1
|
Li HY, Kong XJ, Han SD, Pang J, He T, Wang GM, Bu XH. Metalation of metal-organic frameworks: fundamentals and applications. Chem Soc Rev 2024; 53:5626-5676. [PMID: 38655667 DOI: 10.1039/d3cs00873h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Metalation of metal-organic frameworks (MOFs) has been developed as a prominent strategy for materials functionalization for pore chemistry modulation and property optimization. By introducing exotic metal ions/complexes/nanoparticles onto/into the parent framework, many metallized MOFs have exhibited significantly improved performance in a wide range of applications. In this review, we focus on the research progress in the metalation of metal-organic frameworks during the last five years, spanning the design principles, synthetic strategies, and potential applications. Based on the crystal engineering principles, a minor change in the MOF composition through metalation would lead to leveraged variation of properties. This review starts from the general strategies established for the incorporation of metal species within MOFs, followed by the design principles to graft the desired functionality while maintaining the porosity of frameworks. Facile metalation has contributed a great number of bespoke materials with excellent performance, and we summarize their applications in gas adsorption and separation, heterogeneous catalysis, detection and sensing, and energy storage and conversion. The underlying mechanisms are also investigated by state-of-the-art techniques and analyzed for gaining insight into the structure-property relationships, which would in turn facilitate the further development of design principles. Finally, the current challenges and opportunities in MOF metalation have been discussed, and the promising future directions for customizing the next-generation advanced materials have been outlined as well.
Collapse
Affiliation(s)
- Hai-Yu Li
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong 266071, China.
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Centre, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China.
| | - Xiang-Jing Kong
- Department of Chemical Science, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Song-De Han
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong 266071, China.
| | - Jiandong Pang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Centre, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China.
| | - Tao He
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong 266071, China.
- Department of Chemical Science, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Guo-Ming Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong 266071, China.
| | - Xian-He Bu
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Centre, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China.
| |
Collapse
|
2
|
Yang Z, Guo J, Wang L, Zhang J, Ding L, Liu H, Yu X. Nanozyme-Enhanced Electrochemical Biosensors: Mechanisms and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307815. [PMID: 37985947 DOI: 10.1002/smll.202307815] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/22/2023] [Indexed: 11/22/2023]
Abstract
Nanozymes, as innovative materials, have demonstrated remarkable potential in the field of electrochemical biosensors. This article provides an overview of the mechanisms and extensive practical applications of nanozymes in electrochemical biosensors. First, the definition and characteristics of nanozymes are introduced, emphasizing their significant role in constructing efficient sensors. Subsequently, several common categories of nanozyme materials are delved into, including metal-based, carbon-based, metal-organic framework, and layered double hydroxide nanostructures, discussing their applications in electrochemical biosensors. Regarding their mechanisms, two key roles of nanozymes are particularly focused in electrochemical biosensors: selective enhancement and signal amplification, which crucially support the enhancement of sensor performance. In terms of practical applications, the widespread use of nanozyme-based electrochemical biosensors are showcased in various domains. From detecting biomolecules, pollutants, nucleic acids, proteins, to cells, providing robust means for high-sensitivity detection. Furthermore, insights into the future development of nanozyme-based electrochemical biosensors is provided, encompassing improvements and optimizations of nanozyme materials, innovative sensor design and integration, and the expansion of application fields through interdisciplinary collaboration. In conclusion, this article systematically presents the mechanisms and applications of nanozymes in electrochemical biosensors, offering valuable references and prospects for research and development in this field.
Collapse
Affiliation(s)
- Zhongwei Yang
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Jiawei Guo
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Longwei Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, University of Chinese Academy of Science, Beijing, 100190, P. R. China
| | - Jian Zhang
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, Göteborg, 41296, Sweden
| | - Longhua Ding
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Hong Liu
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Xin Yu
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| |
Collapse
|
3
|
Tian J, Zhu Q, Huang X, Li Y. A new sandwich-type electrochemiluminescence sensor based on HPSNs-NH2@Au NPs and AuPdPt NPs for determination of α(2,3)-sial-Gs. Mikrochim Acta 2023; 190:420. [PMID: 37770767 DOI: 10.1007/s00604-023-06000-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/13/2023] [Indexed: 09/30/2023]
Abstract
A novel sandwich-type "on-off" electrochemiluminescence (ECL) biosensor for the determination of α(2,3)-sial-Gs was designed. Specifically, amino-functionalized porous silica nanoparticles (HPSNs-NH2) were first prepared and then decorated with gold nanoparticles (Au NPs) to form HPSNs-NH2@Au NP nanocomposite, which exhibited a strong ability to enhance ECL intensity with K2S2O8 as co-reactant (signal-on) and could immobilize the target-specific binding molecules of maackia amurensis lectin (MAL). Additionally, AuPdPt trimetallic nanoparticles were prepared to serve as a quenched ECL signal indicator (signal-off) with the ability of capturing the target non-specific binding molecules of 3-aminophenylboronic acid (APBA) to form a signal label. The sandwich-type ECL biosensor was constructed based on the structure of MAL-α(2,3)-sial-Gs-APBA and achieved a determination toward α(2,3)-sial-Gs with a wide linear range from 1 fg mL-1 to 10 ng mL-1 and a low detection limit of 0.5 fg mL-1. Furthermore, the proposed ECL biosensor showed satisfactory selectivity, stability, and reproducibility for α(2,3)-sial-Gs determination.
Collapse
Affiliation(s)
- Jiangman Tian
- Department of Pharmacy, Yongchuan Hospital of Chongqing Medical University, Chongqing, 402160, PR China
| | - Qihao Zhu
- Department of Pharmacy, Yongchuan Hospital of Traditional Chinese Medicine, Chongqing, 402160, PR China
| | - Xiaojing Huang
- Central Laboratory, Yongchuan Hospital of Chongqing Medical University, Chongqing, 402160, PR China
| | - Yuan Li
- Central Laboratory, Yongchuan Hospital of Chongqing Medical University, Chongqing, 402160, PR China.
| |
Collapse
|
4
|
Redox-labelled detection probe enabled immunoassay for simultaneous detection of multiple cancer biomarkers. Mikrochim Acta 2023; 190:86. [PMID: 36757491 DOI: 10.1007/s00604-023-05663-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/15/2023] [Indexed: 02/10/2023]
Abstract
Some of the cancer biomarkers often lack specificity and sensitivity; thus, simultaneous detection of multiple biomarkers can make the diagnosis more accurate. Also, simple sensing system without utilization of extra reagents like mediator or substrate during detection event is desirable for point-of-care testing. To address this, mediator and substrate-free amperometric biosensor for simultaneous detection of cancer biomarkers carcinoembryonic antigen (CEA) and alpha-fetoprotein (AFP) have been demonstrated by designing two different redox-labelled detection probes. Colloidal nanoparticles of polyaniline-pectin conjugated with AFP antibody along with ferrocene and silver nanoparticles conjugated with CEA antibody along with anthraquinone were used as redox probes to bind with AFP and CEA during the detection event. Sensor constructed using carboxylic acid tethered polyaniline as immobilization matrix displayed 5 times wider linear range than conventional polyaniline for AFP and CEA detection by sandwich electrochemical assay. The detection limit was 30 pg mL-1 for AFP and 80 pg mL-1 for CEA. The biosensor displayed appropriate sensitivity, good specificity, and negligible cross-reactivity between the two targets. The proposed sensor was used to determine APF and CEA in human blood serum. The strategy demonstrated can be further extended for detection of panel of cancer biomarkers by designing appropriate redox probes.
Collapse
|
5
|
Echeverri D, Orozco J. Glycan-Based Electrochemical Biosensors: Promising Tools for the Detection of Infectious Diseases and Cancer Biomarkers. Molecules 2022; 27:8533. [PMID: 36500624 PMCID: PMC9736010 DOI: 10.3390/molecules27238533] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/20/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
Glycan-based electrochemical biosensors are emerging as analytical tools for determining multiple molecular targets relevant to diagnosing infectious diseases and detecting cancer biomarkers. These biosensors allow for the detection of target analytes at ultra-low concentrations, which is mandatory for early disease diagnosis. Nanostructure-decorated platforms have been demonstrated to enhance the analytical performance of electrochemical biosensors. In addition, glycans anchored to electrode platforms as bioreceptors exhibit high specificity toward biomarker detection. Both attributes offer a synergy that allows ultrasensitive detection of molecular targets of clinical interest. In this context, we review recent advances in electrochemical glycobiosensors for detecting infectious diseases and cancer biomarkers focused on colorectal cancer. We also describe general aspects of structural glycobiology, definitions, and classification of electrochemical biosensors and discuss relevant works on electrochemical glycobiosensors in the last ten years. Finally, we summarize the advances in electrochemical glycobiosensors and comment on some challenges and limitations needed to advance toward real clinical applications of these devices.
Collapse
Affiliation(s)
| | - Jahir Orozco
- Max Planck Tandem Group in Nanobioengineering, Institute of Chemistry, Faculty of Natural and Exact Sciences, University of Antioquia, Complejo Ruta N, Calle 67 N°52–20, Medellin 050010, Colombia
| |
Collapse
|
6
|
A label-free electrochemical immunosensor based on AuNPs/GO-PEI-Ag-Nf for olaquindox detection in feedstuffs. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Xu J, Ma J, Peng Y, Cao S, Zhang S, Pang H. Applications of metal nanoparticles/metal-organic frameworks composites in sensing field. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.05.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Wang X, Wang Y, Ying Y. Recent advances in sensing applications of metal nanoparticle/metal–organic framework composites. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116395] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
9
|
Rong S, Zou L, Zhu Y, Zhang Z, Liu H, Zhang Y, Zhang H, Gao H, Guan H, Dong J, Guo Y, Liu F, Li X, Pan H, Chang D. 2D/3D material amplification strategy for disposable label-free electrochemical immunosensor based on rGO-TEPA@Cu-MOFs@SiO2@AgNPs composites for NMP22 detection. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
10
|
You X, Zhang G, Chen Y, Liu D, Ma D, Zhou J, Liu Y, Liu H, Qi Y, Liang C, Ding P, Zhu X, Zhang C, Wang A. A novel electrochemical immunosensor for the sensitive detection of tiamulin based on staphylococcal protein A and silver nanoparticle-graphene oxide nanocomposites. Bioelectrochemistry 2021; 141:107877. [PMID: 34171508 DOI: 10.1016/j.bioelechem.2021.107877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/29/2021] [Accepted: 06/13/2021] [Indexed: 12/17/2022]
Abstract
Tiamulin (TML) is a pleuromutilin antibiotic and mainly used to treat pulmonary and gastrointestinal infections. However, excessive use of TML can bring health threats to consumers. In this work, a label-free electrochemical immunosensor was proposed for sensitive detection of TML in pork and pork liver. Silver nanoparticles (AgNPs) were synthesized in situ on graphene oxide (GO), in which GO acted as a carrier for loading more AgNPs and AgNPs exhibited both strong conductivity and good redox property. In addition, staphylococcal protein A (SPA) was applied to oriented immobilization of fragment crystallizable (Fc) region of the TML monoclonal antibody. Under the optimal condition, the developed electrochemical immunosensor exhibited a good linear response with a concentration of TML ranging from 0.05 ng mL-1 to 100 ng mL-1 and the limit of detection (LOD) was 0.04 ng mL-1. Furthermore, the designed immunosensor was applied to detect TML in real samples with a good accuracy. Therefore, the label-free electrochemical immunosensor could be used as a potential method to detect TML and other antibiotic residues in animal derived foods.
Collapse
Affiliation(s)
- Xiaojuan You
- School of Life Sciences, Zhengzhou University, Zhengzhou, China; Henan Zhongze Biological Engineering Co. LTD, Zhengzhou, China
| | - Gaiping Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Yumei Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, China; Henan Zhongze Biological Engineering Co. LTD, Zhengzhou, China
| | - Dan Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Dongdong Ma
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Jingming Zhou
- School of Life Sciences, Zhengzhou University, Zhengzhou, China; Henan Zhongze Biological Engineering Co. LTD, Zhengzhou, China
| | - Yankai Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Hongliang Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Yanhua Qi
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Chao Liang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Peiyang Ding
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Xifang Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Chenyang Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Aiping Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China; Henan Zhongze Biological Engineering Co. LTD, Zhengzhou, China.
| |
Collapse
|