1
|
Zhang Y, Liu H, Sun B. High-precision luminescent covalent organic frameworks with sp 2-carbon connection for visual detecting of nereistoxin-related insecticide. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130866. [PMID: 36753911 DOI: 10.1016/j.jhazmat.2023.130866] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/08/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
A new strategy for nereistoxin-related insecticide, cartap, detection in foodstuff and the environment is of great importance due to its poisoning of human beings through direct exposure or via biomagnification. Herein, a highly planar conjugated sp2 carbon-connected COF (F-Csp2-TT) was synthesized via Knoevenagel condensation reaction followed by the post-modification to develop a new platform for cartap visual detection in agricultural and food samples. The synergistic effect of highly planar conjugation and dense functional groups in the opened framework endowed F-Csp2-TT with a high-precision luminescence sensing performance. Meanwhile, the exquisitely designed F-Csp2-TT presented robust chemical stability, radiation stability, and good reproducibility. Benefiting from these advantages, high-precision luminescent F-Csp2-TT achieves a low detection limit of 0.51 μg/L to cartap over the range of 1-300 μg/L (R2=0.9938), and the recoveries percentage in food products was calculated as 95.90%- 119.3%. More significantly, the smartphone-based high-precision platform by F-Csp2-TT was established and successfully applied to portable monitoring of cartap and water content. Therefore, our work revealed the enormous potential of Csp2-connected COF, which opened a new situation for insecticide detection.
Collapse
Affiliation(s)
- Ying Zhang
- School of Food and Health, Beijing Technology and Business University (BTBU), No. 11 Fucheng Road, Beijing 100048, People's Republic of China
| | - Huilin Liu
- School of Food and Health, Beijing Technology and Business University (BTBU), No. 11 Fucheng Road, Beijing 100048, People's Republic of China.
| | - Baoguo Sun
- School of Food and Health, Beijing Technology and Business University (BTBU), No. 11 Fucheng Road, Beijing 100048, People's Republic of China
| |
Collapse
|
2
|
Zhang Y, Yuan X, Zhu X, Zhang D, Liu H, Sun B. Dandelion-like covalent organic frameworks with high-efficiency fluorescence for ratiometric sensing and visual tracking-by-detection of Fe 3. Anal Chim Acta 2023; 1239:340671. [PMID: 36628754 DOI: 10.1016/j.aca.2022.340671] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
Iron ions, one of the most common heavy metal pollutants in industrial waste materials, are continuously actively or passively delivered to the environment. Meanwhile, the importance of Fe3+ in biological processes in vivo can not be neglected due to its crucial role in maintaining normal physiological function. Therefore, a ratiometric fluorescence covalent organic framework (TD-COF) was constructed for tracking-by-detection of Fe3+. Alkynes-extended 1,3,6,8-tetrakis(4-ethynyl benzaldehyde)-pyrene (TEBPY) with complete planar structure and 2,5-dihydroxyterephthalohydrazide (DHTH) with functional group -OH were selected as the building blocks. The ratiometric fluorescence TD-COF with a dandelion-like structure exhibited its dual emission peaked at 510 nm and 630 nm. It displayed an obvious fluorescence color variation of yellow-red-black in the presence of Fe3+. Benefiting from the high luminescent efficiency (QY of 36.4%) and multiple identical binding sites, TD-COF exhibited a wide linear range to Fe3+ (0.005-50 μM) with a detection limit of 10.9 nM. Additionally, a smartphone visual sensing platform integrated with TD-COF was developed based on the color transformation and successfully applied to visual smart real-time monitoring Fe3+. More surprisingly, the maximum adsorption capacity of TD-COF towards Fe3+ was 833.3 mg/g due to the coordination interaction and cationic π-effect. The practicability of the smartphone-integrated ratiometric sensing platform for visual tracking-by-detection of Fe3+ was verified by choosing tap water as the actual sample, and the recoveries were calculated to be 98.71-100.88%. This work thus developed COF-based ratiometric sensing of Fe3+, which is an attractive candidate for further application in fluorescent sensing and visual monitoring.
Collapse
Affiliation(s)
- Ying Zhang
- School of Food and Health, Beijing Technology and Business University (BTBU), No. 11 Fucheng Road, Beijing, 100048, PR China
| | - Xinyue Yuan
- School of Food and Health, Beijing Technology and Business University (BTBU), No. 11 Fucheng Road, Beijing, 100048, PR China
| | - Xuecheng Zhu
- School of Food and Health, Beijing Technology and Business University (BTBU), No. 11 Fucheng Road, Beijing, 100048, PR China
| | - Dianwei Zhang
- School of Food and Health, Beijing Technology and Business University (BTBU), No. 11 Fucheng Road, Beijing, 100048, PR China
| | - Huilin Liu
- School of Food and Health, Beijing Technology and Business University (BTBU), No. 11 Fucheng Road, Beijing, 100048, PR China.
| | - Baoguo Sun
- School of Food and Health, Beijing Technology and Business University (BTBU), No. 11 Fucheng Road, Beijing, 100048, PR China
| |
Collapse
|
3
|
Wang J, Feng J, Lian Y, Sun X, Wang M, Sun M. Advances of the functionalized covalent organic frameworks for sample preparation in food field. Food Chem 2022. [DOI: 10.1016/j.foodchem.2022.134818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
4
|
Bala S, Abdullah CAC, Tahir MIM, Abdul Rahman MB. Adsorptive Removal of Naproxen from Water Using Polyhedral Oligomeric Silesquioxane (POSS) Covalent Organic Frameworks (COFs). NANOMATERIALS 2022; 12:nano12142491. [PMID: 35889714 PMCID: PMC9324651 DOI: 10.3390/nano12142491] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 02/04/2023]
Abstract
Covalent organic frameworks are porous crystalline compounds made up of organic material bonded together by strong reversible covalent bonds (these are novel types of materials which have the processability of extended or repeated structures with high performance, like those of thermosets and thermoplastics that produce high surface coverage). These have a long-term effect on an arrangement’s geometry and permeability. These compounds are entirely made up of light elements like H, B, C, N, O and Si. Pharmaceuticals and personal care products (PPCPs) have emerged as a new threatened species. A hazardous substance known as an “emerging toxin,” such as naproxen, is one that has been established or is generated in sufficient amounts in an environment, creating permanent damage to organisms. COF-S7, OAPS and 2-methylanthraquionone(2-MeAQ), and COF-S12, OAPS and terephthalaldehyde (TPA) were effectively synthesized by condensation (solvothermal) via a Schiff base reaction (R1R2C=NR′), with a molar ratio of 1:8 for OAPS to linker (L1 and L2), at a temperature of 125 °C and 100 °C for COF-S7 and COF-S12, respectively. The compounds obtained were assessed using several spectroscopy techniques, which revealed azomethine C=N bonds, aromatic carbon environments via solid 13C and 29Si NMR, the morphological structure and porosity, and the thermostability of these materials. The remedied effluent was investigated, and a substantial execution was noted in the removal ability of the naproxen over synthesized materials, such as 70% and 86% at a contact time of 210 min and 270 min, respectively, at a constant dose of 0.05 g and pH 7. The maximum adsorption abilities of the substances were found to be 35 mg/g and 42 mg/g. The pH result implies that there is stable exclusion with a rise in pH to 9. At pH 9, the drop significance was attained for COF-S7 with the exception of COF-S12, which was detected at pH 11, due to the negative Foster charge, consequent to the repulsion among the synthesized COFs and naproxen solution. From the isotherms acquired (Langmuir and Freundlich), the substances displayed a higher value (close to 1) of correlation coefficient (R2), which showed that the substances fit into the Freundlich isotherm (heterogenous process), and the value of heterogeneity process (n) achieved (less than 1) specifies that the adsorption is a chemical process. Analysis of the as-prepared composites revealed remarkable reusability in the elimination of naproxen by adsorption. Due to its convenience of synthesis, significant adsorption effectiveness, and remarkable reusability, the as-synthesized COFs are expected to be able to be used as potential adsorbents for eliminating AIDs from water.
Collapse
Affiliation(s)
- Suleiman Bala
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor Darul Ehsan, Malaysia; (S.B.); (M.I.M.T.)
| | - Che Azurahanim Che Abdullah
- Department of Physics, Faculty of Science, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor Darul Ehsan, Malaysia;
| | - Mohamed Ibrahim Mohamed Tahir
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor Darul Ehsan, Malaysia; (S.B.); (M.I.M.T.)
| | - Mohd Basyaruddin Abdul Rahman
- Integrated Chemical Biophysics Research, Faculty of Science, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor Darul Ehsan, Malaysia
- Correspondence: ; Tel.: +60-397697489
| |
Collapse
|
5
|
Zhang Y, Xu Y, Liu H, Sun B. Ultrahigh sensitivity nitrogen-doping carbon nanotubes-based metamaterial-free flexible terahertz sensing platform for insecticides detection. Food Chem 2022; 394:133467. [PMID: 35717347 DOI: 10.1016/j.foodchem.2022.133467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 05/20/2022] [Accepted: 06/09/2022] [Indexed: 11/24/2022]
Abstract
With the rapid advances in terahertz (THz) spectroscopy, metamaterial-free THz sensors have been of importance due to efficient cost, high sensitivity and overcoming the limited tunability of the optical constants of metals. Here, a metamaterial-free and flexible THz sensor based on nitrogen-doping carbon nanotubes (N-CNTs) coupled with signal-enhancing Au NPs was proposed for detecting nereistoxin-related insecticides (NRIs). Sensitivity and selectivity for NRIs detection have been realized over the range of 3.3-100 μg/L with good linear fitting (R2 ≥ 0.9003) and LOD was 1.33 μg/L. Accuracy was validated by the recovery rates of 105.87-109.75% of NRI in spiked food-matrix sample. These results indicated the developed signal-enhancing THz method, validated by LC-MS/MS, exhibited high sensitivity and simplicity detection, which has noteworthy potential for applications in food safety and environment monitoring.
Collapse
Affiliation(s)
- Ying Zhang
- Beijing Technology and Business University (BTBU), No. 11 Fucheng Road, Beijing 100048, People's Republic of China
| | - Yuqing Xu
- Beijing Technology and Business University (BTBU), No. 11 Fucheng Road, Beijing 100048, People's Republic of China
| | - Huilin Liu
- Beijing Technology and Business University (BTBU), No. 11 Fucheng Road, Beijing 100048, People's Republic of China.
| | - Baoguo Sun
- Beijing Technology and Business University (BTBU), No. 11 Fucheng Road, Beijing 100048, People's Republic of China
| |
Collapse
|
6
|
Zhu X, Han L, Liu H, Sun B. A smartphone-based ratiometric fluorescent sensing system for on-site detection of pyrethroids by using blue-green dual-emission carbon dots. Food Chem 2022; 379:132154. [DOI: 10.1016/j.foodchem.2022.132154] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/11/2021] [Accepted: 01/11/2022] [Indexed: 12/26/2022]
|
7
|
Zhang J, Pan L, Jing J, Zhuang M, Xin J, Zhou Y, Feng X, Zhang H. Development, optimization, and validation of a method for detection of cartap, thiocyclam, thiosultap-monosodium, and thiosultap-disodium residues in plant foods by GC-ECD. Food Chem 2022; 371:131198. [PMID: 34600370 DOI: 10.1016/j.foodchem.2021.131198] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 08/23/2021] [Accepted: 09/17/2021] [Indexed: 11/16/2022]
Abstract
A method was developed for the simultaneous determination of four nereistoxin-related pesticides, viz. cartap, thiocyclam, thiosultap-monosodium, and thiosultap-disodium, in 20 plant foods. The samples were extracted using a hydrochloric acid solution containing cysteine hydrochloride, derivatized to nereistoxin under alkaline conditions, and analyzed by gas chromatography with electron capture detector. The average recoveries of the method were 72-108%, with relative standard deviations (RSDs) of 0.3-14.7% (n = 1200, p < 0.05). The intermediate precision and reproducibility experiments using established methods were also carried out. All the results passed the Cochrane and Grubbs tests (n = 2400, p < 0.05). The RSDs of intermediate precision and RSDs of reproducibility among laboratories were in the ranges 1.7-10.9% and 2.4-15.3% (n = 2400, p < 0.05), respectively, indicating that the accuracy and precision of the method are satisfactory. This method can be used to detect nereistoxin-related pesticides in plant foods.
Collapse
Affiliation(s)
- Jingcheng Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, PR China
| | - Lixiang Pan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, PR China
| | - Jing Jing
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, PR China
| | - Ming Zhuang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, PR China
| | - Jianing Xin
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, PR China
| | - Yang Zhou
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, PR China
| | - Xiaoxiao Feng
- College of Plant Protection, Hebei Agricultural University, Hebei 071000, PR China.
| | - Hongyan Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
8
|
Marine Origin Ligands of Nicotinic Receptors: Low Molecular Compounds, Peptides and Proteins for Fundamental Research and Practical Applications. Biomolecules 2022; 12:biom12020189. [PMID: 35204690 PMCID: PMC8961598 DOI: 10.3390/biom12020189] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 02/05/2023] Open
Abstract
The purpose of our review is to briefly show what different compounds of marine origin, from low molecular weight ones to peptides and proteins, offer for understanding the structure and mechanism of action of nicotinic acetylcholine receptors (nAChRs) and for finding novel drugs to combat the diseases where nAChRs may be involved. The importance of the mentioned classes of ligands has changed with time; a protein from the marine snake venom was the first excellent tool to characterize the muscle-type nAChRs from the electric ray, while at present, muscle and α7 receptors are labeled with the radioactive or fluorescent derivatives prepared from α-bungarotoxin isolated from the many-banded krait. The most sophisticated instruments to distinguish muscle from neuronal nAChRs, and especially distinct subtypes within the latter, are α-conotoxins. Such information is crucial for fundamental studies on the nAChR revealing the properties of their orthosteric and allosteric binding sites and mechanisms of the channel opening and closure. Similar data are provided by low-molecular weight compounds of marine origin, but here the main purpose is drug design. In our review we tried to show what has been obtained in the last decade when the listed classes of compounds were used in the nAChR research, applying computer modeling, synthetic analogues and receptor mutants, X-ray and electron-microscopy analyses of complexes with the nAChRs, and their models which are acetylcholine-binding proteins and heterologously-expressed ligand-binding domains.
Collapse
|
9
|
Yang L, Wei F, Liu JM, Wang S. Functional Hybrid Micro/Nanoentities Promote Agro-Food Safety Inspection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12402-12417. [PMID: 34662114 DOI: 10.1021/acs.jafc.1c05185] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The rapid development of nanomaterials has provided a good theoretical basis and technical support to solve the problems of food safety inspection. The combination of functionalized composite nanomaterials and well-known detection methods is gradually applied to detect hazardous substances, such as chemical residues and toxins, in agricultural food products. This review concentrates on the latest agro-food safety inspection techniques and methodologies constructed with the assistance of new hybrid micro/nanoentities, such as molecular imprinting polymers integrated with quantum dots (MIPs@QDs), molecular imprinting polymers integrated with upconversion luminescent nanoparticles (MIPs@UCNPs), upconversion luminescent nanoparticles combined with metal-organic frameworks (UCNPs@MOFs), magnetic metal-organic frameworks (MOFs@Fe3O4), magnetic covalent-organic frameworks (Fe3O4@COFs), covalent-organic frameworks doped with quantum dots (COFs@QDs), nanobody-involved immunoassay for fast inspection, etc. The presented summary and discussion favor a relevant outlook for further integrating various disciplines, like material science, nanotechnology, and analytical methodology, for addressing new challenges that emerge in agro-food research fields.
Collapse
Affiliation(s)
- Lu Yang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
| | - Fan Wei
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
| | - Jing-Min Liu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
10
|
Zhang Y, Zhang D, Zhao Y, Yuan X, Liu H, Wang J, Sun B. An ionic liquid-assisted quantum dot-grafted covalent organic framework-based multi-dimensional sensing array for discrimination of insecticides using principal component analysis and clustered heat map. Mikrochim Acta 2021; 188:298. [PMID: 34401933 DOI: 10.1007/s00604-021-04936-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 07/09/2021] [Indexed: 02/02/2023]
Abstract
A robust multi-dimensional sensing array based on VBimBF4B/MAA-anchored quantum dot (QD)-grafted covalent organic frameworks (COFs) [(V-M)/QD-grafted COFs] was established via one-pot strategy. The multi-dimensional sensing array has the outstanding advantages of physicochemical and thermal stability, large specific surface area, and regular pore structures. The assistance of ionic liquid VBimBF4B enhanced the transduction efficiency, and the synergistic effect of COFs enhanced detection efficiency. The improved multi-dimensional sensing array by COFs and ionic liquid VBimBF4B served to identify seven insecticides by non-specific interactions via hydrogen bonding, and the differences in the kinetics of the binding to the insecticides resulted in variation of the three-output channel (fluorescence, phosphorescence, and light scattering) signals, thus generating a distinct optical fingerprint. The unique fingerprint patterns of seven kinds of common insecticides at 200 μg L-1 were successfully discriminated using principal component analysis and clustered heat map analysis. The multi-dimensional sensing array showed a response to seven insecticides based on three spectral channels over the range of 0.001-0.4 μg mL-1 with a limit of detection of 1.08-18.68 μg L-1. The spiked recovery of tap water was 79.86-134.22%, with RSD ranging from 0.89-14.9%. This study broadens the applications of sensing arrays technology and provides a promising building block for insecticide determination.
Collapse
Affiliation(s)
- Ying Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), No. 11 Fucheng Road, Beijing, 100048, People's Republic of China
| | - Dianwei Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), No. 11 Fucheng Road, Beijing, 100048, People's Republic of China
| | - Yuan Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), No. 11 Fucheng Road, Beijing, 100048, People's Republic of China
| | - Xinyue Yuan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), No. 11 Fucheng Road, Beijing, 100048, People's Republic of China
| | - Huilin Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), No. 11 Fucheng Road, Beijing, 100048, People's Republic of China.
| | - Jing Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), No. 11 Fucheng Road, Beijing, 100048, People's Republic of China.
| | - Baoguo Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), No. 11 Fucheng Road, Beijing, 100048, People's Republic of China
| |
Collapse
|
11
|
Heteropore covalent organic framework-based composite membrane prepared by in situ growth on non-woven fabric for sample pretreatment of food non-targeted analysis. Mikrochim Acta 2021; 188:235. [PMID: 34164747 DOI: 10.1007/s00604-021-04889-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/09/2021] [Indexed: 02/06/2023]
Abstract
A heteropore covalent organic framework (COF)-based composite membrane material was prepared and proved to have a satisfactory effect on the pretreatment of vegetable samples. The composite membrane was fabricated by in situ growth of a dual-pore COF on the surface of polydopamine (PDA)-aminated non-woven (NW) fabric. Due to the difference in the strength of the interaction between the phytochromes/COF and the pesticides/COF, the removal of phytochromes and the recovery of pesticides can be achieved by adjusting the composition of the solution. Through a simple immersion or filtration operation, NW@PDA@COF composite membrane can quickly and almost completely remove interfering phytochromes in the samples. The recovery of pesticides was determined by HPLC-MS/MS, and the recovery efficiencies were 72.3~101.7% and 67.3~106.7% for immersion and filtration modes of five different vegetable samples, respectively; the RSD is between 1.1 and 19% (n = 3). The limits of detection and quantification for the 13 pesticides investigated were 0.08 μg·L-1 and 0.23 μg·L-1, respectively. A wide linear range of 1~1000 μg·L-1 was observed with R2 values from 0.9774 to 0.9998. The membrane can be repeatedly used for at least 10 times by using a facile elution treatment. Compared to other commonly used sample pretreatment materials, heteropore COF-based composite membrane is superior in terms of sorbent amount, treatment time, operation simplicity, and material reusability.
Collapse
|
12
|
Ke CB, Yan RY, Chen JL, Lu TL. Diltiazem-imprinted porphyrinic covalent organic frameworks as solid-phase extractants and fluorescent sensors. Anal Chim Acta 2021; 1168:338608. [PMID: 34051994 DOI: 10.1016/j.aca.2021.338608] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/29/2021] [Accepted: 05/01/2021] [Indexed: 11/16/2022]
Abstract
Diltiazem, which is a calcium channel blocker, is involved in the formation of covalent organic frameworks (COFs) through the Schiff base reaction of tetrakis (4-aminophenyl)-porphine (TAPP) and dihydroxynaphthalene-dicarbaldehyde (DHNDC) and the next enol-to-keto tautomerization. The diltiazem-imprinted COFs (DICOFs) were optimally formed using Sc(OTf)3 as the catalyst, TAPP/DHNDC/diltiazem in a molar ratio of 2/3/4, N-methylpyrrolidone/mesitylene (v/v = 3/5) as the porogen, and a 1-h reaction with a high imprinting factor of 10.5 compared to the nonimprinted counterparts (NICOFs). The optimized DICOF exhibited a more amorphous XRD pattern, a larger surface area (1650 vs. 930 m2/g), a larger pore volume (1.33 vs. 0.75 cm3/g), and a finer porous SEM feature than NICOF. The selectivity of NICOF toward diltiazem and diazepam at 250 nM (α = 1.03, RSD = 1.3%) was smaller than the selectivity of DICOF (α = 2.94, RSD = 1.6%). The diltiazem samples (5.0-300 ng mL-1) dynamically quenched the fluorescence of 15 μg/mL DICOF in 50 mM phosphate buffer at pH 6.5 at 8.0 min equilibrium; thus, Stern-Volmer plots were linearly constructed for sensing diltiazem with an LOD of 3.4 ng mL-1 and an LOQ of 10.2 ng mL-1. According to the plots, 30 ng mL-1 diltiazem solutions that were diluted from 30 mg-specified tablets had an average measured concentration of 29.5 ng mL-1 (σ = 1.3% and n = 5). In addition to application as fluorescent sensors, DICOFs (30 mg) could be used as dispersive extractants to recover 95.2% of 0.6 ng mL-1 diltiazem from 25 mL phosphate buffer with quadruplicate uses of 0.5 mL methanol/acetic acid (v/v = 9/1) as the eluent. Langmuir and pseudo-second-order models were fitted to the isothermal and kinetic sorption mechanisms, respectively. The maximum sorption capacity of DICOF was ten times larger than that of NICOF (156 vs. 15.2 mg/g). The interday recoveries of 0.6 ng mL-1 spiked in 20-fold diluted human urine, and 60-fold diluted human serum were 93.2% and 90.6%, respectively.
Collapse
Affiliation(s)
- Ching-Bin Ke
- Department of Beauty and Health Care, Min-Hwei Junior College of Health Care Management, No. 1116, Sec 2, Zhongshan E. Rd., Tainan, 73658, Taiwan
| | - Ru-Yu Yan
- School of Pharmacy, China Medical University, No. 91 Hsueh-Shih Road, Taichung, 40402, Taiwan
| | - Jian-Lian Chen
- School of Pharmacy, China Medical University, No. 91 Hsueh-Shih Road, Taichung, 40402, Taiwan.
| | - Te-Ling Lu
- School of Pharmacy, China Medical University, No. 91 Hsueh-Shih Road, Taichung, 40402, Taiwan
| |
Collapse
|
13
|
Ke CB, Lu TL, Chen JL. Imprinted β-ketoenamine-linked covalent organic frameworks as dispersive sorbents for the fluorometric determination of timolol. Mikrochim Acta 2021; 188:79. [PMID: 33569651 DOI: 10.1007/s00604-021-04741-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/30/2021] [Indexed: 11/28/2022]
Abstract
Timolol accompanied the formation of fluorescent β-ketoenamine-linked covalent organic frameworks (COFs) via the Sc(Tof)3-catalyzed condensation of derivated carbaldehyde and hydrazide in a 1,4-dioxane/mesitylene porogen to construct timolol-imprinted COFs (TICOFs). With high imprinting factors, the synthesis-optimized TICOFs were characterized by fluorescence, UV-Vis spectrometry, X-ray diffraction, N2 adsorption/desorption analyses, scanning electron microscopy, and FTIR spectrometry. The TICOF fluorescence measured at 390 nm/510 nm is dynamically quenched by timolol and was thus utilized to quantify timolol in a linear range of 25-500 nM with a LOD of 8 nM. The TICOF recovered 99.4% of 0.5% timolol maleate in a commercial eye drop (RSD = 1.1%, n = 5). In addition, TICOF was used as a dispersive sorbent to recover 95% of 2.0 nM timolol from 20 mg of TICOF in 25 mL phosphate buffer. Dilution factors of 25 and 75 were the maximum tolerated proportions of the urine and serum matrix spiked with 2.0 nM timolol to reach recoveries of 92.4% and 90.3%, respectively.
Collapse
Affiliation(s)
- Ching-Bin Ke
- Department of Beauty and Health Care, Min-Hwei Junior College of Health Care Management, No. 1116, Sec 2, Zhongshan E. Rd., Tainan, 73658, Taiwan
| | - Te-Ling Lu
- School of Pharmacy, China Medical University, No. 100, Sec. 1, Jingmao Rd., Beitun Dist., Taichung, 406040, Taiwan
| | - Jian-Lian Chen
- School of Pharmacy, China Medical University, No. 100, Sec. 1, Jingmao Rd., Beitun Dist., Taichung, 406040, Taiwan.
| |
Collapse
|
14
|
WANG P, CHEN Y, HU Y, LI G. [Synthesis and application progress of covalent organic polymers in sample preparation for food safety analysis]. Se Pu 2021; 39:162-172. [PMID: 34227349 PMCID: PMC9274845 DOI: 10.3724/sp.j.1123.2020.08013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Indexed: 11/25/2022] Open
Abstract
Food safety is closely related to human health and life. Contaminated foods may result in illness or poisoning. For example, perfluorinated compounds can concentrate in the human body, or they can be transferred to the baby during breastfeeding, thus leading to serious health risks. Phthalate esters may cause damage to the liver, lungs, and kidneys. Therefore, food safety has become a hot topic at a global level. Poisonous and harmful substances in foods are derived from the environment, planting or breeding, food contacting materials, and food processing, or due to unsuitable storage conditions. Residues of pesticides and veterinary drugs, organic pollutants, additives, heavy metals, and biotoxins often hamper food safety, causing diseases or even death. The diversity of available food species, complexity of the sample matrix, and lack of information about the source of pollutants render the direct determination of food contaminants difficult. Pretreatment is vital for the accurate analysis of trace toxins in foods. Optimal pretreatment can not only improve the extract efficiency and determination sensitivity, but also prevent instrument contamination. Pretreatment techniques have played an important role in trace determination for complex matrices. Pretreatment methods can be classified as solvent-based and adsorption-based methods. Adsorption-based techniques such as solid-phase extraction, magnetic solid-phase extraction, and solid-phase microextraction are simple and efficient, and hence, are widely used. In these pretreatment techniques, adsorbents play a key role in the extraction effect. In the last few years, metal organic frameworks, metal oxide materials, carbon nanotubes, graphene, and magnetic nanoparticles, as well as a combination of these materials, have been used as adsorbents. These materials are porous and have a large surface area; they are used to enrich trace targets and eliminate interferents. Covalent organic polymers (COPs) are a class of organic porous materials constructed from organic monomers via covalent bonding. Given their excellent characteristics such as light density, good stability, high surface area, structural controllability, and ease of modification, COPs are potential adsorbents. COPs are often synthesized by solvent thermal methods. However, these methods are time-consuming and require toxic solvents and harsh reaction conditions. As alternatives, room-temperature methods, mechanical chemical methods, microwave-assisted methods, and UV-assisted methods have been developed. This has facilitated the synthesis of a wide range of COPs. In this article, the recent applications of COPs in sample pretreatment for food safety analysis are reviewed. COPs can be used in solid-phase extraction by simple packing into columns, polymerization, or chemical bonding in the capillary. Magnetic compounds have been prepared by one-pot synthesis, in situ growth, in situ reduction, or coprecipitation methods and used in magnetic solid-phase extraction. Coatings of solid-phase microextraction fibers are fabricated by physical methods, chemical bonding, sol-gel methods, or in situ growth. Toxic and harmful substances in foods and foodstuffs are efficiently extracted by exploiting the high adsorbent capacities and specificity of COPs. Future development prospects and challenges in sample pretreatment are also discussed herein. There is increased focus on the development of simple, efficient, and environment-friendly methods to synthesize COPs with specific functions; further, high-throughput, sensitive analytical methods may be established. In the future, more specific COPs will be prepared in a cost-effective manner for widespread use in sample pretreatment.
Collapse
|
15
|
Sawetwong P, Chairam S, Jarujamrus P, Amatatongchai M. Enhanced selectivity and sensitivity for colorimetric determination of glyphosate using Mn-ZnS quantum dot embedded molecularly imprinted polymers combined with a 3D-microfluidic paper-based analytical device. Talanta 2021; 225:122077. [PMID: 33592801 DOI: 10.1016/j.talanta.2020.122077] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 01/06/2023]
Abstract
We report a novel three-dimensional microfluidic paper-based analytical device (3D-μPAD) with colorimetric detection, using Mn-ZnS quantum dot embedded molecularly imprinted polymer (Mn-ZnS QD-MIP), for selective glyphosate determination in whole grain samples. Detection is based on the catalytic activity of Mn-ZnS QD-MIP in the H2O2 oxidation of ABTS. Glyphosate imprinted polymer is successfully synthesized on the Mn-ZnS QD surface using a poly (N-isopropylacrylamide) (NIPAM) and N, N'-Methylenebisacrylamide (MBA) as the functional monomers. The catalytic activity depends on binding or non-binding of glyphosate molecules on the synthetic recognition sites of the Mn-ZnS QD-MIP. Glyphosate selectively binds to the cavities embedded on the Mn-ZnS QD surface, and subsequently turns-off or inhibits the ABTS oxidation and color change to light green. The change of reaction color from dark green to light green depends on the concentration of glyphosate. We report, for the first time, using the relatively new penguard enamel colour to create a hydrophobic barrier. The foldable 3D-μPAD comprises three layers (top/center/bottom), named as the detection zone, immobilized Mn-ZnS QD-MIP disc, and sample loading. Assay on the 3D-μPAD can determine glyphosate by ImageJ detection, over an operating range of 0.005-50 μg mL-1 and with a detection limit of 0.002 μg mL-1. Our 3D-μPAD exhibits high accuracy, with a 0.4% (intra-day) and 0.7% (inter-day) relative difference from the certified CRM value. Moreover, the fabricated 3D-μPAD provides good reproducibility (1.7% RSD for ten devices). The developed 3D-μPAD was successfully applied to determine the glyphosate concentration in whole grain samples and shows great promise as an alternative highly selective and sensitive colorimetric method. The 3D-μPAD is well suited to food-quality control and onsite environmental-monitoring applications, without sophisticated instrumentation.
Collapse
Affiliation(s)
- Pornchanok Sawetwong
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand; Nanomaterials Science, Sensors & Catalysis for Problem-Based Projects, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Sanoe Chairam
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand; Nanomaterials Science, Sensors & Catalysis for Problem-Based Projects, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Purim Jarujamrus
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand; Nanomaterials Science, Sensors & Catalysis for Problem-Based Projects, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Maliwan Amatatongchai
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand; Nanomaterials Science, Sensors & Catalysis for Problem-Based Projects, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand.
| |
Collapse
|