1
|
Ağbulut MSB, Elibol E, Çadırcı M, Demirci T. Fluorescent CdTe/ZnS Core/Shell Quantum Dots for Sensitive Metabolite Detection in Real Samples. J Fluoresc 2025:10.1007/s10895-025-04138-9. [PMID: 39833464 DOI: 10.1007/s10895-025-04138-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
This study highlights the aqueous synthesis of CdTe/ZnS core/shell quantum dots (QDs) and their application as fluorescence sensors for detecting critical metabolites, including folic acid, glucose, and vitamin C, in real biological samples. The synthesized QDs exhibit excellent quantum efficiency, stability, and biocompatibility, enhanced by mercaptopropionic acid (MPA) ligands, enabling eco-friendly and accurate sensing. Detection limits of 0.84 µg/mL for folic acid, 0.33 mM for glucose, and 1.15 µg/mL for vitamin C were achieved with high linearity (R2 > 0.97). These results underscore the potential of CdTe/ZnS QDs in advanced biosensing technologies, offering sensitive and selective metabolite detection through a robust FRET-based mechanism. The versatility and aqueous solubility of these QDs pave the way for their integration into multiplex diagnostic systems for enhanced biomedical applications.
Collapse
Affiliation(s)
| | - Erdem Elibol
- Faculty of Engineering, Department of Electrical and Electronics Engineering, Duzce University, Duzce, Türkiye.
- Nanotechnology Research Laboratory, Duzce University, Duzce, Türkiye.
| | - Musa Çadırcı
- Faculty of Engineering, Department of Electrical and Electronics Engineering, Duzce University, Duzce, Türkiye
| | - Tuna Demirci
- Scientific and Technological Researches Application and Research Center, Duzce University, Duzce, Türkiye
- Nanotechnology Research Laboratory, Duzce University, Duzce, Türkiye
| |
Collapse
|
2
|
Li G, Yan R, Chen W, Wu R, Liang J, Chen J, Zhou Z. Fluorescence/electrochemical dual-mode strategy for Golgi protein 73 detection based on molybdenum disulfide/ferrocene/palladium nanoparticles and nitrogen-doped graphene quantum dots. Mikrochim Acta 2024; 191:190. [PMID: 38460000 DOI: 10.1007/s00604-024-06262-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/12/2024] [Indexed: 03/11/2024]
Abstract
Golgi protein 73 (GP73) is a new serum marker associated with early diagnosis and postoperative assessment of hepatocellular carcinoma (HCC). Herein, an electrochemical/fluorescence dual-signal biosensor was designed for determination of GP73 based on molybdenum disulfide/ferrocene/palladium nanoparticles (MoS2-Fc-PdNPs) and nitrogen-doped graphene quantum dots (NGQDs). GP73 aptamer (Apt) was labeled with NGQDs to form the NGQDs-Apt fluorescence probe. MoS2-Fc-PdNPs served not only as the fluorescence quencher but also as electrochemical enhancer. The sensing platform (NGQDs-Apt/MoS2-Fc-PdNPs) was formed based on the fluorescence resonance energy transfer (FRET) mechanism. In the presence of GP73, the specific binding of NGQDs-Apt to GP73 interrupted FRET, restoring the fluorescence of NGQDs-Apt at λex/em = 348/438 nm and enhancing the oxidation current of Fc in MoS2-Fc-PdNPs at 0.04 V through differential pulse voltammetry (DPV). Under the optimal conditions, the DPV current change and fluorescence recovery have a good linear relationship with GP73 concentration from 1.00 to 10.0 ng/mL. The calibration equation for the fluorescence mode was Y1 = (0.0213 ± 0.00127)X + (0.0641 ± 0.00448) and LOD was 0.812 ng/mL (S/N = 3). The calibration equation of the electrochemical mode was Y2 = (3.41 ± 0.111)X + (1.62 ± 0.731), and LOD of 0.0425 ng/mL (S/N = 3). The RSDs of fluorescence mode and electrochemical mode after serum detection were 1.62 to 5.21% and 0.180 to 6.62%, respectively. By combining the electrochemical and fluorescence assay, more comprehensive and valuable information for GP73 was provided. Such dual-mode detection platform shows excellent reproducibility, stability, and selectivity and has great application potential.
Collapse
Affiliation(s)
- Guiyin Li
- College of Chemistry, Guangdong University of Petrochemical Technology, Guandu Road, Maoming, Guangdong, 525000, People's Republic of China
| | - Ruijie Yan
- College of Chemistry, Guangdong University of Petrochemical Technology, Guandu Road, Maoming, Guangdong, 525000, People's Republic of China
- School of Life and Environmental Sciences, Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, People's Republic of China
| | - Wei Chen
- School of Life and Environmental Sciences, Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, People's Republic of China
| | - Runqiang Wu
- Department of Clinical Laboratory, The 924th Hospital of Chinese People's Liberation Army Joint Logistic Support Force, Guilin, Guangxi, 541002, China
| | - Jintao Liang
- School of Life and Environmental Sciences, Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, People's Republic of China.
| | - Jiejing Chen
- Department of Clinical Laboratory, The 924th Hospital of Chinese People's Liberation Army Joint Logistic Support Force, Guilin, Guangxi, 541002, China.
| | - Zhide Zhou
- School of Life and Environmental Sciences, Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, People's Republic of China.
| |
Collapse
|
3
|
Guo Y, Zhao T, Guo Q, Ding M, Chen X, Lin J. Highly sensitive detection for xanthine by combining single-band red up-conversion nanoparticles and cycle signal amplification strategy based on internal filtration effect. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 306:123566. [PMID: 37871542 DOI: 10.1016/j.saa.2023.123566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/28/2023] [Accepted: 10/18/2023] [Indexed: 10/25/2023]
Abstract
Up-conversion nanoparticles (UCNPs), especially single-band bright red UCNPs, have better penetration of biological tissues, absorb less lost energy, and have higher sensitivity and accuracy in the determination of actual biological samples in the field of biosensing. Here, a novel colorimetric and fluorescent dual-channel method based upon an internal filtration effect (IFE) quenching mechanism was proposed for the quantitative analysis of xanthine (XA) by using red UCNPs as fluorescence indicator and 3,3',5,5' -tetramethylbenzidine (TMB) as chromogenic substrate. The sensitivity of the detection system was also enhanced by a cycle signal amplification strategy based on the Fenton reaction. Under the best conditions, the detection limits of XA by fluorescent and colorimetric methods were 0.58 μM and 1.19 μM, respectively. The developed method was applied to the detection of XA in actual serum samples, and the recoveries of the spiked samples by fluorescent and colorimetric methods were in the range of 96.3-104.3 % and 94.3-105.4 %, respectively. In addition, the commercial ELISA method was used to verify the application of the proposed method and the test results of XA were close to those obtained by fluorescent and colorimetric methods, indicating that the accuracy of the developed nanosensing system was acceptable.
Collapse
Affiliation(s)
- Yingying Guo
- Department of CT/MRI, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Tianlu Zhao
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Qiaonan Guo
- Department of Breast and Thyroid Surgery, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Mingji Ding
- Department of Breast and Thyroid Surgery, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Xiangrong Chen
- Department of Neurosurgery, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China.
| | - Jianqing Lin
- Department of Breast and Thyroid Surgery, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China.
| |
Collapse
|
4
|
Kalluri A, Dharmadhikari B, Debnath D, Patra P, Kumar CV. Advances in Structural Modifications and Properties of Graphene Quantum Dots for Biomedical Applications. ACS OMEGA 2023; 8:21358-21376. [PMID: 37360447 PMCID: PMC10286289 DOI: 10.1021/acsomega.2c08183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 05/19/2023] [Indexed: 06/28/2023]
Abstract
Graphene quantum dots (GQDs) are carbon-based, zero-dimensional nanomaterials and unique due to their astonishing optical, electronic, chemical, and biological properties. Chemical, photochemical, and biochemical properties of GQDs are intensely being explored for bioimaging, biosensing, and drug delivery. The synthesis of GQDs by top-down and bottom-up approaches, their chemical functionalization, bandgap engineering, and biomedical applications are reviewed here. Current challenges and future perspectives of GQDs are also presented.
Collapse
Affiliation(s)
- Ankarao Kalluri
- Department
of Material Science, Department of Chemistry, and Department of Molecular and Cell
Biology, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Bhushan Dharmadhikari
- Department
of Electrical and Computer Engineering and Technology, Minnesota State University, Mankato, Minnesota 56001, USA
| | - Debika Debnath
- Department of Biomedical Engineering and Department of
Mechanical Engineering, University of Bridgeport, Bridgeport, Connecticut 06604, USA
| | - Prabir Patra
- Department of Biomedical Engineering and Department of
Mechanical Engineering, University of Bridgeport, Bridgeport, Connecticut 06604, USA
| | - Challa Vijaya Kumar
- Department
of Material Science, Department of Chemistry, and Department of Molecular and Cell
Biology, University of Connecticut, Storrs, Connecticut 06269, USA
| |
Collapse
|
5
|
Yang J, Huang L, Qian K. Nanomaterials-assisted metabolic analysis toward in vitro diagnostics. EXPLORATION (BEIJING, CHINA) 2022; 2:20210222. [PMID: 37323704 PMCID: PMC10191060 DOI: 10.1002/exp.20210222] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/08/2022] [Indexed: 06/15/2023]
Abstract
In vitro diagnostics (IVD) has played an indispensable role in healthcare system by providing necessary information to indicate disease condition and guide therapeutic decision. Metabolic analysis can be the primary choice to facilitate the IVD since it characterizes the downstream metabolites and offers real-time feedback of the human body. Nanomaterials with well-designed composition and nanostructure have been developed for the construction of high-performance detection platforms toward metabolic analysis. Herein, we summarize the recent progress of nanomaterials-assisted metabolic analysis and the related applications in IVD. We first introduce the important role that nanomaterials play in metabolic analysis when coupled with different detection platforms, including electrochemical sensors, optical spectrometry, and mass spectrometry. We further highlight the nanomaterials-assisted metabolic analysis toward IVD applications, from the perspectives of both the targeted biomarker quantitation and untargeted fingerprint extraction. This review provides fundamental insights into the function of nanomaterials in metabolic analysis, thus facilitating the design of next-generation diagnostic devices in clinical practice.
Collapse
Affiliation(s)
- Jing Yang
- State Key Laboratory for Oncogenes and Related Genes, School of Biomedical Engineering, Institute of Medical Robotics and Med‐X Research InstituteShanghai Jiao Tong UniversityShanghaiChina
- Department of Obstetrics and Gynecology, Renji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Lin Huang
- Country Department of Clinical Laboratory MedicineShanghai Chest HospitalShanghai Jiao Tong UniversityShanghaiChina
| | - Kun Qian
- State Key Laboratory for Oncogenes and Related Genes, School of Biomedical Engineering, Institute of Medical Robotics and Med‐X Research InstituteShanghai Jiao Tong UniversityShanghaiChina
- Department of Obstetrics and Gynecology, Renji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
6
|
Color-tunable fluorescent nitrogen-doped graphene quantum dots derived from pineapple leaf fiber biomass to detect Hg2+. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2021.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|