1
|
Timoshenko RV, Gorelkin PV, Vaneev AN, Krasnovskaya OO, Akasov RA, Garanina AS, Khochenkov DA, Iakimova TM, Klyachko NL, Abakumova TO, Shashkovskaya VS, Chaprov KD, Makarov AA, Mitkevich VA, Takahashi Y, Edwards CRW, Korchev YE, Erofeev AS. Electrochemical Nanopipette Sensor for In Vitro/In Vivo Detection of Cu 2+ Ions. Anal Chem 2024; 96:127-136. [PMID: 38126724 DOI: 10.1021/acs.analchem.3c03337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
In vitro/in vivo detection of copper ions is a challenging task but one which is important in the development of new approaches to the diagnosis and treatment of cancer and hereditary diseases such as Alzheimer's, Wilson's, etc. In this paper, we present a nanopipette sensor capable of measuring Cu2+ ions with a linear range from 0.1 to 10 μM in vitro and in vivo. Using the gold-modified nanopipette sensor with a copper chelating ligand, we evaluated the accumulation ability of the liposomal form of an anticancer Cu-containing complex at three levels of biological organization. First, we detected Cu2+ ions in a single cell model of human breast adenocarcinoma MCF-7 and in murine melanoma B16 cells. The insertion of the nanoelectrode did not result in leakage of the cell membrane. We then evaluated the distribution of the Cu-complex in MCF-7 tumor spheroids and found that the diffusion-limited accumulation was a function of the depth, typical for 3D culture. Finally, we demonstrated the use of the sensor for Cu2+ ion detection in the brain of an APP/PS1 transgenic mouse model of Alzheimer's disease and tumor-bearing mice in response to injection (2 mg kg-1) of the liposomal form of the anticancer Cu-containing complex. Enhanced stability and selectivity, as well as distinct copper oxidation peaks, confirmed that the developed sensor is a promising tool for testing various types of biological systems. In summary, this research has demonstrated a minimally invasive electrochemical technique with high temporal resolution that can be used for the study of metabolism of copper or copper-based drugs in vitro and in vivo.
Collapse
Affiliation(s)
- Roman V Timoshenko
- National University of Science and Technology (MISIS), Moscow 119049, Russia
| | - Petr V Gorelkin
- National University of Science and Technology (MISIS), Moscow 119049, Russia
| | - Alexander N Vaneev
- National University of Science and Technology (MISIS), Moscow 119049, Russia
- Chemistry Department, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Olga O Krasnovskaya
- National University of Science and Technology (MISIS), Moscow 119049, Russia
- Chemistry Department, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Roman A Akasov
- Federal Scientific Research Center "Crystallography and Photonics" of the Russian Academy of Sciences, Moscow 119333, Russia
- Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | | | - Dmitry A Khochenkov
- N.N. Blokhin National Medical Research Center of Oncology, Moscow 115478, Russia
- Togliatti State University, Togliatti 445020, Russia
| | - Tamara M Iakimova
- Chemistry Department, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Natalia L Klyachko
- Chemistry Department, Lomonosov Moscow State University, Moscow 119991, Russia
| | | | | | - Kirill D Chaprov
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences, Chernogolovka 142432, Russia
| | - Alexander A Makarov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Vladimir A Mitkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Yasufumi Takahashi
- Department of Electronics, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan
| | | | - Yuri E Korchev
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan
- Department of Medicine, Imperial College London, London W120NN, U.K
| | - Alexander S Erofeev
- National University of Science and Technology (MISIS), Moscow 119049, Russia
- Chemistry Department, Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
2
|
Wang Y, Liu R, Ma Y, Shen X, Wang D. Electrodeposition of Metal Nanoparticles inside Carbon Nanopipettes for Sensing Applications. Anal Chem 2022; 94:16987-16991. [PMID: 36449549 DOI: 10.1021/acs.analchem.2c04449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Conductive nanopipettes offer promising confined spaces to enable advanced electrochemical sensing applications in small spaces. Herein, a series of metal-decorated carbon nanopipettes (CNPs) were developed, in which Au, Ag, and Pt are modified at the inner walls of CNPs by a simple electrodeposition method. The fabricated tips show good sensing performances for a variety of important analytes, such as glucose, hydrogen peroxide, and chloride and hydrogen ions in biological and catalytic systems. This simple and effective approach can be further extended to prepare other functionalized nanopipette electrodes toward more versatile and powerful measurements in electrochemical sensing and imaging applications.
Collapse
Affiliation(s)
- Yuhuan Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing100049, P. R. China
| | - Rujia Liu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing100049, P. R. China
| | - Yingfei Ma
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing100049, P. R. China
| | - Xiaoyue Shen
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing100049, P. R. China
| | - Dengchao Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing100049, P. R. China
| |
Collapse
|
3
|
Tong Y, Wang L, Song J, Zhang M, Qi H, Ding S, Qi H. Self-Terminated Electroless Deposition of Surfactant-Free and Monodispersed Pt Nanoparticles on Carbon Fiber Microelectrodes for Sensitive Detection of H 2O 2 Released from Living Cells. Anal Chem 2021; 93:16683-16689. [PMID: 34860503 DOI: 10.1021/acs.analchem.1c04299] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We report a self-terminated electroless deposition method to prepare surfactant-free and monodispersed Pt nanoparticle (NP)-modified carbon fiber microelectrodes (Pt NP/CFEs) for electrochemical detection of hydrogen peroxide (H2O2) released from living cells. The surfactant-free and monodispersed Pt NPs with a uniform size of 65 nm are spontaneously deposited on a CFE surface by immersing an exposed carbon fiber (CF) of CFE in the PtCl42- solution, in which an exposed CF can be used as the reducing agent and stabilizer. A self-terminated electroless deposition method is demonstrated, in which the density and size of Pt NPs on a CFE surface do not increase when the reaction time increases from 20 to 60 min. The self-terminated electroless deposition process not only can effectively avoid any manual electrode modification and thus largely minimize person-to-person and electrode-to-electrode deviations but also can avoid the use of any extra reductant or surfactant in the fabrication process. Therefore, Pt NPs/CFEs, with good reproducibility and sensitivity, not only exhibit high electrocatalytic activity toward the oxidation of H2O2 but also maintain the spatial resolution of CFEs. Moreover, Pt NPs/CFEs can detect H2O2 with a wide linear range of 0.5-80 μM and a low detection limit of 0.17 μM and then can be successfully applied in the monitoring of H2O2 released from RAW 264.7 cells. The self-terminated electroless deposition method can also be extended to selectively prepare other metal NP-modified CFEs, such as Au NPs/CFEs or Ag NPs/CFEs, by choosing the metal ions with higher reduction potential as precursors. This work provides a simple, straightforward, and general method for the preparation of small, surfactant-free, and monodispersed metal NP-modified CFEs with high sensitivity, reproducibility, and spatial resolution.
Collapse
Affiliation(s)
- Yuxi Tong
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Lifen Wang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| | - Jiajia Song
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| | - Mengyue Zhang
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Hetong Qi
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Shujiang Ding
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Honglan Qi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| |
Collapse
|