1
|
Esmaeili Y, Dabiri A, Mashayekhi F, Rahimmanesh I, Bidram E, Karbasi S, Rafienia M, Javanmard SH, Ertas YN, Zarrabi A, Shariati L. Smart co-delivery of plasmid DNA and doxorubicin using MCM-chitosan-PEG polymerization functionalized with MUC-1 aptamer against breast cancer. Biomed Pharmacother 2024; 173:116465. [PMID: 38507955 DOI: 10.1016/j.biopha.2024.116465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024] Open
Abstract
This study introduces an innovative co-delivery approach using the MCM-co-polymerized nanosystem, integrating chitosan and polyethylene glycol, and targeted by the MUC-1 aptamer (MCM@CS@PEG-APT). This system enables simultaneous delivery of the GFP plasmid and doxorubicin (DOX). The synthesis of the nanosystem was thoroughly characterized at each step, including FTIR, XRD, BET, DLS, FE-SEM, and HRTEM analyses. The impact of individual polymers (chitosan and PEG) on payload retardation was compared to the co-polymerized MCM@CS@PEG conjugation. Furthermore, the DOX release mechanism was investigated using various kinetic models. The nanosystem's potential for delivering GFP plasmid and DOX separately and simultaneously was assessed through fluorescence microscopy and flow cytometry. The co-polymerized nanosystem exhibited superior payload entrapment (1:100 ratio of Plasmid:NPs) compared to separately polymer-coated counterparts (1:640 ratio of Plasmid:NPs). Besides, the presence of pH-sensitive chitosan creates a smart nanosystem for efficient DOX and GFP plasmid delivery into tumor cells, along with a Higuchi model pattern for drug release. Toxicity assessments against breast tumor cells also indicated reduced off-target effects compared to pure DOX, introducing it as a promising candidate for targeted cancer therapy. Cellular uptake findings demonstrated the nanosystem's ability to deliver GFP plasmid and DOX separately into MCF-7 cells, with rates of 32% and 98%, respectively. Flow cytometry results confirmed efficient co-delivery, with 42.7% of cells showing the presence of both GFP-plasmid and DOX, while 52.2% exclusively contained DOX. Overall, our study explores the co-delivery potential of the MCM@CS@PEG-APT nanosystem in breast cancer therapy. This system's ability to co-deliver multiple agents preciselyopens new avenues for targeted therapeutic strategies.
Collapse
Affiliation(s)
- Yasaman Esmaeili
- Biosensor Research Center (BRC), Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arezou Dabiri
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Hezarjerib Ave, Isfahan 8174673461, Iran
| | - Fariba Mashayekhi
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Iran
| | - Ilnaz Rahimmanesh
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Hezarjerib Ave, Isfahan 8174673461, Iran
| | - Elham Bidram
- Biosensor Research Center (BRC), Isfahan University of Medical Sciences, Isfahan, Iran; Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Iran
| | - Saeed Karbasi
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Iran
| | - Mohammad Rafienia
- Biosensor Research Center (BRC), Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Hezarjerib Ave, Isfahan 8174673461, Iran
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri 38039, Turkiye; ERNAM─Nanotechnology Research and Application Center, Erciyes University, Kayseri 38039, Turkiye; UNAM-National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkiye
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul 34396, Turkey
| | - Laleh Shariati
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Hezarjerib Ave, Isfahan 8174673461, Iran; Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Iran.
| |
Collapse
|
2
|
Borzooee Moghadam N, Avatefi M, Karimi M, Mahmoudifard M. Graphene family in cancer therapy: recent progress in cancer gene/drug delivery applications. J Mater Chem B 2023; 11:2568-2613. [PMID: 36883982 DOI: 10.1039/d2tb01858f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
In the past few years, the development in the construction and architecture of graphene based nanocomplexes has dramatically accelerated the use of nano-graphene for therapeutic and diagnostic purposes, fostering a new area of nano-cancer therapy. To be specific, nano-graphene is increasingly used in cancer therapy, where diagnosis and treatment are coupled to deal with the clinical difficulties and challenges of this lethal disease. As a distinct family of nanomaterials, graphene derivatives exhibit outstanding structural, mechanical, electrical, optical, and thermal capabilities. Concurrently, they can transport a wide variety of synthetic agents, including medicines and biomolecules, such as nucleic acid sequences (DNA and RNA). Herewith, we first provide an overview of the most effective functionalizing agents for graphene derivatives and afterward discuss the significant improvements in the gene and drug delivery composites based on graphene.
Collapse
Affiliation(s)
- Negin Borzooee Moghadam
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| | - Manizheh Avatefi
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| | - Mahnaz Karimi
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| | - Matin Mahmoudifard
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| |
Collapse
|
3
|
Taheriazam A, Abad GGY, Hajimazdarany S, Imani MH, Ziaolhagh S, Zandieh MA, Bayanzadeh SD, Mirzaei S, Hamblin MR, Entezari M, Aref AR, Zarrabi A, Ertas YN, Ren J, Rajabi R, Paskeh MDA, Hashemi M, Hushmandi K. Graphene oxide nanoarchitectures in cancer biology: Nano-modulators of autophagy and apoptosis. J Control Release 2023; 354:503-522. [PMID: 36641122 DOI: 10.1016/j.jconrel.2023.01.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/16/2023]
Abstract
Nanotechnology is a growing field, with many potential biomedical applications of nanomedicine for the treatment of different diseases, particularly cancer, on the horizon. Graphene oxide (GO) nanoparticles can act as carbon-based nanocarriers with advantages such as a large surface area, good mechanical strength, and the capacity for surface modification. These nanostructures have been extensively used in cancer therapy for drug and gene delivery, photothermal therapy, overcoming chemotherapy resistance, and for imaging procedures. In the current review, we focus on the biological functions of GO nanoparticles as regulators of apoptosis and autophagy, the two major forms of programmed cell death. GO nanoparticles can either induce or inhibit autophagy in cancer cells, depending on the conditions. By stimulating autophagy, GO nanocarriers can promote the sensitivity of cancer cells to chemotherapy. However, by impairing autophagy flux, GO nanoparticles can reduce cell survival and enhance inflammation. Similarly, GO nanomaterials can increase ROS production and induce DNA damage, thereby sensitizing cancer cells to apoptosis. In vitro and in vivo experiments have investigated whether GO nanomaterials show any toxicity in major body organs, such as the brain, liver, spleen, and heart. Molecular pathways, such as ATG, MAPK, JNK, and Akt, can be regulated by GO nanomaterials, leading to effects on autophagy and apoptosis. These topics are discussed in this review to shed some lights towards the biomedical potential of GO nanoparticles and their biocompatibility, paving the way for their future application in clinical trials.
Collapse
Affiliation(s)
- Afshin Taheriazam
- Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Ghazaleh Gholamiyan Yousef Abad
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shima Hajimazdarany
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Hassan Imani
- Department of Clinical Science, Faculty of Veterinary Medicine, Islamic Azad University, Shahr-e kord Branch, Chaharmahal and Bakhtiari, Iran
| | - Setayesh Ziaolhagh
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | | | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa; Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Vice President at Translational Sciences, Xsphera Biosciences Inc., 6 Tide Street, Boston, MA, 02210, USA
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey; ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, Turkey
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Romina Rajabi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Mahshid Deldar Abad Paskeh
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| |
Collapse
|
4
|
Esmaeili Y, Mohammadi Z, Khavani M, Sanati A, Shariati L, Seyedhosseini Ghaheh H, Bidram E, Zarrabi A. Fluorescence anisotropy cytosensing of folate receptor positive tumor cells using 3D polyurethane-GO-foams modified with folic acid: molecular dynamics and in vitro studies. Mikrochim Acta 2023; 190:44. [PMID: 36602637 DOI: 10.1007/s00604-022-05558-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/29/2022] [Indexed: 01/06/2023]
Abstract
Integrated polyurethane (PU)-based foams modified with PEGylated graphene oxide and folic acid (PU@GO-PEG-FA) were developed with the goal of capturing and detecting tumor cells with precision. The detection of the modified PU@GO-PEG surface through FA against folate receptor-overexpressed tumor cells is the basis for tumor cell capture. Molecular dynamics (MD) simulations were applied to study the strength of FA interactions with the folate receptor. Based on the obtained results, the folate receptor has intense interactions with FA, which leads to the reduction in the FA interactions with PEG, and so decreases the fluorescence intensity of the biosensor. The synergistic interactions offer the FA-modified foams a high efficiency for capturing the tumor cell. Using a turn-off fluorescence technique based on the complicated interaction of FA-folate receptor generated by target recognition, the enhanced capture tumor cells could be directly read out at excitation-emission wavelengths of 380-450 nm. The working range is between 1×10 2 to 2×10 4 cells mL -1 with a detection limit of 25 cells mL -1 and good reproducibility with relative standard deviation of 2.35%. Overall, findings demonstrate that the fluorescence-based biosensor has a significant advantage for early tumor cell diagnosis.
Collapse
Affiliation(s)
- Yasaman Esmaeili
- Biosensor Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Mohammadi
- Biosensor Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Khavani
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Alireza Sanati
- Biosensor Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Laleh Shariati
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Applied Physiology Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Hezarjerib Ave, 8174673461, Isfahan, Iran
| | - Hooria Seyedhosseini Ghaheh
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elham Bidram
- Biosensor Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, 34396, Turkey.
| |
Collapse
|
5
|
Singh R, Alshaghdali K, Saeed A, Kausar MA, Aldakheel FM, Anwar S, Mishra D, Srivastava M. Prospects of microbial-engineering for the production of graphene and its derivatives: Application to design nanosystms for cancer theranostics. Semin Cancer Biol 2022; 86:885-898. [PMID: 34020029 DOI: 10.1016/j.semcancer.2021.05.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/05/2021] [Accepted: 05/14/2021] [Indexed: 01/27/2023]
Abstract
Cancer is known as one of the leading causes of morbidity and fatality, currently faced by our society. The prevalence of cancer related dieses is rapidly increasing around the world. To reduce the mortality rates, early diagnosis and subsequent treatment of cancer in timely manner is quite essential. Advancements have been made to achieve effective theranostics strategies to tackle cancerous dieses, yet very challenging to overcome this issue. Recently, advances made in the field of nanotechnology have shown tremendous potential for cancer theranostics. Different types of nanomaterials have been successfully employed to develop sophisticated diagnosis and therapy techniques. In this context, graphene and its derivatives e.g. graphene oxide (GO) and reduced graphene oxide (RGO) have been investigated as promising candidates to design graphene-based nanosystems for the diagnosis and therapeutic purpose. Further, to synthesize graphene and its derivatives different types of physicochemical methods are being adopted. However, each method has its own advantage and disadvantages. In this reference, among diverse biological methods, microbial technique can be one of the most promising and eco-friendly approach for the preparation of graphene and its derivatives, particularly GO and RGO. In this review, we summarize studies performed on the preparation of graphene and its derivatives following microbial routes meanwhile focus has been made on the preparation method and the possible mechanism involved therein. Thereafter, we have discussed applications of graphene and its derivatives to developed advanced nanosystem that can be imperative for the cancer theranostics. Results of recent studies exploring applications graphene based nanosystem for the preparation of different types of biosensors for early diagnosis; advanced therapeutic approaches by designing drug delivery nanosystems along with multifunctionality (e.g cancer imaging, drug delivery, photodynamic and photo thermal therapy) in cancer theranostics have been discussed. Particularly, emphasis has been given on the preparation techniques of graphene based nanosystems, being employed in designing of biosensing platforms, drug delivery and multifunctional nanosystems. Moreover, issues have been discussed on the preparation of graphene and its derivatives following microbial technique and the implementation of graphene based nanosystems in cancer theranostics.
Collapse
Affiliation(s)
- Rajeev Singh
- Department of Environmental Studies, Satyawati College, University of Delhi, Delhi, 110052, India
| | - Khalid Alshaghdali
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, P.O Box 2440, Saudi Arabia
| | - Amir Saeed
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, P.O Box 2440, Saudi Arabia; Department of Medical Microbiology, Faculty of Medical Laboratory Sciences, University of Medical Sciences & Technology, P.O Box 12810, Khartoum, Sudan
| | - Mohd Adnan Kausar
- Department of Biochemistry, College of Medicine, University of Hail, Hail, Saudi Arabia
| | - Fahad M Aldakheel
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, 11564, Saudi Arabia; Prince Sattam Chair for Epidemiology and Public Health Research, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Sadaf Anwar
- Department of Biochemistry, College of Medicine, University of Hail, Hail, Saudi Arabia
| | - Debabrata Mishra
- Department of Physics & Astrophysics, University of Delhi, Delhi, 110007, India
| | - Manish Srivastava
- Department of Chemical Engineering & Technology, IIT (BHU), Varanasi, 221005, India.
| |
Collapse
|
6
|
Esmaeili Y, Seyedhosseini Ghaheh H, Ghasemi F, Shariati L, Rafienia M, Bidram E, Zarrabi A. Graphene oxide quantum dot-chitosan nanotheranostic platform as a pH-responsive carrier for improving curcumin uptake internalization: In vitro & in silico study. BIOMATERIALS ADVANCES 2022; 139:213017. [PMID: 35882115 DOI: 10.1016/j.bioadv.2022.213017] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/27/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
We herein fabricated a cancer nanotheranostics platform based on Graphene Oxide Quantum Dot-Chitosan-polyethylene glycol nanoconjugate (GOQD-CS-PEG), which were targeted with MUC-1 aptamer towards breast and colon tumors. The interaction between aptamer and MUC-1 receptor on the desired cells was investigated utilizing molecular docking. The process of curcumin release was investigated, as well as the potential of the produced nanocomposite in targeted drug delivery, specific detection, and photoluminescence imaging. The fluorescence intensity of GOQD-CS-PEG was reduced due to transferred energy between (cytosine-guanin) base pairs in the hairpin structure of the aptamer, resulting in an "on/off" photoluminescence bio-sensing. Interestingly, the integration of pH-responsive chitosan nanoparticles in the nanocomposite results in a smart nanocomposite capable of delivering more curcumin to desired tumor cells. When selectively binds to the MUC-1 receptor, the two strands of aptamer separate in acidic conditions, resulting in a sustained drug release and photoluminescence recovery. The cytotoxicity results also revealed that the nanocomposite was more toxic to MUC-1-overexpressed tumor cells than to negative control cell lines, confirming its selective targeting. As a result, the proposed nanocomposite could be used as an intelligent cancer nanotheranostic platform for tracing MUC-1-overexpressed tumor cells and targeting them with great efficiency and selectivity.
Collapse
Affiliation(s)
- Yasaman Esmaeili
- Biosensor Research Center (BRC), School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hooria Seyedhosseini Ghaheh
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fahimeh Ghasemi
- Department of Bioinformatics, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Laleh Shariati
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Applied Physiology Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Hezarjerib Ave, 8174673461 Isfahan, Iran
| | - Mohammad Rafienia
- Biosensor Research Center (BRC), School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elham Bidram
- Biosensor Research Center (BRC), School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul 34396, Turkey.
| |
Collapse
|
7
|
Esmaeili Y, Khavani M, Bigham A, Sanati A, Bidram E, Shariati L, Zarrabi A, Jolfaie NA, Rafienia M. Mesoporous silica@chitosan@gold nanoparticles as "on/off" optical biosensor and pH-sensitive theranostic platform against cancer. Int J Biol Macromol 2022; 202:241-255. [PMID: 35041881 DOI: 10.1016/j.ijbiomac.2022.01.063] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/26/2021] [Accepted: 01/10/2022] [Indexed: 01/10/2023]
Abstract
A cancer nanotheranostic system was fabricated based on mesoporous silica@chitosan@gold (MCM@CS@Au) nanosystem targeted by aptamer toward the MUC-1 positive tumor cells. Subsequently, curcumin as an efficient herbal anticancer drug was first encapsulated into chitosan-triphosphate nanoparticles and then the resulted nanoparticle was loaded into the nanosystem (MCM@CS@Au-Apt). The nanosystem successful fabrication was approved at each synthesis step through FTIR, XRD, BET, DLS, FE-SEM, HRTEM, and fluorescence spectroscopy. Besides, the interaction between aptamer and curcumin was evaluated using full atomistic molecular dynamics simulations. The mechanism of curcumin release was likewise investigated through different kinetic models. Afterwards, the potential of the designed nanosystem in targeted imaging, and drug delivery was evaluated using fluorescence microscopy and flow cytometry. It was found that the energy transfer between the base pairs in the hairpin of double strands of DNA aptamer acts as a quencher for MCM@CS@Au fluorescence culminating in an "on/off" optical biosensor. On the other hand, the presence of pH-sensitive chitosan nanoparticles creates smart nanosystem to deliver more curcumin into the desired cells. Indeed, when the aptamer specifically binds to the MUC-1 receptor, its double strands separate under the low pH condition, leading to the drug release and the recovery of the fluorescence ("On" state). Based on the toxicity results, this nanosystem had more toxicity toward the MUC-1-positive tumor cells than MUC-1-negative cells, representing its selective targeting. Therefore, this nanosystem could be introduced as a smart anticancer nanotheranostic system for tracing particular biomarkers (MUC-1), non-invasive fluorescence imaging, and targeted curcumin delivery.
Collapse
Affiliation(s)
- Yasaman Esmaeili
- Biosensor Research Center (BRC), Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Khavani
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
| | - Ashkan Bigham
- Institute of Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), Naples 80125, Italy
| | - Alireza Sanati
- Biosensor Research Center (BRC), Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elham Bidram
- Biosensor Research Center (BRC), Isfahan University of Medical Sciences, Isfahan, Iran
| | - Laleh Shariati
- Applied Physiology Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Hezarjerib Ave, 8174673461 Isfahan, Iran; Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul 34396, Turkey
| | - Nafise Arbab Jolfaie
- Biosensor Research Center (BRC), Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Rafienia
- Biosensor Research Center (BRC), Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
8
|
Mo T, Liu X, Luo Y, Zhong L, Zhang Z, Li T, Gan L, Liu X, Li L, Wang H, Sun X, Fan D, Qian Z, Wu P, Chen X. Aptamer-based biosensors and application in tumor theranostics. Cancer Sci 2021; 113:7-16. [PMID: 34747552 PMCID: PMC8748234 DOI: 10.1111/cas.15194] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/05/2021] [Accepted: 10/12/2021] [Indexed: 02/06/2023] Open
Abstract
An aptamer is a short oligonucleotide chain that can specifically recognize targeting analytes. Due to its high specificity, low cost, and good biocompatibility, aptamers as the targeting elements of biosensors have been applied widely in non-invasive tumor imaging and treatment in situ to replace traditional methods. In this review, we will summarize recent advances in using aptamer-based biosensors in tumor diagnosis. After a brief introduction of the advantage of aptamers compared with enzyme sensors and immune sensors, the different sensing designs and mechanisms based on 3 signal transduction modes will be reviewed to cover different kinds of analytical methods, including: electrochemistry analysis, colorimetry analysis, and fluorescence analysis. Finally, the prospective advantages of aptamer-based biosensors in tumor theranostics and post-treatment monitoring are also evaluated in this review.
Collapse
Affiliation(s)
- Tong Mo
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Xiyu Liu
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Yiqun Luo
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Liping Zhong
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Zhikun Zhang
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Tong Li
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Lu Gan
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Xiuli Liu
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Lan Li
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Huixue Wang
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Xinjun Sun
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Dianfa Fan
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Zhangbo Qian
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Pan Wu
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Xiaoyuan Chen
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China.,Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering and Biomedical Engineering, Faculty of Engineering, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Yong Loo Lin School of Medicine, Clinical Imaging Research Centre, Centre for Translational Medicine, National University of Singapore, Singapore, Singapore.,Yong Loo Lin School of Medicine, Nanomedicine Translational Research Program, NUS Center for Nanomedicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
9
|
Jampilek J, Kralova K. Advances in Drug Delivery Nanosystems Using Graphene-Based Materials and Carbon Nanotubes. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1059. [PMID: 33668271 PMCID: PMC7956197 DOI: 10.3390/ma14051059] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 02/07/2023]
Abstract
Carbon is one of the most abundant elements on Earth. In addition to the well-known crystallographic modifications such as graphite and diamond, other allotropic carbon modifications such as graphene-based nanomaterials and carbon nanotubes have recently come to the fore. These carbon nanomaterials can be designed to help deliver or target drugs more efficiently and to innovate therapeutic approaches, especially for cancer treatment, but also for the development of new diagnostic agents for malignancies and are expected to help combine molecular imaging for diagnosis with therapies. This paper summarizes the latest designed drug delivery nanosystems based on graphene, graphene quantum dots, graphene oxide, reduced graphene oxide and carbon nanotubes, mainly for anticancer therapy.
Collapse
Affiliation(s)
- Josef Jampilek
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 9, 845 10 Bratislava, Slovakia
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Katarina Kralova
- Institute of Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia;
| |
Collapse
|
10
|
Esmaeili Y, Bidram E, Zarrabi A, Amini A, Cheng C. Graphene oxide and its derivatives as promising In-vitro bio-imaging platforms. Sci Rep 2020; 10:18052. [PMID: 33093483 PMCID: PMC7582845 DOI: 10.1038/s41598-020-75090-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 09/10/2020] [Indexed: 12/29/2022] Open
Abstract
Intrinsic fluorescence and versatile optical properties of Graphene Oxide (GO) in visible and near-infrared range introduce this nanomaterial as a promising candidate for numerous clinical applications for early-diagnose of diseases. Despite recent progresses in the impact of major features of GO on the photoluminescence properties of GO, their modifications have not yet systematically understood. Here, to study the modification effects on the fluorescence behavior, poly ethylene glycol (PEG) polymer, metal nanoparticles (Au and Fe3O4) and folic acid (FA) molecules were used to functionalize the GO surface. The fluorescence performances in different environments (water, DMEM cell media and phosphate buffer with two different pH values) were assessed through fluorescence spectroscopy and fluorescent microscopy, while Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) and Scanning electron microscopy (SEM) were utilized to evaluate the modifications of chemical structures. The modification of GO with desired molecules improved the photoluminescence property. The synthesized platforms of GO-PEG, GO-PEG-Au, GO-PEG-Fe3O4 and GO-PEG-FA illustrated emissions in three main fluorescence regions (blue, green and red), suitable for tracing and bio-imaging purposes. Considering MTT results, these platforms potentially positioned themselves as non-invasive optical sensors for the diagnosis alternatives of traditional imaging agents.
Collapse
Affiliation(s)
- Yasaman Esmaeili
- Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, Iran
| | - Elham Bidram
- Biosensor Research Center, Department of Biomaterials, Nanotechnology, and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Ali Zarrabi
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, 34956, Tuzla, Istanbul, Turkey
| | - Abbas Amini
- Department of Mechanical Engineering, Australian College of Kuwait, 13015, Mishref, Safat, Kuwait.
| | - Chun Cheng
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|