1
|
Shi SJ, Ji MQ, Huang RF, Fan ZY. Highly sensitive time-resolved fluorescent microspheres lateral flow immunoassay for the quantitative detection of triadimefon and its metabolite residues in fruits and vegetables. Mikrochim Acta 2024; 191:670. [PMID: 39402286 DOI: 10.1007/s00604-024-06755-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 10/03/2024] [Indexed: 11/10/2024]
Abstract
A general one-step lateral flow immunochromatographic assay (LFIA) for the quantitative detection of triadimefon (TDF) and triadimenol (TDN) in fruit and vegetable samples was developed using time-resolved fluorescence microspheres (TRFM) as labels. A specific anti-triadimefon monoclonal antibody (mAb) was conjugated with TRFM to fabricate LFIA test strips. A time-resolved fluorometer as an LFIA reader was applied to obtain quantitative results and assess risk ranges for the LFIA test strips. Under the optimized experimental conditions, the limits of detection (LODs) in buffer/cucumbers/tomatoes/oranges were 0.046 ng/mL, 0.135 µg/kg, 1.047 µg/kg, and 5.811 µg/kg, respectively, which are ca. 1000 times lower than that of colloidal gold-labeled strips. The recovery in cucumber/tomato/orange samples was 109.4-116.7%, 87.7-110.9%, and 88.0-111.9%, respectively, indicating that the test strips had good reliability. Coupled with the easily customizable pretreatment procedures for various samples, the LFIA results were obtained within 18 min without the need for professional personnel or complicated equipment. TRFM-LFIA for TDF and TDN also shows remarkable specificity and precision. The test strips were also low-cost, portable, and convenient to use. These results indicate the test strips could be utilized as a novel strategy for on-site detection of TDF and TDN, which has the potential to expand and detect other pesticide or insecticide residues in food.
Collapse
Affiliation(s)
- San-Jun Shi
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, China
| | - Mei-Qi Ji
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, China
| | - Rong-Fu Huang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, China.
| | - Zi-Yan Fan
- China National Tobacco Quality Supervision and Test Center , Zhengzhou, 450001, China.
| |
Collapse
|
2
|
Li J, Sun Y, Man Y, Zhang T, Feng X, Yang Z, Zhao H, Zhao R, He L. A Novel and Highly Efficient Microextraction Method for the Determination of Aflatoxin Precursor Averantin in Fatty Grain Samples. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1330-1338. [PMID: 38173280 DOI: 10.1021/acs.jafc.3c06572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Averantin (AVN) is an important aflatoxin biosynthetic precursor and has been listed in the screening range of mycotoxins. Herein, a novel ionic liquid-based one-, two-, and three-phase transition microextraction (IL-OTTPTME) method was combined with high-performance liquid chromatography for the extraction and determination of AVN in fatty grain samples. The formation of a homogeneous solution and three-phase system during the IL-OTTPTME process allowed both efficient extraction and coextracted lipid cleanup. Density functional theory calculations and distribution coefficient determination results demonstrated that AVN extraction by IL mainly occurred through hydrogen-bond and π-π interactions. Under optimized conditions, the LOD and LOQ of the proposed method were 0.5 and 1.5 ng/g, respectively. Finally, the method was used to determine AVN in several grains with different fat contents, achieving satisfactory relative recoveries (86.0-107.8%) and RSDs (1.2-6.2%, n = 3).
Collapse
Affiliation(s)
- Jingna Li
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yaming Sun
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yong Man
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Tao Zhang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xiaxing Feng
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Zhen Yang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Hailiang Zhao
- School of Environmental Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Renyong Zhao
- School of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Lijun He
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
3
|
He G, Hou X, Han M, Qiu S, Yu X, Qin S, Wang F, Li Y. Determination of multiclass contaminants in chilli powder based on magnetic multiwalled carbon nanotubes and UPLC-QTOF/MS. Food Res Int 2023; 173:113263. [PMID: 37803576 DOI: 10.1016/j.foodres.2023.113263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/06/2023] [Accepted: 07/09/2023] [Indexed: 10/08/2023]
Abstract
A multiclass analysis approach was developed using magnetic multiwalled carbon nanotubes sorbents and ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF/MS) for the rapid screening and simultaneous determination of 216 contaminants including 15 mycotoxins, 9 synthetic colourants, and 192 pesticides in chilli powder. The sample preparation process was optimized. The optimal preparation procedure utilized NaCl and NaAc as the salting-out agents, and Fe3O4-MWCNTs as the sorbents, resulting in reduced chemical consumption, improved cleaning performance, and facilitated high-throughput analysis. The proposed method was validated, and satisfactory parameters were obtained. Approximately 85.6% of the target analytes exhibited a weak matrix effect, with the matrix effects falling within the range of 0.8 ∼ 1.2. The method demonstrated acceptable recoveries of the analytes, falling within the range of 62.14%∼119.76% at three fortified levels with relative standard deviations (RSDs) of less than 20%. Additionally, the method's limit of quantification (LOQ) ranged from ranged from 0.50 μg·kg-1 to 49.56 μg·kg-1. The method was further applied for analysis of 27 chilli powder samples, demonstrating its potential for screening and quantification of multiclass contaminants for spices.
Collapse
Affiliation(s)
- Guangyun He
- Institute of Quality Standard and Testing Technology for Agro-Products, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; Laboratory of Quality and Safety Risk Assessment for Agro-products (Chengdu Ministry of Agriculture, Chengdu 610066, China
| | - Xue Hou
- Institute of Quality Standard and Testing Technology for Agro-Products, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; Laboratory of Quality and Safety Risk Assessment for Agro-products (Chengdu Ministry of Agriculture, Chengdu 610066, China.
| | - Mei Han
- Institute of Quality Standard and Testing Technology for Agro-Products, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; Laboratory of Quality and Safety Risk Assessment for Agro-products (Chengdu Ministry of Agriculture, Chengdu 610066, China
| | - Shiting Qiu
- Institute of Quality Standard and Testing Technology for Agro-Products, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; Laboratory of Quality and Safety Risk Assessment for Agro-products (Chengdu Ministry of Agriculture, Chengdu 610066, China
| | - Xi Yu
- Faculty of Medicine, Macau University of Science and Technology, 999078, Macau
| | - Shudi Qin
- Institute of Quality Standard and Testing Technology for Agro-Products, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; Laboratory of Quality and Safety Risk Assessment for Agro-products (Chengdu Ministry of Agriculture, Chengdu 610066, China
| | - Fengyi Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; Laboratory of Quality and Safety Risk Assessment for Agro-products (Chengdu Ministry of Agriculture, Chengdu 610066, China
| | - Ying Li
- Institute of Quality Standard and Testing Technology for Agro-Products, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; Laboratory of Quality and Safety Risk Assessment for Agro-products (Chengdu Ministry of Agriculture, Chengdu 610066, China
| |
Collapse
|
4
|
Prakasham K, Gurrani S, Shiea J, Wu MT, Wu CF, Lin YC, Tsai B, Huang PC, Andaluri G, Ponnusamy VK. Ultra-sensitive determination of Ochratoxin A in coffee and tea samples using a novel semi-automated in-syringe based coagulant-assisted fast mycotoxin extraction (FaMEx) technique coupled with UHPLC-MS/MS. Food Chem 2023; 417:135951. [PMID: 36934712 DOI: 10.1016/j.foodchem.2023.135951] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/04/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023]
Abstract
In this study, we demonstrated a novel semi-automated in-syringe-based coagulant-assisted liquid-liquid microextraction (IS-CGA-LLME) as fast mycotoxin extraction (FaMEx) technique coupled with ultra-high-performance liquid chromatography connected with a tandem-mass spectrometer (UHPLC-MS/MS) for the quantification of mycotoxin (Ochratoxin A, OT-A) in coffee and tea samples. IS-CGA-LLME is a three-step extraction process that includes extraction of OT-A from sample matrix using low-volume solvent extraction, then the extractant was cleaned-up using a coagulation process, and finally, the decolorized/matrix removed sample solution was processed for LLME for target analyte's pre-concentration. The final extractant was analyzed using UHPLC-MS/MS for OT-A quantification. Under the optimized experimental conditions, highly sensitive detection and quantification limits were obtained at 0.001 and 0.003 ng g-1 for OT-A with excellent extraction recovery (93-111%) and precision <10%. These results proved that the developed method is a simple, highly sensitive, semi-automated, low-matrix effect and efficient procedure for the determination of mycotoxins in food samples.
Collapse
Affiliation(s)
- Karthikeyan Prakasham
- PhD Program in Environmental and Occupational Medicine (College of Medicine), & Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan
| | - Swapnil Gurrani
- PhD Program in Environmental and Occupational Medicine (College of Medicine), & Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan
| | - Jentaie Shiea
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan; Department of Chemistry, National Sun Yat-Sen University, Kaohsiung City 804, Taiwan
| | - Ming-Tsang Wu
- PhD Program in Environmental and Occupational Medicine (College of Medicine), & Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan; Department of Public Health, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan
| | - Chia-Fang Wu
- International Master Program of Translational Medicine, National United University, Miaoli, Taiwan
| | - Yu-Chia Lin
- Research and Development Division, Great Engineering Technology (GETECH) Corporation Ltd., No. 392, Yucheng Rd., Zuoying District, Kaohsiung City 813 Taiwan
| | - Bongee Tsai
- Research and Development Division, Great Engineering Technology (GETECH) Corporation Ltd., No. 392, Yucheng Rd., Zuoying District, Kaohsiung City 813 Taiwan
| | - Po-Chin Huang
- National Institute of Environmental Health Sciences, National Health Research Institutes (NHRI), Miaoli County 35053, Taiwan
| | - Gangadhar Andaluri
- Civil and Environmental Engineering Department, College of Engineering, Temple University, Philadelphia, United States
| | - Vinoth Kumar Ponnusamy
- PhD Program in Environmental and Occupational Medicine (College of Medicine), & Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan; Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan; Department of Chemistry, National Sun Yat-Sen University, Kaohsiung City 804, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital (KMUH), Kaohsiung City 807, Taiwan.
| |
Collapse
|
5
|
Chen M, Chen L, Pan L, Liu R, Guo J, Fan M, Wang X, Liu H, Liu S. Simultaneous analysis of multiple pesticide residues in tobacco by magnetic carbon composite-based QuEChERS method and liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. J Chromatogr A 2022; 1668:462913. [PMID: 35247721 DOI: 10.1016/j.chroma.2022.462913] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/09/2022] [Accepted: 02/16/2022] [Indexed: 11/28/2022]
Abstract
Magnetic carbon composite (Fe3O4@C) was synthesized and applied as a reversed-dispersive solid-phase extraction sorbent for the simultaneous analysis of 40 pesticide residues in tobacco by ultrahigh-performance liquid chromatography coupled to quadrupole time-of-fight mass spectrometry. Compared to the traditional QuEChERS method, the optimized Fe3O4@C simplified clean-up process and exhibited better clean-up capability than conventional sorbents. The pesticides were qualitatively identified by accurate mass of protonated molecules, fragment ions, isotopic peak clusters, and retention time, and quantitatively determined by matrix-matched external standard method. Good linearity of the proposed method was obtained with R value greater than 0.997 for all target pesticides at concentration levels of 2-200 µg/L. The limit of detection ranged from 0.14 to 2.67 µg/kg. The recoveries and relative standard deviations of all target pesticides at three spiked concentrations of 20, 50 and 200 µg/kg were in the ranges of 80.8%-113.3% and 0.6%-16.3%, respectively. Compared with the reported methods for the analysis of multiple pesticide residues in tobacco, the proposed method has the advantages of simple to operate, high clean-up ability and less time-consuming in clean-up process.
Collapse
Affiliation(s)
- Mantang Chen
- Zhengzhou Tobacco Research Institute of CNTC, Fengyang Street #2, Zhengzhou, Henan 450001, PR China
| | - Li Chen
- Zhengzhou Tobacco Research Institute of CNTC, Fengyang Street #2, Zhengzhou, Henan 450001, PR China
| | - Lining Pan
- Zhengzhou Tobacco Research Institute of CNTC, Fengyang Street #2, Zhengzhou, Henan 450001, PR China
| | - Ruihong Liu
- Zhengzhou Tobacco Research Institute of CNTC, Fengyang Street #2, Zhengzhou, Henan 450001, PR China
| | - Junwei Guo
- Zhengzhou Tobacco Research Institute of CNTC, Fengyang Street #2, Zhengzhou, Henan 450001, PR China
| | - Meijuan Fan
- Zhengzhou Tobacco Research Institute of CNTC, Fengyang Street #2, Zhengzhou, Henan 450001, PR China
| | - Xiaoyu Wang
- Zhengzhou Tobacco Research Institute of CNTC, Fengyang Street #2, Zhengzhou, Henan 450001, PR China
| | - Huimin Liu
- Zhengzhou Tobacco Research Institute of CNTC, Fengyang Street #2, Zhengzhou, Henan 450001, PR China.
| | - Shaofeng Liu
- Zhengzhou Tobacco Research Institute of CNTC, Fengyang Street #2, Zhengzhou, Henan 450001, PR China.
| |
Collapse
|
6
|
Tang Z, Liu F, Fang F, Ding X, Han Q, Tan Y, Peng C. Solid-phase extraction techniques based on nanomaterials for mycotoxin analysis: An overview for food and agricultural products. J Sep Sci 2022; 45:2273-2300. [PMID: 35389521 DOI: 10.1002/jssc.202200067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 11/06/2022]
Abstract
Mycotoxin contamination is a globally concerned problem for food and agricultural products since it may directly or indirectly induce severe threats to human health. Sensitive and selective screening is an efficient strategy to prevent or reduce human and animal exposure to mycotoxins. However, enormous challenges exist in the determination of mycotoxins, arising from complex sample matrices, trace-level analytes, and the co-occurrence of diverse mycotoxins. Appropriate sample preparation is essential to isolate, purify, and enrich mycotoxins from complicated matrices, thus decreasing sample matrix effects and lowering detection limits. With the cross-disciplinary development, new solid-phase extraction strategies have been exploited and integrated with nanotechnology to meet the challenges of mycotoxin analysis. This review summarizes the advance and progress of solid-phase extraction techniques as the methodological solutions for mycotoxin analysis. Emphases are paid on nanomaterials fabricated as trapping media of SPE techniques, including carbonaceous nanoparticles, metal/metal oxide-based nanoparticles, and nanoporous materials. Advantages and limitations are discussed, along with the potential prospects. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Zhentao Tang
- Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fei Liu
- Technology Center of Chengdu Customs District P. R. China, Chengdu, China
| | - Fang Fang
- Urumqi Customs District P. R. China, Urumqi, China
| | - Xuelu Ding
- School of Pharmacy, Qingdao University, Qingdao, China
| | - Qingrong Han
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuzhu Tan
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
7
|
Bo C, Li Y, Liu B, Jia Z, Dai X, Gong B. Grafting copolymer brushes on polyhedral oligomeric silsesquioxanes silsesquioxane-decorated silica stationary phase for hydrophilic interaction liquid chromatography. J Chromatogr A 2021; 1659:462627. [PMID: 34700183 DOI: 10.1016/j.chroma.2021.462627] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/13/2021] [Accepted: 10/13/2021] [Indexed: 11/18/2022]
Abstract
A strategy is proposed to develop a stationary phase for hydrophilic interaction liquid chromatography (HILIC) using the synergistic effect of polyhedral oligomeric silsesquioxane (POSS) and copolymer brushes. Octahedral octa-aminopropylsisesquioxane (8NH2-POSS) was first bound to silica gel, followed by bromination to form a cubic initiator. Then, using acrylamide (AM) and dihydroxypropyl methacrylate (DPMA) as mixed monomers, surface initiated-atom transfer radical polymerization was conducted to prepare a stationary phase comprising cubic copolymer brushes with amide and diol groups. The characterization of the stationary phase confirmed the successful synthesis of Sil-NH2-POSS/Poly(AM-co-DPMA). The chromatographic properties were investigated using nucleosides, organic acids and β-agonists to find that our designed column has superior hydrophilic property, better separation performance compared with classical HILIC columns consisting of diol- or amino-modified silica. The systematic investigation of the retention mechanism and separation selectivity using various types of polar compounds revealed that Sil-NH2-POSS/Poly(AM-co-DPMA) follows a mixed-mode retention composed of HILIC and electrostatic interactions. Besides, it exhibits good column efficiency and stability. The role of 8NH2-POSS in the separation was evaluated by comparing the performance of Sil-NH2-POSS/Poly(AM-co-DPMA) and poly(AM-co-DPMA)-modified silica without 8NH2-POSS. In conclusion, our designed based on POSS and hydrophilic copolymer brushes can contribute to the development of HILIC separation materials with enhanced performance.
Collapse
Affiliation(s)
- Chunmiao Bo
- School of Chemistry and Chemical Engineering, North Minzu University, No. 204 Wenchang North Street, Xixia District, Yinchuan 750021, China; Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan, 750021,China; Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, China.
| | - Yan Li
- School of Chemistry and Chemical Engineering, North Minzu University, No. 204 Wenchang North Street, Xixia District, Yinchuan 750021, China; Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan, 750021,China; Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, China
| | - Bin Liu
- School of Chemistry and Chemical Engineering, North Minzu University, No. 204 Wenchang North Street, Xixia District, Yinchuan 750021, China; Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan, 750021,China; Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, China
| | - Zhuanhong Jia
- College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Xiaojun Dai
- College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Bolin Gong
- School of Chemistry and Chemical Engineering, North Minzu University, No. 204 Wenchang North Street, Xixia District, Yinchuan 750021, China; Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan, 750021,China; Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, China
| |
Collapse
|
8
|
Targuma S, Njobeh PB, Ndungu PG. Current Applications of Magnetic Nanomaterials for Extraction of Mycotoxins, Pesticides, and Pharmaceuticals in Food Commodities. Molecules 2021; 26:4284. [PMID: 34299560 PMCID: PMC8303358 DOI: 10.3390/molecules26144284] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/25/2022] Open
Abstract
Environmental pollutants, such as mycotoxins, pesticides, and pharmaceuticals, are a group of contaminates that occur naturally, while others are produced from anthropogenic sources. With increased research on the adverse ecological and human health effects of these pollutants, there is an increasing need to regularly monitor their levels in food and the environment in order to ensure food safety and public health. The application of magnetic nanomaterials in the analyses of these pollutants could be promising and offers numerous advantages relative to conventional techniques. Due to their ability for the selective adsorption, and ease of separation as a result of magnetic susceptibility, surface modification, stability, cost-effectiveness, availability, and biodegradability, these unique magnetic nanomaterials exhibit great achievement in the improvement of the extraction of different analytes in food. On the other hand, conventional methods involve longer extraction procedures and utilize large quantities of environmentally unfriendly organic solvents. This review centers its attention on current applications of magnetic nanomaterials and their modifications in the extraction of pollutants in food commodities.
Collapse
Affiliation(s)
- Sarem Targuma
- Energy, Sensors and Multifunctional Nanomaterials Research Group, Department of Chemical Sciences, Doornfontein Campus, University of Johannesburg, Johannesburg 2028, South Africa;
| | - Patrick B. Njobeh
- Department of Biotechnology and Food Technology, Doornfontein Campus, University of Johannesburg, Johannesburg 2028, South Africa;
| | - Patrick G. Ndungu
- Energy, Sensors and Multifunctional Nanomaterials Research Group, Department of Chemical Sciences, Doornfontein Campus, University of Johannesburg, Johannesburg 2028, South Africa;
| |
Collapse
|