1
|
Lodha SR, Merchant JG, Pillai AJ, Gore AH, Patil PO, Nangare SN, Kalyankar GG, Shah SA, Shah DR, Patole SP. Carbon dot-based fluorescent sensors for pharmaceutical detection: Current innovations, challenges, and future prospects. Heliyon 2024; 10:e41020. [PMID: 39759361 PMCID: PMC11697698 DOI: 10.1016/j.heliyon.2024.e41020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/01/2024] [Accepted: 12/05/2024] [Indexed: 01/07/2025] Open
Abstract
Environmental contamination by pharmaceuticals has become a matter of concern as they are released in sewage systems at trace levels, thus impacting biological systems. Increasing concerns about the low-level occurrence of pharmaceuticals in the environment demands sensitive and selective monitoring. Owing to their high sensitivity and specificity carbon dots (CDs) have emerged as suitable fluorescent sensors. This review discusses the current scenario of the status of pharmaceuticals in the environment, limitations associated with traditional techniques employed for their detection, and benefits offered by CDs like easy surface modification and tunable optical properties for sensing applications. Several representative means by which CDs interact with other molecules such as inner filter effect (IFE), dynamic quenching (DQ), static quenching (SQ), Förster resonance energy transfer (FRET), among others, are also discussed along with co-referencing fluorophores to design sensors. Based on developments described herein, CDs-based sensors can be expected to sense pharmaceuticals ranging from nanogram to picogram, target real-time industrial and spiked sample analysis, etc., which provides direction for future research.
Collapse
Affiliation(s)
- Sandesh R. Lodha
- Maliba Pharmacy College, Uka Tarsadia University, Maliba Campus, Gopal Vidyanagar, Bardoli, 394350, Gujarat, India
| | - Jesika G. Merchant
- Maliba Pharmacy College, Uka Tarsadia University, Maliba Campus, Gopal Vidyanagar, Bardoli, 394350, Gujarat, India
| | - Arya J. Pillai
- Maliba Pharmacy College, Uka Tarsadia University, Maliba Campus, Gopal Vidyanagar, Bardoli, 394350, Gujarat, India
| | - Anil H. Gore
- Tarsadia Institute of Chemical Science, Uka Tarsadia University, Bardoli, 394350, Gujarat, India
| | - Pravin O. Patil
- H.R Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405, Maharashtra, India
| | - Sopan N. Nangare
- H.R Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405, Maharashtra, India
| | - Gajanan G. Kalyankar
- Maliba Pharmacy College, Uka Tarsadia University, Maliba Campus, Gopal Vidyanagar, Bardoli, 394350, Gujarat, India
| | - Shailesh A. Shah
- Maliba Pharmacy College, Uka Tarsadia University, Maliba Campus, Gopal Vidyanagar, Bardoli, 394350, Gujarat, India
| | - Dinesh R. Shah
- Maliba Pharmacy College, Uka Tarsadia University, Maliba Campus, Gopal Vidyanagar, Bardoli, 394350, Gujarat, India
| | - Shashikant P. Patole
- Department of Physics, Khalifa University of Science and Technology, Abu Dhabi, 127788, United Arab Emirates
| |
Collapse
|
2
|
Zhang D, Zhang Y, Li K, Wang S, Ma Y, Liao Y, Wang F, Liu H. A smartphone-combined ratiometric fluorescence molecularly imprinted probe based on biomass-derived carbon dots for determination of tyramine in fermented meat products. Food Chem 2024; 454:139759. [PMID: 38805926 DOI: 10.1016/j.foodchem.2024.139759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/08/2024] [Accepted: 05/18/2024] [Indexed: 05/30/2024]
Abstract
A ratiometric fluorescence molecularly imprinted probe employing two distinct emission wavelengths of biomass carbon dots was developed for highly selective and visual quantitative detection of tyramine in fermented meat products. The red emission biomass carbon dots were employed as responsive elements, and the blue ones were utilized as the reference elements. The molecularly imprinted polymers were incorporated in the ratiometric sensing to distinguish and adsorb tyramine. With the linear range of 1-60 μg/L, the ratiometric fluorescence molecularly imprinted probe was successfully applied to detect tyramine in real samples with the satisfactory recoveries of 79.74-112.12% and the detect limitation of 1.3 μg/kg, indicating that this probe has great potential applications for the detection of tyramine in real samples. Moreover, smartphone-based fluorescence signal recognition analysis on hand has been developed for the quantitative analysis of tyramine, providing a portable visual optical analysis terminal for rapid on-site determination of tyramine.
Collapse
Affiliation(s)
- Dianwei Zhang
- Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China
| | - Yuhua Zhang
- Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China
| | - Kexin Li
- Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China
| | - Shengnan Wang
- Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China
| | - Yuanchen Ma
- Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China
| | - Yonghong Liao
- Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China
| | - Fenghuan Wang
- Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China..
| | - Huilin Liu
- Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China..
| |
Collapse
|
3
|
Caetano M, Becceneri AB, Ferreira MV, Assunção RMN, da Silva RS, de Lima RG. Carbonized Polymer Dots: Influence of the Carbon Nanoparticle Structure on Cell Biocompatibility. ACS OMEGA 2024; 9:38864-38877. [PMID: 39310212 PMCID: PMC11411664 DOI: 10.1021/acsomega.4c05011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/25/2024] [Accepted: 08/28/2024] [Indexed: 09/25/2024]
Abstract
Carbonized polymer dots (CPDs) were obtained by using microwave irradiation under the same conditions. However, different carbogenic precursors were used, such as aromatic diamine molecules, ortho-phenylenediamine (o-OPDA), and 3,4-diaminobenzoic acid (3,4-DABA). Both carbon nanoparticles showed different structural results based on Fourier transform infrared spectroscopy, Raman spectroscopy, X-ray diffraction, and atomic force microscopy analyses. However, there are similar spectroscopic (UV-visible and fluorescence emission) profiles. The photophysical results, like quantum yield (QY) and fluorescence lifetime, were not identical; CPDs-OPDA has a higher QY and fluorescence lifetime than CPDs-3,4-DABA. CPDs-3,4-DABA presents a more hydrophobic character than CPDs-OPDA and has a more negative superficial charge. Cell viability studies in both standard and tumor lines demonstrated higher cytotoxicity from CPDs-OPDA than that from CPDs-3,4-DABA. The oxidative stress identified in cells treated with CPDs-OPDA was based on reactive oxygen species and associated with nitric oxide production. CPDs-3,4-DABA showed more DPHH inhibition than CPDs-OPDA, indicating the antioxidant activity of CPDs.
Collapse
Affiliation(s)
- Mayara
Martins Caetano
- Instituto
de Química, Universidade Federal de Uberlândia, Avenida
João Naves de Ávila, 2121-Bairro Santa Mônica, Uberlândia, Minas Gerais 38304-402, Brazil
- Instituto
de Ciências Exatas e Naturais Do Pontal, ICENP, Universidade
Federal de Uberlândia, Rua Vinte, 1600, Tupã, Ituiutaba, Minas Gerais 38304-402, Brazil
| | - Amanda Blanque Becceneri
- Faculdade
de Ciências Farmacêuticas de Ribeirão Preto,
USP, Avenida Do Café
S/n, Vila Monte Alegre, Ribeirão Preto, São Paulo 14040-903, Brazil
| | - Marcos Vinícius Ferreira
- Instituto
de Química, Universidade Federal de Uberlândia, Avenida
João Naves de Ávila, 2121-Bairro Santa Mônica, Uberlândia, Minas Gerais 38304-402, Brazil
- Instituto
de Ciências Exatas e Naturais Do Pontal, ICENP, Universidade
Federal de Uberlândia, Rua Vinte, 1600, Tupã, Ituiutaba, Minas Gerais 38304-402, Brazil
| | - Rosana Maria Nascimento Assunção
- Instituto
de Química, Universidade Federal de Uberlândia, Avenida
João Naves de Ávila, 2121-Bairro Santa Mônica, Uberlândia, Minas Gerais 38304-402, Brazil
- Instituto
de Ciências Exatas e Naturais Do Pontal, ICENP, Universidade
Federal de Uberlândia, Rua Vinte, 1600, Tupã, Ituiutaba, Minas Gerais 38304-402, Brazil
| | - Roberto Santana da Silva
- Faculdade
de Ciências Farmacêuticas de Ribeirão Preto,
USP, Avenida Do Café
S/n, Vila Monte Alegre, Ribeirão Preto, São Paulo 14040-903, Brazil
| | - Renata Galvão de Lima
- Instituto
de Química, Universidade Federal de Uberlândia, Avenida
João Naves de Ávila, 2121-Bairro Santa Mônica, Uberlândia, Minas Gerais 38304-402, Brazil
- Instituto
de Ciências Exatas e Naturais Do Pontal, ICENP, Universidade
Federal de Uberlândia, Rua Vinte, 1600, Tupã, Ituiutaba, Minas Gerais 38304-402, Brazil
| |
Collapse
|
4
|
Chen Q, Zheng L, Deng X, Zhang M, Han W, Huang Z, Miao C, Weng S. A Fluorescence Biosensor for Tyrosinase Activity Analysis Based on Silicon-Doped Carbon Quantum Dots. Chem Pharm Bull (Tokyo) 2023; 71:812-818. [PMID: 37704432 DOI: 10.1248/cpb.c23-00410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Tyrosinase (TYR) plays a pivotal role in the biosynthesis of melanin, and its activity level holds critical implications for vitiligo, melanoma cancer, and food nutritional value. The sensitive determination of TYR activity is of great significance for both fundamental research and clinical investigations. In this work, we successfully synthesized silicon-doped carbon quantum dots (Si-CQDs) through a one-pot hydrothermal method with trans-aconitic acid as carbon source and N-[3-(trimethoxysilyl)propyl]ethylenediamine as the dopant, exhibiting remarkable fluorescence quantum yield (QY) and photostability. Correspondingly, Si-CQDs were used as a probe to construct a sensitive, rapid, and user-friendly fluorescence method for TYR detection. The method relied on the oxidation of isoprenaline (ISO) by TYR, where Si-CQDs were employed as a highly efficient probe. The testing mechanism was the internal filtering effect (IFE) observed between Si-CQDs and the oxidative system of ISO and TYR. Under the optimized conditions, the fluorescence strategy exhibited a detection range of 0.05-2.0 U/mL for TYR with a limit of detection (LOD) of 0.041 U/mL. Furthermore, we successfully demonstrated the accurate determination of TYR levels in human serum, showcasing the promising potential of this method in various practical scenarios.
Collapse
Affiliation(s)
- Qiang Chen
- Department of Andrology & Sexual Medicine, the First Affiliated Hospital of Fujian Medical University
| | - Lili Zheng
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University
| | - Xiaoqin Deng
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University
| | - Menghan Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University
| | - Wendi Han
- Department of Pharmacy, the First Affiliated Hospital of Fujian Medical University
| | - Zhengjun Huang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University
| | - Chenfang Miao
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University
- Department of Pharmacy, The 900th Hospital of Joint Logistics Team of the PLA, Fuzhou General Clinical Medical College of Fujian Medical University
| | - Shaohuang Weng
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University
| |
Collapse
|
5
|
Gao YT, Chang S, Chen BB, Li DW. Dual-Exciting Central Carbon Nanoclusters for the Dual-Channel Detection of Hemin. INORGANICS 2023; 11:226. [DOI: 10.3390/inorganics11060226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
Constructing optical nanoprobes with superior performance is highly desirable for sensitive and accurate assays. Herein, we develop a facile room-temperature strategy for the fabrication of green emissive carbon nanoclusters (CNCs) with dual-exciting centers for the dual-channel sensing of hemin. The formation of the CNCs is attributed to the crosslinking polymerization of the precursors driven by the Schiff base reaction between ethylenediamine and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone. Most importantly, the proposed CNCs have a unique excitation-independent green emission (518 nm) with two excitation centers at 260 nm (channel 1) and 410 nm (channel 2). The dual-exciting central emission can serve as dual-channel fluorescence (FL) signals for highly sensitive and reliable detection of hemin based on the inner filter effect. Because of the great spectral overlap difference between the absorption spectrum of hemin and the excitation lights of the CNCs in the two channels, hemin has a different quenching effect on FL emission from different channels. The dual-channel signals of the CNCs can detect hemin in the range of 0.075–10 μM (channel 1) and 0.25–10 μM (channel 2), respectively. These findings not only offer new guidance for the facile synthesis of dual-exciting central CNCs but also establish a reliable sensing platform for the analysis of hemin in complex matrixes.
Collapse
Affiliation(s)
- Ya-Ting Gao
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shuai Chang
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Bin-Bin Chen
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen 518172, China
| | - Da-Wei Li
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
6
|
Carbon Nanoparticles Extracted from Date Palm Fronds for Fluorescence Bioimaging: In Vitro Study. J Funct Biomater 2022; 13:jfb13040218. [PMID: 36412859 PMCID: PMC9680435 DOI: 10.3390/jfb13040218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/25/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Numerous studies have been reported on single- and multicolored highly fluorescent carbon nanoparticles (FCNPs) originating from various sources and their potential applications in bioimaging. Herein, multicolored biocompatible carbon nanoparticles (CNPs) unsheathed from date palm fronds were studied. The extracted CNPs were characterized via several microscopic and spectroscopic techniques. The results revealed that the CNPs were crystalline graphitic and hydrophilic in nature with sizes ranging from 4 to 20 nm. The unsheathed CNPs showed exemplary photoluminescent (PL) properties. They also emitted bright blue colors when exposed to ultraviolet (UV) light. Furthermore, in vitro cellular uptake and cell viability in the presence of CNPs were also investigated. The cell viability of human colon cancer (HCT-116) and breast adenocarcinoma (MCF-7) cell lines with aqueous CNPs at different concentrations was assessed by a cell metabolic activity assay (MTT) for 24 and 48 h incubations. The results were combined to generate dose-response curves for the CNPs and evaluate the severity of their toxicity. The CNPs showed adequate fluorescence with high cell viability for in vitro cell imaging. Under the laser-scanning confocal microscope, the CNPs with HCT-116 and MCF-7 cell lines showed multicolor fluorescence emissions, including blue, green, and red colors when excited at 405, 458, and 561 nm, respectively. These results prove that unsheathed CNPs from date palm fronds can be used in diverse biomedical applications because of their low cytotoxicity, adequate fluorescence, eco-friendly nature, and cheap production.
Collapse
|
7
|
Cheng S, Wang X, Yan X, Xiao Y, Zhang Y. Simple synthesis of green luminescent N-doped carbon dots for malachite green determination. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2616-2622. [PMID: 35734888 DOI: 10.1039/d2ay00682k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this paper, novel N-doped carbon dots (N-CDs) were prepared from fuchsin basic and ethylenediamine tetraacetic acid-disodium salt (EDTA-2Na). The N-CDs were characterized by a series of techniques and it was found that the average particle size was 2.75 nm, and the surface had functional groups such as -NH2 and -COOH. Interestingly, N-CDs exhibited a fast and sensitive response to malachite green (MG), which may be due to the inner filter effect (IFE). A method for the detection of MG in water samples from Jinyang Lake was developed using N-CDs, with a limit of detection (LOD) as low as 27.28 nM. Furthermore, N-CDs were utilized in the biological imaging of Arabidopsis thaliana.
Collapse
Affiliation(s)
- Sijie Cheng
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, Shanxi, China.
| | - Xin Wang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, Shanxi, China.
| | - Xuerong Yan
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, Shanxi, China.
| | - Yanteng Xiao
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, Shanxi, China.
| | - Yong Zhang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, Shanxi, China.
| |
Collapse
|
8
|
Hallaji Z, Bagheri Z, Oroujlo M, Nemati M, Tavassoli Z, Ranjbar B. An insight into the potentials of carbon dots for in vitro live-cell imaging: recent progress, challenges, and prospects. Mikrochim Acta 2022; 189:190. [PMID: 35419708 DOI: 10.1007/s00604-022-05259-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/03/2022] [Indexed: 12/11/2022]
Abstract
Carbon dots (CDs) are a strong alternative to conventional fluorescent probes for cell imaging due to their brightness, photostability, tunable fluorescence emission, low toxicity, inexpensive preparation, and chemical diversity. Improving the targeting efficiency by modulation of the surface functional groups and understanding the mechanisms of targeted imaging are the most challenging issues in cell imaging by CDs. Firstly, we briefly discuss important features of fluorescent CDs for live-cell imaging application in this review. Then, the newest modulated CDs for targeted live-cell imaging of whole-cell, cell organelles, pH, ions, small molecules, and proteins are elaborately discussed, and their challenges in these fields are explained.
Collapse
Affiliation(s)
- Zahra Hallaji
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, 14117-13116, Tehran, Iran
| | - Zeinab Bagheri
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, 1983963113, Tehran, Iran.
| | - Mahdi Oroujlo
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, 1983963113, Tehran, Iran
| | - Mehrnoosh Nemati
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, 1983963113, Tehran, Iran
| | - Zeinab Tavassoli
- Department of Biology, Islamic Azad University Central Tehran Branch, Tehran, Iran
| | - Bijan Ranjbar
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, 14117-13116, Tehran, Iran. .,Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, 14117-13116, Tehran, Iran.
| |
Collapse
|
9
|
Wu MS, Zhou ZR, Wang XY, Chen BB, Hafez ME, Shi JF, Li DW, Qian RC. Dynamic Visualization of Endoplasmic Reticulum Stress in Living Cells via a Two-Stage Cascade Recognition Process. Anal Chem 2022; 94:2882-2890. [PMID: 35112843 DOI: 10.1021/acs.analchem.1c04764] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The endoplasmic reticulum (ER) is crucial for the regulation of multiple cellular processes, such as cellular responses to stress and protein synthesis, folding, and posttranslational modification. Nevertheless, monitoring ER physiological activity remains challenging due to the lack of powerful detection methods. Herein, we built a two-stage cascade recognition process to achieve dynamic visualization of ER stress in living cells based on a fluorescent carbon dot (CD) probe, which is synthesized by a facile one-pot hydrothermal method without additional modification. The fluorescent CD probe enables two-stage cascade ER recognition by first accumulating in the ER as the positively charged and lipophilic surface of the CD probe allows its fast crossing of multiple membrane barriers. Next, the CD probe can specifically anchor on the ER membrane via recognition between boronic acids and o-dihydroxy groups of mannose in the ER lumen. The two-stage cascade recognition process significantly increases the ER affinity of the CD probe, thus allowing the following evaluation of ER stress by tracking autophagy-induced mannose transfer from the ER to the cytoplasm. Thus, the boronic acid-functionalized cationic CD probe represents an attractive tool for targeted ER imaging and dynamic tracking of ER stress in living cells.
Collapse
Affiliation(s)
- Man-Sha Wu
- Key Laboratory for Advanced Materials & School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Ze-Rui Zhou
- Key Laboratory for Advanced Materials & School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xiao-Yuan Wang
- Key Laboratory for Advanced Materials & School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Bin-Bin Chen
- Key Laboratory for Advanced Materials & School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Mahmoud Elsayed Hafez
- Key Laboratory for Advanced Materials & School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.,Department of Chemistry, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Ji-Fen Shi
- Key Laboratory for Advanced Materials & School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Da-Wei Li
- Key Laboratory for Advanced Materials & School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Ruo-Can Qian
- Key Laboratory for Advanced Materials & School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
10
|
Miao CF, Guo XZ, Zhang XT, Lin YN, Han WD, Huang ZJ, Weng SH. Ratiometric fluorescence assay based on carbon dots and Cu 2+-catalyzed oxidation of O-phenylenediamine for the effective detection of deferasirox. RSC Adv 2021; 11:34525-34532. [PMID: 35494749 PMCID: PMC9042915 DOI: 10.1039/d1ra07078a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/11/2021] [Indexed: 01/19/2023] Open
Abstract
The monitoring of deferasirox (DEF) has important clinical roles in patients who need iron excretion. However, analytical methods with practicability and simplicity are limited. Moreover, ratiometric fluorescence strategies based on Förster resonance energy transfer (FRET) from carbon dots (CDs) as a donor are rarely reported as a drug monitor. In this work, CDs with an appropriate emitting wavelength at 480 nm and excitation around 370 nm were prepared by hydrothermal approach and HCl post-treatment. O-Phenylenediamine (OPD) can be oxidized by Cu2+ to produce yellow fluorescent 2,3-diaminophenazine (oxOPD) in the system of Cu2+ and OPD (Cu-OPD). Correspondingly, a remarkable FRET from CDs to oxOPD in the system of CDs, Cu2+ and OPD (CDs-Cu-OPD) was fabricated with the quenching illustration of CDs, but emitting property of oxOPD. Attributed to the chelation ability of DEF on Cu2+, the inhibitory effects of DEF on the Cu2+-triggered oxidative capability reduced the FRET system by the decreased oxOPD. Thus, the recovered CDs at F 480 and decreased oxOPD at F 560 were found through a ratiometric mode by the addition of DEF in CDs-Cu-OPD for the DEF assay. The FRET behavior of CDs and oxOPD in CDs-Cu-OPD was proved clearly through the calculation of the association constant, binding constant, number of binding sites, and the distance between the donor and acceptor. Furthermore, this ratiometric method exhibited promising analytical performance for DEF with the application in real samples. The implementation of this work expands the application field of CDs and OPD oxidation in drug monitoring, and even other biological analyses through ratiometric strategy.
Collapse
Affiliation(s)
- Chen-Fang Miao
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University Fuzhou 350122 China
| | - Xian-Zhong Guo
- Department of Pharmacy, First Affiliated Hospital of Fujian Medical University Fuzhou Fujian 350005 P. R. China
| | - Xin-Tian Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University Fuzhou 350122 China
| | - Yin-Ning Lin
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University Fuzhou 350122 China
| | - Wen-Di Han
- Department of Pharmacy, First Affiliated Hospital of Fujian Medical University Fuzhou Fujian 350005 P. R. China
| | - Zheng-Jun Huang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University Fuzhou 350122 China
| | - Shao-Huang Weng
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University Fuzhou 350122 China
| |
Collapse
|
11
|
Fan J, Li Q, Chen L, Du J, Xue W, Yu S, Su X, Yang Y. Research Progress in the Synthesis of Targeting Organelle Carbon Dots and Their Applications in Cancer Diagnosis and Treatment. J Biomed Nanotechnol 2021; 17:1891-1916. [PMID: 34706792 DOI: 10.1166/jbn.2021.3167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
With increasing knowledge about diseases at the histological, cytological to sub-organelle level, targeting organelle therapy has gradually been envisioned as an approach to overcome the shortcomings of poor specificity and multiple toxic side effects on tissues and cell-level treatments using the currently available therapy. Organelle carbon dots (CDs) are a class of functionalized CDs that can target organelles. CDs can be prepared by a "synchronous in situ synthesis method" and "asynchronous modification method." The superior optical properties and good biocompatibility of CDs can be preserved, and they can be used as targeting particles to carry drugs into cells while reducing leakage during transport. Given the excellent organelle fluorescence imaging properties, targeting organelle CDs can be used to monitor the physiological metabolism of organelles and progression of human diseases, which will provide advanced understanding and accurate diagnosis and targeted treatment of cancers. This study reviews the methods used for preparation of targeting organelle CDs, mechanisms of accurate diagnosis and targeted treatment of cancer, as well as their application in the area of cancer diagnosis and treatment research. Finally, the current difficulties and prospects for targeting organelle CDs are prospected.
Collapse
Affiliation(s)
- Jiangbo Fan
- Shanxi Medical University, Taiyuan 030001, China
| | - Qiang Li
- Interventional Treatment Department, Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Lin Chen
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Jinglei Du
- Interventional Treatment Department, Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Wenqiang Xue
- Shanxi Medical University, Taiyuan 030001, China
| | - Shiping Yu
- Shanxi Medical University, Taiyuan 030001, China
| | - Xiuqin Su
- Shanxi Medical University, Taiyuan 030001, China
| | - Yongzhen Yang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| |
Collapse
|
12
|
Li X, Bao Y, Dong X, Shi L, Shuang S. Dual-excitation and dual-emission carbon dots for Fe 3+ detection, temperature sensing, and lysosome targeting. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:4246-4255. [PMID: 34591950 DOI: 10.1039/d1ay01165k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Dual-excitation and dual-emission carbon dots (CDs) have been prepared by simple one-step hydrothermal treatment of p-phenylenediamine and 5-aminosalicylic acid. The as-prepared CDs emit bright green fluorescence under excitation at 320-400 nm and bright orange fluorescence under excitation at 490-560 nm. Interestingly, the CDs can be employed as a dual-excitation and dual-emission fluorescent probe for Fe3+ detection in aqueous solution and living cells. Furthermore, the obtained CDs can function as a promising dual-excitation and dual-emission temperature sensor. Additionally, the CDs can be utilized for lysosomal targeting.
Collapse
Affiliation(s)
- Xiaofeng Li
- Taiyuan University, Taiyuan 030012, PR China
| | - Yuejing Bao
- College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China.
| | - Xiaorui Dong
- College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China.
| | - Lihong Shi
- College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China.
| | - Shaomin Shuang
- College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China.
| |
Collapse
|
13
|
Qin J, Gao X, Chen Q, Liu H, Liu S, Hou J, Sun T. pH sensing and bioimaging using green synthesized carbon dots from black fungus. RSC Adv 2021; 11:31791-31794. [PMID: 35496837 PMCID: PMC9041562 DOI: 10.1039/d1ra05199g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/10/2021] [Indexed: 12/25/2022] Open
Abstract
Biomass is regarded as an excellent candidate for the preparation of carbon nanomaterials. A pH sensor was established based on carbon dots synthesized from black fungus, and possesses good fluorescence response and reversibility for pH detection. Meanwhile, the CDs can also be applied to intra-cellular bioimaging, showing potential for bioimaging. Carbon dots derived from black fungus were prepared and applied as a pH sensor for real water samples.![]()
Collapse
Affiliation(s)
- Jing Qin
- Department of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University 26 Hexing Road Harbin 150040 PR China
| | - Xu Gao
- Department of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University 26 Hexing Road Harbin 150040 PR China
| | - Qinqin Chen
- Department of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University 26 Hexing Road Harbin 150040 PR China
| | - Huiling Liu
- Department of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University 26 Hexing Road Harbin 150040 PR China
| | - Shuqi Liu
- Department of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University 26 Hexing Road Harbin 150040 PR China
| | - Juan Hou
- Department of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University 26 Hexing Road Harbin 150040 PR China
| | - Tiedong Sun
- Department of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University 26 Hexing Road Harbin 150040 PR China
| |
Collapse
|
14
|
|