1
|
Ávila Oliveira BD, Gomes RS, de Carvalho AM, Lima EMF, Pinto UM, da Cunha LR. Revolutionizing food safety with electrochemical biosensors for rapid and portable pathogen detection. Braz J Microbiol 2024; 55:2511-2525. [PMID: 38922532 PMCID: PMC11405362 DOI: 10.1007/s42770-024-01427-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
Foodborne diseases remain a worldwide concern, despite the advances made in sanitation, pathogen surveillance and food safety management systems. The methods routinely applied for detecting pathogens in foods are time consuming, labor intensive and usually require trained and qualified individuals. The objective of this review was to highlight the use of biosensors, with a focus on the electrochemical devices, as promising alternatives for detecting foodborne pathogens. These biosensors present high speed for obtaining results, with the possibility of evaluating foods in real time, at low cost, ease of use, in addition to being compact and portable. These aspects are considered advantageous and suitable for use in food safety management systems. This work also shows some limitations for the application of biosensors, and we present perspectives with the development and use of nanomaterials.
Collapse
Affiliation(s)
- Brígida D' Ávila Oliveira
- Health and Nutrition Graduate Program, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Raíssa Soares Gomes
- Health and Nutrition Graduate Program, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Alice Mendes de Carvalho
- Health and Nutrition Graduate Program, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Emília Maria França Lima
- Food Research Center (FoRC), Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Uelinton Manoel Pinto
- Food Research Center (FoRC), Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Luciana Rodrigues da Cunha
- Department of Foods, Health and Nutrition Graduate Program, Federal University of Ouro Preto, Federal University of Ouro Preto (UFOP), Ouro Preto, 35400-000, Minas Gerais, Brazil.
| |
Collapse
|
2
|
Wang J, Zheng Y, Huang H, Ma Y, Zhao X. An overview of signal amplification strategies and construction methods on phage-based biosensors. Food Res Int 2024; 191:114727. [PMID: 39059923 DOI: 10.1016/j.foodres.2024.114727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/12/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024]
Abstract
Phages are a class of viruses that specifically infect host bacteria. Compared to other recognition elements, phages offer several advantages such as high specificity, easy to obtain and good environmental tolerance, etc. These advantages underscore the potential of phages as recognition elements in the construction of biosensors. Therefore, the phage-based biosensors are currently garnering widespread attention for detecting pathogens in recent years. However, the test performance such as detection limit, sensitivity and stability of exicting phage-based biosensors require enhancement. In the design of sensors, the selection of various materials and construction methods significantly influences the test performance of the sensor, and employing appropriate signal amplification strategies and construction methods to devise biosensors based on different principles is an effective strategy to enhance sensor performance. The manuscript primarily focuses on the signal amplification strategies and construction methods employed in phage-based biosensors recent ten years, and summarizes the advantages and disadvantages of different signal amplification strategies and construction methods. Meanwhile, the manuscript discusses the relationship between sensor performance and various materials and construction methods, and reviews the application progress of phage-based electrochemical biosensors in the detection of foodborne bacteria. Furthermore, the manuscript points out the present limitations and the future research direction for the field of phage-based biosensors, so as to provide the reference for developing high-performance phage-based biosensors.
Collapse
Affiliation(s)
- Jiahao Wang
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| | - Yuqing Zheng
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| | - Hongkai Huang
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| | - Ya Ma
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| | - Xiaojuan Zhao
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| |
Collapse
|
3
|
Ding S, Chen X, Yu B, Liu Z. Electrochemical biosensors for clinical detection of bacterial pathogens: advances, applications, and challenges. Chem Commun (Camb) 2024; 60:9513-9525. [PMID: 39120607 DOI: 10.1039/d4cc02272f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Bacterial pathogens are responsible for a variety of human diseases, necessitating their prompt detection for effective diagnosis and treatment of infectious diseases. Over recent years, electrochemical methods have gained significant attention owing to their exceptional sensitivity and rapidity. This review outlines the current landscape of electrochemical biosensors employed in clinical diagnostics for the detection of bacterial pathogens. We categorize these biosensors into four types: amperometry, potentiometry, electrochemical impedance spectroscopy, and conductometry, targeting various bacterial components, including toxins, virulence factors, metabolic activity, and events related to bacterial adhesion and invasion. We discuss the merits and challenges associated with electrochemical methods, underscoring their rapid response, high sensitivity, and specificity, while acknowledging the necessity for skilled operators and potential interference from biological and environmental factors. Furthermore, we examine future prospects and potential applications of electrochemical biosensors in clinical diagnostics. While electrochemical biosensors offer a promising avenue for detecting bacterial pathogens, further research in optimizing the robustness and surmounting the challenges hindering their seamless integration into clinical practice is imperative.
Collapse
Affiliation(s)
- Shengyong Ding
- Research Center of Biomedical Sensing Engineering Technology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Pharmacy, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, People's Republic of China
| | - Xiaodi Chen
- Department of Clinical Laboratory, Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Bin Yu
- Research Center of Biomedical Sensing Engineering Technology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhiyuan Liu
- Research Center of Biomedical Sensing Engineering Technology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
- Neural Engineering Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China.
| |
Collapse
|
4
|
Deng T, Wu W, Zhou J, Zeng Q, Wang H, Deng C. An electrochemical biosensor for sensitive detection of live Salmonella in food via MXene amplified methylene blue signals and electrostatic immobilization of bacteriophages. Mikrochim Acta 2024; 191:550. [PMID: 39167218 DOI: 10.1007/s00604-024-06610-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/05/2024] [Indexed: 08/23/2024]
Abstract
A novel bacteriophage-targeted electrochemical biosensor designed for accurate and quantitative detection of live Salmonella in food samples is presented. The biosensor is simply constructed by electrostatic immobilizing bacteriophages on MXene-nanostructured electrodes. MXene, renowned for its high surface area, biocompatibility, and conductivity, serves as an ideal platform for bacteriophage immobilization. This allows for a high-density immobilization of bacteriophage particles, achieving approximately 71 pcs μm-2. Remarkably, the bacteriophages immobilized MXene nanostructured electrodes still maintain their viability and functionality, ensuring their effectiveness in pathogen detection. Therefore, the proposed biosensor exhibited enhanced sensitivity with a low limit of detection (LOD) of 5 CFU mL-1. Notably, the biosensor shows excellent specificity in the presence of other bacteria that commonly contaminate food and can distinguish live Salmonella from a mixed population. Furthermore, it is applicable in detecting live Salmonella in food samples, which highlights its potential in food safety monitoring. This biosensor offers simplicity, convenience, and suitability for resource-limited environments, making it a promising tool for on-site monitoring of foodborne pathogenic bacteria.
Collapse
Affiliation(s)
- Tingliu Deng
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Wuming Wu
- School of Electronic Science and Engineering, Hunan University of Information Technology, Changsha, 410151, China
| | - Jingjing Zhou
- Beijing Key Laboratory of Maternal-Fetal Medicine and Fetal Heart Disease & Echocardiography Department, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100069, China
| | - Qin Zeng
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Heye Wang
- Key Laboratory of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, 200436, China.
| | - Chunyan Deng
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China.
| |
Collapse
|
5
|
Parkhe VS, Tiwari AP. Gold nanoparticles-based biosensors: pioneering solutions for bacterial and viral pathogen detection-a comprehensive review. World J Microbiol Biotechnol 2024; 40:269. [PMID: 39009934 DOI: 10.1007/s11274-024-04072-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/03/2024] [Indexed: 07/17/2024]
Abstract
Gold Nanoparticles (AuNPs) have gained significant attention in biosensor development due to their unique physical, chemical, and optical properties. When incorporated into biosensors, AuNPs offer several advantages, including a high surface area-to-volume ratio, excellent biocompatibility, ease of functionalization, and tunable optical properties. These properties make them ideal for the detection of various biomolecules, including proteins, nucleic acids, and bacterial and viral biomarkers. Traditional methods for detecting bacteria and viruses, such as RT-PCR and ELISA, often suffer from complexities, time consumption, and labor intensiveness. Consequently, researchers are continuously exploring novel devices to address these limitations and effectively detect a diverse array of infectious pathogenic microorganisms. In light of these challenges, nanotechnology has been instrumental in refining the architecture and performance of biosensors. By leveraging advancements in nanomaterials and strategies of biosensor fabrication the sensitivity and specificity of biosensors can be enhanced, enabling more precise detection of pathogenic bacteria and viruses. This review explores the versatility of AuNPs in detecting a variety of biomolecules, including proteins, nucleic acids, and bacterial and viral biomarkers. Furthermore, it evaluates recent advancements in AuNPs-based biosensors for the detection of pathogens, utilizing techniques such as optical biosensors, lateral flow immunoassays, colorimetric immunosensors, electrochemical biosensors, and fluorescence nanobiosensors. Additionally, the study discusses the existing challenges in the field and proposes future directions to improve AuNPs-based biosensors, with a focus on enhancing sensitivity, selectivity, and their utility in clinical and diagnostic applications.
Collapse
Affiliation(s)
- Vishakha Suryakant Parkhe
- Department of Medical Biotechnology and Stem Cells and Regenerative Medicine, Centre for Interdisciplinary Research, D.Y. Patil Education Society, Deemed to be University, Kolhapur, Maharashtra, 416006, India
| | - Arpita Pandey Tiwari
- Department of Medical Biotechnology and Stem Cells and Regenerative Medicine, Centre for Interdisciplinary Research, D.Y. Patil Education Society, Deemed to be University, Kolhapur, Maharashtra, 416006, India.
| |
Collapse
|
6
|
Pan M, Zhao Y, Qiao J, Meng X. Electrochemical biosensors for pathogenic microorganisms detection based on recognition elements. Folia Microbiol (Praha) 2024; 69:283-304. [PMID: 38367165 DOI: 10.1007/s12223-024-01144-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/29/2024] [Indexed: 02/19/2024]
Abstract
The worldwide spread of pathogenic microorganisms poses a significant risk to human health. Electrochemical biosensors have emerged as dependable analytical tools for the point-of-care detection of pathogens and can effectively compensate for the limitations of conventional techniques. Real-time analysis, high throughput, portability, and rapidity make them pioneering tools for on-site detection of pathogens. Herein, this work comprehensively reviews the recent advances in electrochemical biosensors for pathogen detection, focusing on those based on the classification of recognition elements, and summarizes their principles, current challenges, and prospects. This review was conducted by a systematic search of PubMed and Web of Science databases to obtain relevant literature and construct a basic framework. A total of 171 publications were included after online screening and data extraction to obtain information of the research advances in electrochemical biosensors for pathogen detection. According to the findings, the research of electrochemical biosensors in pathogen detection has been increasing yearly in the past 3 years, which has a broad development prospect, but most of the biosensors have performance or economic limitations and are still in the primary stage. Therefore, significant research and funding are required to fuel the rapid development of electrochemical biosensors. The overview comprehensively evaluates the recent advances in different types of electrochemical biosensors utilized in pathogen detection, with a view to providing insights into future research directions in biosensors.
Collapse
Affiliation(s)
- Mengting Pan
- School of Medical Laboratory, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Yurui Zhao
- School of Medical Laboratory, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Jinjuan Qiao
- School of Medical Laboratory, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Xiangying Meng
- School of Medical Laboratory, Weifang Medical University, Weifang, 261053, Shandong, China.
| |
Collapse
|
7
|
Ding Y, Zhang Y, Huang C, Wang J, Li H, Wang X. An electrochemical biosensor based on phage-encoded protein RBP 41 for rapid and sensitive detection of Salmonella. Talanta 2024; 270:125561. [PMID: 38128279 DOI: 10.1016/j.talanta.2023.125561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Salmonellosis caused by Salmonella contaminated food poses a serious threat to human health. The rapid and accurate detection of Salmonella is critical for preventing foodborne illness outbreaks. In this study, an electrochemical biosensor was developed using a newly identified biorecognition element, RBP 41, which is capable of specifically recognizing and binding to Salmonella. The biosensor was constructed through a layer-by-layer assembly of graphene oxide (GO), gold nanoparticles (GNPs), and RBP 41 on a glassy carbon electrode (GCE), with the GNPs amplifying the detection signal. The established biosensor was able to detect Salmonella in concentrations ranging from 3 to 106 CFU/mL within approximately 30 min by using differential pulse voltammetry (DPV) signal, and the estimated detection limit was to be 0.2984 Log10 CFU/mL. The biosensor demonstrated excellent specificity and was effective in detecting Salmonella in food matrices, such as skim milk and lettuce. Overall, this study highlights the potential of phage tail receptor binding proteins in biosensing and the proposed biosensor as a promising alternative for rapid and sensitive Salmonella detection in various samples.
Collapse
Affiliation(s)
- Yifeng Ding
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan, 430070, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Yiming Zhang
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan, 430070, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Chenxi Huang
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan, 430070, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Jia Wang
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan, 430070, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Huihui Li
- College of Science, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Xiaohong Wang
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan, 430070, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
8
|
Sun Q, Shen L, Zhang BL, Yu J, Wei F, Sun Y, Chen W, Wang S. Advance on Engineering of Bacteriophages by Synthetic Biology. Infect Drug Resist 2023; 16:1941-1953. [PMID: 37025193 PMCID: PMC10072152 DOI: 10.2147/idr.s402962] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/16/2023] [Indexed: 04/03/2023] Open
Abstract
Since bacteriophages (phages) were firstly reported at the beginning of the 20th century, the study on them experiences booming-fading-emerging with discovery and overuse of antibiotics. Although they are the hotspots for therapy of antibiotic-resistant strains nowadays, natural phage applications encounter some challenges such as limited host range and bacterial resistance to phages. Synthetic biology, one of the most dramatic directions in the recent 20-years study of microbiology, has generated numerous methods and tools and has contributed a lot to understanding phage evolution, engineering modification, and controlling phage-bacteria interactions. In order to better modify and apply phages by using synthetic biology techniques in the future, in this review, we comprehensively introduce various strategies on engineering or modification of phage genome and rebooting of recombinant phages, summarize the recent researches and potential directions of phage synthetic biology, and outline the current application of engineered phages in practice.
Collapse
Affiliation(s)
- Qingqing Sun
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, the College of Life Sciences, Northwest University, Xi’an, 710069, People’s Republic of China
| | - Lixin Shen
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, the College of Life Sciences, Northwest University, Xi’an, 710069, People’s Republic of China
| | - Bai-Ling Zhang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, People’s Republic of China
| | - Jiaoyang Yu
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, the College of Life Sciences, Northwest University, Xi’an, 710069, People’s Republic of China
- Clinical Research Center, the Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, 210003, People’s Republic of China
| | - Fu Wei
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, the College of Life Sciences, Northwest University, Xi’an, 710069, People’s Republic of China
| | - Yanmei Sun
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, the College of Life Sciences, Northwest University, Xi’an, 710069, People’s Republic of China
| | - Wei Chen
- Clinical Research Center, the Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, 210003, People’s Republic of China
- The Clinical Infectious Disease Center of Nanjing, Nanjing, 210003, People’s Republic of China
- Correspondence: Wei Chen; Shiwei Wang, Email ;
| | - Shiwei Wang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, the College of Life Sciences, Northwest University, Xi’an, 710069, People’s Republic of China
| |
Collapse
|
9
|
Martinez-Sade E, Martinez-Rojas F, Ramos D, Aguirre MJ, Armijo F. Formation of a Conducting Polymer by Different Electrochemical Techniques and Their Effect on Obtaining an Immunosensor for Immunoglobulin G. Polymers (Basel) 2023; 15:polym15051168. [PMID: 36904408 PMCID: PMC10007133 DOI: 10.3390/polym15051168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/14/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
In this work, a conducting polymer (CP) was obtained through three electrochemical procedures to study its effect on the development of an electrochemical immunosensor for the detection of immunoglobulin G (IgG-Ag) by square wave voltammetry (SWV). The glassy carbon electrode modified with poly indol-6-carboxylic acid (6-PICA) applied the cyclic voltammetry technique presented a more homogeneous size distribution of nanowires with greater adherence allowing the direct immobilization of the antibodies (IgG-Ab) to detect the biomarker IgG-Ag. Additionally, 6-PICA presents the most stable and reproducible electrochemical response used as an analytical signal for developing a label-free electrochemical immunosensor. The different steps in obtaining the electrochemical immunosensor were characterized by FESEM, FTIR, cyclic voltammetry, electrochemical impedance spectroscopy, and SWV. Optimal conditions to improve performance, stability, and reproducibility in the immunosensing platform were achieved. The prepared immunosensor has a linear detection range of 2.0-16.0 ng·mL-1 with a low detection limit of 0.8 ng·mL-1. The immunosensing platform performance depends on the orientation of the IgG-Ab, favoring the formation of the immuno-complex with an affinity constant (Ka) of 4.32 × 109 M-1, which has great potential to be used as point of care testing (POCT) device for the rapid detection of biomarkers.
Collapse
Affiliation(s)
- Erika Martinez-Sade
- Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile
| | - Francisco Martinez-Rojas
- Millenium Institute on Green Ammonia as Energy Vector, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Danilo Ramos
- Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile
| | - Maria Jesus Aguirre
- Millenium Institute on Green Ammonia as Energy Vector, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Departamento de Química de Los Materiales, Faculta de Química y Biología, Universidad de Santiago de Chile, USACH, Av. L.B. O’Higgins 3363, Santiago 9170022, Chile
| | - Francisco Armijo
- Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile
- Millenium Institute on Green Ammonia as Energy Vector, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Centro de Nanotecnología y Materiales Avanzados, CIEN-UC, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Correspondence:
| |
Collapse
|
10
|
Yao L, Chen A, Li Li, Liu Y. Preparation, properties, applications and outlook of graphene-based materials in biomedical field: A comprehensive review. JOURNAL OF BIOMATERIALS SCIENCE, POLYMER EDITION 2022; 34:1121-1156. [DOI: 10.1080/09205063.2022.2155781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Luyang Yao
- School of Pharmacy, Liaoning University, Shenyang 110036, People’s Republic of China
| | - Anqi Chen
- School of Pharmacy, Liaoning University, Shenyang 110036, People’s Republic of China
| | - Li Li
- School of Pharmacy, Liaoning University, Shenyang 110036, People’s Republic of China
- Liaoning Key Laboratory of New Drug Research & Development, Shenyang 110036, People’s Republic of China
| | - Yu Liu
- School of Pharmacy, Liaoning University, Shenyang 110036, People’s Republic of China
- Liaoning University, Judicial Expertise Center, Shenyang 110036, People’s Republic of China
| |
Collapse
|
11
|
Wang H, Fan Y, Yang Q, Sun X, Liu H, Chen W, Aziz A, Wang S. Boosting the Electrochemical Performance of PI-5-CA/C-SWCNT Nanohybrid for Sensitive Detection of E. coli O157:H7 From the Real Sample. Front Chem 2022; 10:843859. [PMID: 35223774 PMCID: PMC8866332 DOI: 10.3389/fchem.2022.843859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 01/17/2022] [Indexed: 01/04/2023] Open
Abstract
Redox activity is an important indicator for evaluating electrochemical biosensors. In this work, we have successfully polymerized indole-5-carboxylic acid into poly-5-carboxyindole nanomaterials (PI-5-CA), using its superior redox activity, and introduced carboxylated single-walled carbon nanotubes (C-SWCNTs) to synthesize a composite material. Finally, a synthesized composite material was used for the modification of the glass carbon electrode to fabricate the PI-5-CA/C-SWCNTs/GCE-based immunosensor and was successfully applied for the sensitive detection of E. coli O157:H7. The fabricated immunosensor exhibited an outstanding electrocatalytic activity toward the detection of E. coli O157:H7 with a remarkably lowest limit of detection (2.5 CFU/ml, LOD = 3 SD/k, n = 3) and has a wide linear range from 2.98×101 to 2.98×107 CFU/ml. Inspired from the excellent results, the fabricated electrode was applied for the detection of bacteria from real samples (water samples) with a good recovery rate (98.13–107.69%) as well as an excellent stability and specificity. Owing to its simple preparation, excellent performance, and detection time within 30 min, our proposed immunosensor will open a new horizon in different fields for the sensitive detection of bacteria from real samples.
Collapse
Affiliation(s)
- Huan Wang
- Advanced Biomaterials and Tissue Engineering Center, College of Life Science and Technology, Huazhong University of Life Science and Technology, Wuhan, China
| | - Yanmiao Fan
- School of Chemical Science and Engineering Fiber and Polymer Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Qiaoli Yang
- Advanced Biomaterials and Tissue Engineering Center, College of Life Science and Technology, Huazhong University of Life Science and Technology, Wuhan, China
| | - Xiaoyu Sun
- Advanced Biomaterials and Tissue Engineering Center, College of Life Science and Technology, Huazhong University of Life Science and Technology, Wuhan, China
| | - Hao Liu
- Advanced Biomaterials and Tissue Engineering Center, College of Life Science and Technology, Huazhong University of Life Science and Technology, Wuhan, China
| | - Wei Chen
- Advanced Biomaterials and Tissue Engineering Center, College of Life Science and Technology, Huazhong University of Life Science and Technology, Wuhan, China
| | - Ayesha Aziz
- Advanced Biomaterials and Tissue Engineering Center, College of Life Science and Technology, Huazhong University of Life Science and Technology, Wuhan, China
- *Correspondence: Ayesha Aziz, ; Shenqi Wang,
| | - Shenqi Wang
- Advanced Biomaterials and Tissue Engineering Center, College of Life Science and Technology, Huazhong University of Life Science and Technology, Wuhan, China
- *Correspondence: Ayesha Aziz, ; Shenqi Wang,
| |
Collapse
|
12
|
Hosseini SM, Taheri M, Nouri F, Farmani A, Moez NM, Arabestani MR. Nano drug delivery in intracellular bacterial infection treatments. Biomed Pharmacother 2022; 146:112609. [PMID: 35062073 DOI: 10.1016/j.biopha.2021.112609] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/22/2021] [Accepted: 12/26/2021] [Indexed: 12/20/2022] Open
Abstract
The present work aimed to review the potential mechanisms used by macrophages to kill intracellular bacteria, their entrance to the cell, and mechanisms of escape of cellular immunity and applications of various nanoparticles. Since intracellular bacteria such as Mycobacterium and Brucella can survive in host cells and can resist the lethal power of macrophages, they can cause chronic disease or recur in 10-30% of cases in improved patients Nano drug-based therapeutics are promising tools for treating intracellular bacteria and preventing recurrence of the disease caused by these bacteria. In addition, among their unique features, we can mention the small size and the ability of these compounds to purposefully reach the target location.
Collapse
Affiliation(s)
- Seyed Mostafa Hosseini
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Taheri
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fatemeh Nouri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abbas Farmani
- Department of Nanobiotechnology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Narjes Morovati Moez
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Reza Arabestani
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
13
|
Electrochemical Biosensors for Foodborne Pathogens Detection Based on Carbon Nanomaterials: Recent Advances and Challenges. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02759-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|