its activity after 5 reuses in adsorption process.
Collapse
Affiliation(s)
- Hudaverdi Arslan
- Department of Environmental Engineering, Mersin University, Mersin, 33343, Turkey
| | - Ozan Eskikaya
- Department of Energy Systems Engineering, Tarsus University, Tarsus, 33400, Turkey
| | - Zeynep Bilici
- Department of Environmental Engineering, Mersin University, Mersin, 33343, Turkey
| | - Nadir Dizge
- Department of Environmental Engineering, Mersin University, Mersin, 33343, Turkey.
| | - Deepanraj Balakrishnan
- Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, India; College of Engineering, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia
| |
Collapse
|
5
|
Fouad OA, Ali AE, Mohamed GG, Mahmoud NF. Ultrasonic aided synthesis of a novel mesoporous cobalt-based metal-organic framework and its application in Cr(III) ion determination in centrum multivitamin and real water samples. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107228] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
6
|
Zhang S, Zheng H, Yang Y, Qian G, Cui Y. Cationic Metal–Organic Framework-Based Mixed-Matrix Membranes for Fast Sensing and Removal of Cr2O72− Within Water. Front Chem 2022; 10:852402. [PMID: 35295977 PMCID: PMC8918786 DOI: 10.3389/fchem.2022.852402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/10/2022] [Indexed: 11/28/2022] Open
Abstract
Considering that metal–organic framework (MOF)-polymer mixed-matrix membranes (MMMs) can overcome the drawbacks of intrinsic fragility and poor processability of pure-MOF membranes, we designed MOF-based MMMs for efficient removal and fast fluorescence sensing of heavily toxic ions within water systems simultaneously. In this work, a series of MOF-based MMMs are prepared by mixing a hydrolytically stable cationic [Eu7 (mtb)5(H2O)16]·NO3 8DMA·18H2O (denoted as Eu-mtb) MOF material into poly (vinylidene fluoride) with high loadings up to 70%. The free volume at the interface between the polymer and Eu-mtb particles, combined with the permanent porosity and uniform distribution of Eu-mtb particles, enables these MMMs to show fast enrichment of Cr2O72- from solutions and consequently have a full contact between the analyte and MOFs. The developed Eu-mtb MMM (70wt% loading) thus shows both efficient removal and exceptional fluorescence sensing of Cr2O72- in aqueous media. The overall adsorption capacity of the Eu-mtb MMM (70 wt% loading) for Cr2O72- reaches up to 33.34 mg/g, which is 3.4 times that of powder-form Eu-mtb. The detection limit of the Eu-mtb MMM (70 wt% loading) for Cr2O72- is around 5.73 nM, which is lower than that of the reported powder-form Eu-mtb. This work demonstrates that it is feasible to develop flexible luminescent MOF-based MMMs as a significant platform for efficient removal and sensitive sensing of pollutants from water systems simultaneously.
Collapse
Affiliation(s)
| | | | - Yu Yang
- *Correspondence: Yu Yang, ; Yuanjing Cui,
| | | | | |
Collapse
|
7
|
Abbasi-Azad M, Rouhani F, Morsali A. Highly sensitive amine functionalized metal-organic framework for selective fluorometric determination of Cr(III) in aqueous solution. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
A multifunctional luminescent chemosensor of YbⅢ-MOF for the detection of Nitrobenzene, Fe3+ and Cr2O72–. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127851] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Shi M, Fu C, Yu J, Yang Y, Shi P. A novel 2D metal–organic framework probe: a highly sensitive and visual fluorescent sensor for Al 3+, Cr 3+ and Fe 3+ ions. NEW J CHEM 2022. [DOI: 10.1039/d2nj03911g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel 2D MOF Tb-DBA was constructed. Tb-DBA could detect Al3+, Cr3+ and Fe3+ ions rapidly, sensitively, selectively, reversibly and visually. Tb-DBA represents a promising material for the quick detection of metal ions in aqueous solution.
Collapse
Affiliation(s)
- Min Shi
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, Shandong, P. R. China
| | - Chenchen Fu
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, Shandong, P. R. China
| | - Jie Yu
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, Shandong, P. R. China
| | - Yapu Yang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, Shandong, P. R. China
| | - Pengfei Shi
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, Shandong, P. R. China
| |
Collapse
|
10
|
Wang J, Yu M, Chen L, Li Z, Li S, Jiang F, Hong M. Construction of a Stable Lanthanide Metal-Organic Framework as a Luminescent Probe for Rapid Naked-Eye Recognition of Fe 3+ and Acetone. Molecules 2021; 26:1695. [PMID: 33803563 PMCID: PMC8003027 DOI: 10.3390/molecules26061695] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/14/2021] [Accepted: 03/15/2021] [Indexed: 01/07/2023] Open
Abstract
Four lanthanide metal-organic frameworks (Ln-MOFs), namely {[Me2NH2][LnL]·2H2O}n (Ln = Eu 1, Tb 2, Dy 3, Gd 4), have been constructed from a new tetradentate ligand 1-(3,5-dicarboxylatobenzyl)-3,5-pyrazole dicarboxylic acid (H4L). These isostructural Ln-MOFs, crystallizing in the monoclinic P21/c space group, feature a 3D structure with 7.5 Å × 9.8 Å channels along the b axis and the point symbol of {410.614.84} {45.6}2. The framework shows high air and hydrolytic stability, which can keep stable after exposed to humid air for 30 days or immersed in water for seven days. Four MOFs with different lanthanide ions (Eu3+, Tb3+, Dy3+, and Gd3+) ions exhibit red, green, yellow, and blue emissions, respectively. The Tb-MOF emitting bright green luminescence can selectively and rapidly (<40 s) detect Fe3+ in aqueous media via a fluorescence quenching effect. The detection shows excellent anti-inference ability toward many other cations and can be easily recognized by naked eyes. In addition, it can also be utilized as a rapid fluorescent sensor to detect acetone solvent as well as acetone vapor. Similar results of sensing experiments were observed from Eu-MOF. The sensing mechanism are further discussed.
Collapse
Affiliation(s)
- Jiayishuo Wang
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; (J.W.); (M.Y.); (Z.L.); (S.L.); (F.J.)
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Muxin Yu
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; (J.W.); (M.Y.); (Z.L.); (S.L.); (F.J.)
- Organic Optoelectronics Engineering Research Centre of Fujian’s Universities, College of Electronics and Information Science, Fujian Jiangxia University, Fuzhou 350108, China
| | - Lian Chen
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; (J.W.); (M.Y.); (Z.L.); (S.L.); (F.J.)
| | - Zhijia Li
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; (J.W.); (M.Y.); (Z.L.); (S.L.); (F.J.)
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Shengchang Li
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; (J.W.); (M.Y.); (Z.L.); (S.L.); (F.J.)
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Feilong Jiang
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; (J.W.); (M.Y.); (Z.L.); (S.L.); (F.J.)
| | - Maochun Hong
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; (J.W.); (M.Y.); (Z.L.); (S.L.); (F.J.)
| |
Collapse
|
11
|
Zhao L, Zhao L, Li H, Ma J, Bian L, Wang X, Pu Q. Controlled synthesis of fluorescent carbon materials with the assistance of capillary electrophoresis. Talanta 2021; 228:122224. [PMID: 33773729 DOI: 10.1016/j.talanta.2021.122224] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/06/2021] [Accepted: 02/13/2021] [Indexed: 02/01/2023]
Abstract
Carbon nanodots (CNDs) have been widely applied in variety of fields, while some evidences indicate their components may be complicated. In this work, capillary electrophoresis (CE) was used to evaluate the effect of synthetic conditions of fluorescent CNDs prepared through the hydrothermal method using citric acid (CA) and Triaminoguanidinium chloride (TGCl) as the starting materials. The results indicated that the fluorescent components of the products were affected by the ratio of the starting materials, the reaction temperature and reaction time. Under selected conditions, a ratio of TGCl to CA of 1:6, the reaction at 180 °C for 3 h, the product contains more than 4 fluorescent components with similar optical properties. CNDs were used for the determination of Cr(VI) in environmental samples with recoveries ranging in 95.3-107%, and the mechanism was also confirmed.
Collapse
Affiliation(s)
- Lizhi Zhao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, Department of Chemistry, Lanzhou University, Lanzhou, Gansu, 730000, China.
| | - Lei Zhao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, Department of Chemistry, Lanzhou University, Lanzhou, Gansu, 730000, China.
| | - Hongli Li
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, Department of Chemistry, Lanzhou University, Lanzhou, Gansu, 730000, China.
| | - Jie Ma
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, Department of Chemistry, Lanzhou University, Lanzhou, Gansu, 730000, China; College of Chemical Engineering and Technology, Tianshui Normal University, Tianshui, 741001, China.
| | - Lei Bian
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, Department of Chemistry, Lanzhou University, Lanzhou, Gansu, 730000, China.
| | - Xiayan Wang
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Biology, Beijing University of Technology, Beijing, 100124, China.
| | - Qiaosheng Pu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, Department of Chemistry, Lanzhou University, Lanzhou, Gansu, 730000, China.
| |
Collapse
|
12
|
Jin J, Xue J, Liu Y, Yang G, Wang YY. Recent progresses in luminescent metal-organic frameworks (LMOFs) as sensors for the detection of anions and cations in aqueous solution. Dalton Trans 2021; 50:1950-1972. [PMID: 33527951 DOI: 10.1039/d0dt03930f] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The discharge of excessive metal ions and anions into water bodies leads to the serious pollution of water and environment, which in turn has a certain impact on industry, agriculture, and human life. Because of the unique advantages of luminescent metal-organic frameworks (LMOFs), they have been successfully explored as various fluorescent probes to quickly and effectively detect these pollutants. This perspective not only introduces the design strategy and classification of LMOFs, especially the construction methods of water-stable LMOFs, but also reports the latest progresses in some LMOFs between 2016 and 2020 as well as expounds the mechanisms of LMOFs for detecting anions and cations. Moreover, the luminescence properties of LMOFs are related to the selection of metal ions, the structure of organic ligands, the pore size, and the interaction of guest molecules. Finally, the further development of LMOFs is summarized and prospected in this field.
Collapse
Affiliation(s)
- Jing Jin
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P.R. China.
| | - Juanjuan Xue
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P.R. China.
| | - Yanchen Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P.R. China.
| | - Guoping Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P.R. China.
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P.R. China.
| |
Collapse
|