1
|
Wang H, Li S, Wang X, Li X, Jiang M, Chen S, Hu Z, Li H, Xu Y, Jin L. One-step enrichment and stepwise elution of glycoproteins and phosphoproteins by hydrophilic Ti 4+-immobilized dendrimer poly(glycidyl methacrylate) microparticles functionalized with polyethylenimine and phytic acid. J Sep Sci 2024; 47:e2400154. [PMID: 38948935 DOI: 10.1002/jssc.202400154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 07/02/2024]
Abstract
Glycosylation and phosphorylation rank as paramount post-translational modifications, and their analysis heavily relies on enrichment techniques. In this work, a facile approach was developed for the one-step simultaneous enrichment and stepwise elution of glycoproteins and phosphoproteins. The core of this approach was the application of the novel titanium (IV) ion immobilized poly(glycidyl methacrylate) microparticles functionalized with dendrimer polyethylenimine and phytic acid. The microparticles possessed dual enrichment capabilities due to their abundant titanium ions and hydroxyl groups on the surface. They demonstrate rapid adsorption equilibrium (within 30 min) and exceptional adsorption capacity for β-casein (1107.7 mg/g) and horseradish peroxidase (438.6 mg/g), surpassing that of bovine serum albumin (91.7 mg/g). Furthermore, sodium dodecyl sulfate-polyacrylamide gel electrophoresis was conducted to validate the enrichment capability. Experimental results across various biological samples, including standard protein mixtures, non-fat milk, and human serum, demonstrated the remarkable ability of these microparticles to enrich low-abundance glycoproteins and phosphoproteins from biological samples.
Collapse
Affiliation(s)
- Hao Wang
- Institute of Orthopaedic Biomedical and Device Innovation, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, P. R. China
| | - Simin Li
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, P. R. China
| | - Xinyan Wang
- Faculty of Medical Laboratory, Shanghai University of Medicine and Health Sciences, Shanghai, P. R. China
| | - Xinyue Li
- Faculty of Medical Laboratory, Shanghai University of Medicine and Health Sciences, Shanghai, P. R. China
| | - Minzhi Jiang
- Faculty of Medical Laboratory, Shanghai University of Medicine and Health Sciences, Shanghai, P. R. China
| | - Shiying Chen
- Faculty of Medical Laboratory, Shanghai University of Medicine and Health Sciences, Shanghai, P. R. China
| | - Zaiqi Hu
- Institute of Orthopaedic Biomedical and Device Innovation, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, P. R. China
| | - Haitian Li
- Institute of Orthopaedic Biomedical and Device Innovation, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, P. R. China
| | - Yuzhen Xu
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, P. R. China
| | - Lei Jin
- Faculty of Medical Laboratory, Shanghai University of Medicine and Health Sciences, Shanghai, P. R. China
| |
Collapse
|
2
|
Wang B, Zhang X, Hua S, Ding CF, Yan Y. Fabrication of a polymer brush-functionalized porphyrin-based covalent organic framework for enrichment of N-glycopeptides. Mikrochim Acta 2023; 191:26. [PMID: 38091130 DOI: 10.1007/s00604-023-06104-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023]
Abstract
A surface-initiated atom transfer radical polymerization method combining click chemistry was employed to prepare a novel porphyrin-based covalent organic framework composite grafted with polymer brushes (TAPBB@GMA@AMA@Cys) for the specific enrichment of N-glycopeptides. The material successfully realized the high efficiency enrichment of N-glycopeptides with good selectivity (1:1000), low detection limit (0.2 fmol/μL), and high loading capacity (133.3 mg·g-1). The TAPBB@GMA@AMA@Cys was successfully applied to actual sample analysis; 235 N-glycopeptides related to 125 glycoproteins and 210 N-glycopeptides related to 121 glycoproteins were recognized from the serum of normal individuals and Alzheimer's disease patients, respectively. Gene ontology studies of molecular functions, cellular components, and biological processes have revealed that identified glycoproteins are strongly associated with neurodegenerative diseases involving innate immune responses, basement membranes, calcium binding, and receptor binding. The above results confirm the surprising potential of materials in glycoproteomics research and practical sample applications.
Collapse
Affiliation(s)
- Bing Wang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo, 315211, China
| | - Xiaoya Zhang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo, 315211, China
| | - Shuwen Hua
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo, 315211, China
| | - Chuan-Fan Ding
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo, 315211, China.
| | - Yinghua Yan
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
3
|
Wang D, Huang J, Zhang H, Ma M, Xu M, Cui Y, Shi X, Li L. ATP-Coated Dual-Functionalized Titanium(IV) IMAC Material for Simultaneous Enrichment and Separation of Glycopeptides and Phosphopeptides. J Proteome Res 2023; 22:2044-2054. [PMID: 37195130 PMCID: PMC11138137 DOI: 10.1021/acs.jproteome.3c00118] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Protein glycosylation and phosphorylation are two of the most common post-translational modifications (PTMs), which play an important role in many biological processes. However, low abundance and poor ionization efficiency of phosphopeptides and glycopeptides make direct MS analysis challenging. In this study, we developed a hydrophilicity-enhanced bifunctional Ti-IMAC (IMAC: immobilized metal affinity chromatography) material with grafted adenosine triphosphate (denoted as epoxy-ATP-Ti4+) to enable simultaneous enrichment and separation of common N-glycopeptides, phosphopeptides, and M6P glycopeptides from tissue/cells. The enrichment was achieved through a dual-mode mechanism based on the electrostatic and hydrophilic properties of the material. The epoxy-ATP-Ti4+ IMAC material was prepared from epoxy-functionalized silica particles via a convenient two-step process. The ATP molecule provided strong and active phosphate sites for binding phosphopeptides in the conventional IMAC mode and also contributed significantly to the hydrophilicity, which permitted the enrichment of glycopeptides via hydrophilic interaction chromatography. The two modes could be implemented simultaneously, allowing glycopeptides and phosphopeptides to be collected sequentially in a single experiment from the same sample. In addition to standard protein samples, the material was further applied to glycopeptide and phosphopeptide enrichment and characterization from HeLa cell digests and mouse lung tissue samples. In total, 2928 glycopeptides and 3051 phosphopeptides were identified from the mouse lung tissue sample, supporting the utility of this material for large-scale PTM analysis of complex biological samples. Overall, the newly developed epoxy-ATP-Ti4+ IMAC material and associated fractionation method enable simple and effective enrichment and separation of glycopeptides and phosphopeptides, offering a useful tool to study potential crosstalk between these two important PTMs in biological systems. The MS data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the data set identifier PXD029775.
Collapse
Affiliation(s)
- Danqing Wang
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Junfeng Huang
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Haoran Zhang
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Min Ma
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Meng Xu
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Yusi Cui
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Xudong Shi
- Department of Surgery, University of Wisconsin–Madison, Madison, WI 53705, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States
| |
Collapse
|
4
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2019-2020. MASS SPECTROMETRY REVIEWS 2022:e21806. [PMID: 36468275 DOI: 10.1002/mas.21806] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2020. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. The review is basically divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of arrays. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other areas such as medicine, industrial processes and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. The reported work shows increasing use of incorporation of new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented nearly 40 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show little sign of diminishing.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
- Department of Chemistry, University of Oxford, Oxford, Oxfordshire, United Kingdom
| |
Collapse
|
5
|
Recent advances in metal oxide affinity chromatography materials for phosphoproteomics. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
6
|
Exploration of the Simple and Green Synthetic Route of Hollow Titanium Dioxide Microspheres for In-Depth Analysis of Phosphopeptides in the Serum of Nasopharyngeal Carcinoma Patients. Chromatographia 2022. [DOI: 10.1007/s10337-022-04211-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
7
|
Shang D, Chen C, Dong X, Cui Y, Qiao Z, Li X, Liang X. Simultaneous enrichment and sequential separation of glycopeptides and phosphopeptides with poly-histidine functionalized microspheres. Front Bioeng Biotechnol 2022; 10:1011851. [PMID: 36277408 PMCID: PMC9582455 DOI: 10.3389/fbioe.2022.1011851] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 08/22/2022] [Indexed: 11/23/2022] Open
Abstract
Protein phosphorylation and glycosylation coordinately regulate numerous complex biological processes. However, the main methods to simultaneously enrich them are based on the coordination interactions or Lewis acid-base interactions, which suffer from low coverage of target molecules due to strong intermolecular interactions. Here, we constructed a poly-histidine modified silica (SiO2@Poly-His) microspheres-based method for the simultaneous enrichment, sequential elution and analysis of phosphopeptides and glycopeptides. The SiO2@Poly-His microspheres driven by hydrophilic interactions and multiple hydrogen bonding interactions exhibited high selectivity and coverage for simultaneous enrichment of phosphopeptides and glycopeptides from 1,000 molar folds of bovine serum albumin interference. Furthermore, “on-line deglycosylation” strategy allows sequential elution of phosphopeptides and glycopeptides, protecting phosphopeptides from hydrolysis during deglycosylation and improving the coverage of phosphopeptides. The application of our established method to HT29 cell lysates resulted in a total of 1,601 identified glycopeptides and 694 identified phosphopeptides, which were 1.2-fold and 1.5-fold higher than those obtained from the co-elution strategy, respectively. The SiO2@Poly-His based simultaneous enrichment and sequential separation strategy might have great potential in co-analysis of PTMs-proteomics of biological and clinic samples.
Collapse
Affiliation(s)
- Danyi Shang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Cheng Chen
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xuefang Dong
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Dalian, China
| | - Yun Cui
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Dalian, China
- Ganjiang Chinese Medicine Innovation Center, Nanchang, China
| | - Zichun Qiao
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiuling Li
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Dalian, China
- Ganjiang Chinese Medicine Innovation Center, Nanchang, China
- *Correspondence: Xiuling Li, ; Xinmiao Liang,
| | - Xinmiao Liang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Dalian, China
- Ganjiang Chinese Medicine Innovation Center, Nanchang, China
- *Correspondence: Xiuling Li, ; Xinmiao Liang,
| |
Collapse
|
8
|
Xu Z, Wu Y, Hu X, Deng C, Sun N. Inherently hydrophilic mesoporous channel coupled with metal oxide for fishing endogenous salivary glycopeptides and phosphopeptides. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.12.069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Pauwels J, Fijałkowska D, Eyckerman S, Gevaert K. Mass spectrometry and the cellular surfaceome. MASS SPECTROMETRY REVIEWS 2022; 41:804-841. [PMID: 33655572 DOI: 10.1002/mas.21690] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
The collection of exposed plasma membrane proteins, collectively termed the surfaceome, is involved in multiple vital cellular processes, such as the communication of cells with their surroundings and the regulation of transport across the lipid bilayer. The surfaceome also plays key roles in the immune system by recognizing and presenting antigens, with its possible malfunctioning linked to disease. Surface proteins have long been explored as potential cell markers, disease biomarkers, and therapeutic drug targets. Despite its importance, a detailed study of the surfaceome continues to pose major challenges for mass spectrometry-driven proteomics due to the inherent biophysical characteristics of surface proteins. Their inefficient extraction from hydrophobic membranes to an aqueous medium and their lower abundance compared to intracellular proteins hamper the analysis of surface proteins, which are therefore usually underrepresented in proteomic datasets. To tackle such problems, several innovative analytical methodologies have been developed. This review aims at providing an extensive overview of the different methods for surfaceome analysis, with respective considerations for downstream mass spectrometry-based proteomics.
Collapse
Affiliation(s)
- Jarne Pauwels
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | | | - Sven Eyckerman
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Kris Gevaert
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
10
|
Synthesis of a metal oxide affinity chromatography magnetic mesoporous nanomaterial and development of a one-step selective phosphopeptide enrichment strategy for analysis of phosphorylated proteins. Anal Chim Acta 2022; 1195:339430. [DOI: 10.1016/j.aca.2022.339430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/05/2021] [Accepted: 01/01/2022] [Indexed: 11/23/2022]
|
11
|
Jin H, Gao W, Liu R, Yang J, Zhang S, Han R, Lin J, Zhang S, Yu J, Tang K. A novel hydrophilic hydrogel with a 3D network structure for the highly efficient enrichment of N-glycopeptides. Analyst 2022; 147:2425-2432. [DOI: 10.1039/d2an00516f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A novel super-hydrophilic hydrogel (ZIF-8/SAP) was first proposed and facilely fabricated to capture N-glycopeptides from complex biological samples with excellent selectivity and sensitivity.
Collapse
Affiliation(s)
- Haozhou Jin
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, P. R. China
| | - Wenqing Gao
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, P. R. China
- Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, P. R. China
| | - Rong Liu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, P. R. China
| | - Jiaqian Yang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, P. R. China
| | - Shun Zhang
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, P. R. China
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumours of Zhejiang Province, 2019E10020, Ningbo, P. R. China
| | - Renlu Han
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, P. R. China
- Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, P. R. China
| | - Jing Lin
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, P. R. China
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumours of Zhejiang Province, 2019E10020, Ningbo, P. R. China
| | - Sijia Zhang
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, P. R. China
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumours of Zhejiang Province, 2019E10020, Ningbo, P. R. China
| | - Jiancheng Yu
- Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, P. R. China
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, P. R. China
| | - Keqi Tang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, P. R. China
- Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, P. R. China
| |
Collapse
|
12
|
Kumari M, Tetala KKR. A review on recent advances in the enrichment of glycopeptides and glycoproteins by liquid chromatographic methods: 2016-Present. Electrophoresis 2021; 43:388-402. [PMID: 34757643 DOI: 10.1002/elps.202100172] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 01/06/2023]
Abstract
Among various protein post-translational modifications (PTMs), glycosylation has received special attention due to its immense role in molecular interactions, cellular signal transduction, immune response, etc. Aberration in glycan moieties of a glycoprotein is associated with cancer, diabetes, and bacterial and viral infections. In biofluids (plasma, saliva, urine, milk, etc.), glycoproteins are low in abundance and are masked by the presence of high abundant proteins. Hence, prior to their identification using mass spectrometry methods, liquid chromatography (LC)-based approaches were widely used. A general enrichment strategy involves a protein digestion step, followed by LC-based enrichment and desorption of glycopeptides, and enzymatic excision of the glycans. The focus of this review article is to highlight the articles published since 2016 that dealt with different LC-based approaches for glycopeptide and glycoprotein enrichment. The preparation of stationary phases, their surface activation, and ligand immobilization strategies have been discussed in detail. Finally, the major developments and future trends in the field have been summarized.
Collapse
Affiliation(s)
- Mona Kumari
- Centre for Bioseparation Technology (CBST), Vellore Institute of Technology (VIT), Vellore, Tamilnadu, India
| | - Kishore K R Tetala
- Centre for Bioseparation Technology (CBST), Vellore Institute of Technology (VIT), Vellore, Tamilnadu, India
| |
Collapse
|
13
|
[Recent advances in glycopeptide enrichment and mass spectrometry data interpretation approaches for glycoproteomics analyses]. Se Pu 2021; 39:1045-1054. [PMID: 34505426 PMCID: PMC9404232 DOI: 10.3724/sp.j.1123.2021.06011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
蛋白质糖基化是生物体内最重要的翻译后修饰之一,在蛋白质稳定性、细胞内和细胞间信号转导、激素活化或失活和免疫调节等生理过程和病理进程中发挥重要作用。而异常的蛋白质糖基化往往和多种疾病的发生发展密切相关,目前应用于临床检测的多种肿瘤生物标志物大多属于糖蛋白或者糖抗原。因此在组学层次系统分析蛋白质糖基化的变化对阐明生物体内糖基化修饰的调控机理和发现新型疾病标志物都非常重要。基于质谱的蛋白质组学技术为全面分析蛋白质及其修饰提供了有效的分析手段。在自下而上的蛋白质组学研究中,由于完整糖基化肽段同时存在性质各异的肽段骨架和糖链结构、糖肽的相对丰度和离子化效率较低以及糖基化修饰有高度异质性等特点,完整糖肽的分析比其他翻译后修饰更加困难。近年来,为了更全面、系统地分析蛋白质糖基化,研究人员发展了一些新技术,包括完整糖肽的富集技术、质谱的碎裂模式和数据采集模式、质谱数据的解析方法和定量策略等等,大力推进了该领域的研究水平,也为研究蛋白质糖基化相关的生物标志物提供了技术支持。该篇综述主要关注近年来基于质谱的糖蛋白质组学研究中的新进展,重点介绍针对完整N-和O-糖基化肽段的富集新技术和谱图解析新方法,并讨论其在肿瘤早期诊断方面的应用潜力。
Collapse
|
14
|
Luo B, Yan S, Zhang Y, Zhou J, Lan F, Wu Y. Bifunctional magnetic covalent organic framework for simultaneous enrichment of phosphopeptides and glycopeptides. Anal Chim Acta 2021; 1177:338761. [PMID: 34482887 DOI: 10.1016/j.aca.2021.338761] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/28/2021] [Accepted: 06/14/2021] [Indexed: 02/06/2023]
Abstract
Protein phosphorylation and glycosylation, which are closely related to various diseases, have been extensively studied recently. Mass spectrometry (MS) based phosphoproteomics and glycoproteomics analysis rely heavily on the pre-treatment. Due to the differences in enrichment conditions, there are still huge challenges in designing and preparing a single affinity material to achieve efficient simultaneous capture and elution of phosphopeptides and glycopeptides. Herein, a novel magnetic covalent organic framework, which was modified with functional molecule 4-(3-(2-(methacryloyloxy)ethyl)-ureido)benzoic acid (MUBA), was designed as a bifunctional enrichment platform for glycopeptides and phosphopeptides. Thanks to the multiple hydrogen bonding interactions between MUBA and hydrogen phosphates, the material possessed excellent enrichment performance for phosphopeptides. In addition, the hydrophilicity of the COF structure and modified molecules endowed this material recognition capability towards glycopeptides based on hydrophilic interaction chromatography. Combining with the inherent properties of COF structure, the established platform achieved simultaneous enrichment of phosphopeptides and glycopeptides with excellent selectivity (1:1:1000 M ratio of α-casein/IgG/BSA), high sensitivity (0.05 fmol/μL α-casein; 0.05 fmol/μL IgG), and good size-exclusion effect (α-casein digests/IgG digests/BSA, 1:1:500). More excitingly, the method was used for the identification of glycopeptides and phosphopeptides from rat liver tissue and the exosomes extracted from liver cancer patients' plasma, proving its specific phosphoproteomics and glycoproteomics study in complex biosamples.
Collapse
Affiliation(s)
- Bin Luo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, PR China
| | - Shuang Yan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, PR China
| | - Yujia Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, PR China
| | - Juan Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Fang Lan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, PR China.
| | - Yao Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, PR China.
| |
Collapse
|
15
|
GAO W, BAI Y, LIU H. [Recent advances in functionalized magnetic nanomaterials for glycoprotein and glycopeptide enrichment]. Se Pu 2021; 39:981-988. [PMID: 34486837 PMCID: PMC9404082 DOI: 10.3724/sp.j.1123.2021.08012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Indexed: 11/25/2022] Open
Abstract
Protein glycosylation is among the most common and important post-translational modifications, and plays an important regulatory role in many biological processes, including signal transduction, protein translation, and immune response. Abnormal protein glycosylation is also associated with numerous diseases, suggesting that glycoproteins may offer an array of useful disease biomarkers. Mass spectrometry (MS) has become an important analytical tool in glycoproteomics. However, the low abundance and weak ionization efficiency of glycopeptides have hindered direct mass spectrometric analyses, which remain considerably challenging. Glycoprotein and glycopeptide enrichment from complex biological samples is an important step in glycoproteomics. Diverse methods have recently been developed for specific glycoprotein and glycopeptide enrichment, including hydrophilic interaction liquid chromatography (HILIC), lectin affinity chromatography, boronate affinity chromatography, and hydrazide functional affinity chromatography. A variety of enrichment materials designed for the above strategies have been developed to meet the requirement of enriching low abundance glycoproteins and glycopeptides in complex samples. Magnetic solid phase extraction (MSPE) is an efficient sample pretreatment technology that offers advantages of simple operation, low cost, and high extraction efficiency. Functionalized magnetic nanomaterials have been widely used as adsorbents in glycoproteome studies. Since magnetic adsorbent is a key factor in MSPE, in this review, the preparation of magnetic nanomaterials functionalized with sugars, ionic liquids, lectins, boronate affinity ligands, metal organic frameworks, and covalent organic frameworks, and their applications in glycoprotein and glycopeptide enrichment are summarized. These functional magnetic nanomaterials possess high specific surface area and a large number of active adsorption sites, allowing different enrichment mechanisms, including HILIC, lectin affinity chromatography, and boronate and hydrazide functional affinity chromatography. These functional magnetic nanomaterials are mainly used to enrich glycoproteins and glycopeptides in serum, plasma, cells, tissues, saliva and other biological samples. Nearly 90 papers published in the last decade from the Science Citation Index (SCI) and Chinese core journals have been cited in this paper. Finally, the development and prospects of magnetic nanomaterials in glycoprotein and glycopeptide enrichment are also discussed.
Collapse
Affiliation(s)
- Wenjie GAO
- 北京大学化学与分子工程学院, 北京分子科学国家实验室, 北京 100871
- Beijing National Laboratory of Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yu BAI
- 北京大学化学与分子工程学院, 北京分子科学国家实验室, 北京 100871
- Beijing National Laboratory of Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Huwei LIU
- 北京大学化学与分子工程学院, 北京分子科学国家实验室, 北京 100871
- Beijing National Laboratory of Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
16
|
Huang H, Zheng Q, He Y, Zhong C, Tian W, Zhang S, Lin J, Lin Z. Facile synthesis of bifunctional polymer monolithic column for tunable and specific capture of glycoproteins and phosphoproteins. J Chromatogr A 2021; 1651:462329. [PMID: 34157477 DOI: 10.1016/j.chroma.2021.462329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/01/2021] [Accepted: 06/06/2021] [Indexed: 10/21/2022]
Abstract
Efficiently tunable capture of the glycosylated/phosphorylated proteins is critical to meet the need of in-depth glycoproteome and phosphoproteome studies. Reported here is a new bifunctional polymer monolithic column by introducing benzeneboronic acid and phosphonic acid onto monolithic column (denoted as poly (EDMA-co-VPBA-co-VPA) monolith) for tunable and specific enrichment of glycoproteins and phosphoproteins via switching different mobile phases. Based on boronate affinity and immobilized metal affinity, the as-prepared poly (EDMA-co-VPBA-co-VPA) monolith exhibited superior performance in selective separation of small molecules and biomacromolecules containing cis-diol/phosphate groups or not. And the frontal chromatography analysis showed that the binding capacity of the poly (EDMA-co-VPBA-co-VPA) monolith towards horseradish peroxidase (HRP, glycoprotein) or β-casein (phosphoprotein) is four-fold higher than that of bovine serum albumin (BSA, non-glycosylated/phosphorylated protein). Furthermore, combined with mass spectrometry identification, the successful application in specific enrichment of glycopeptides/phosphopeptides from tryptic digests of HRP/β-casein and direct capture of low abundant endogenous phosphopeptides from human serum proved great practicability in complex samples. This study provides a novel insight for fabricating the monolithic columns with multifunctionalization to facilitate further post-translational modification (PTM)-proteomics development.
Collapse
Affiliation(s)
- Huan Huang
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Qiong Zheng
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Yanting He
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Chao Zhong
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Wenchang Tian
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Shasha Zhang
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Juan Lin
- Department of Cardiology, Fujian Provincial Governmental Hospital, Fuzhou 350003, China
| | - Zian Lin
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
| |
Collapse
|
17
|
Du J, Yan Y, Tang K, Ding C. Modified Carbon Nanotubes Decorated with ZIFs as New Immobilized Metal Ion Affinity Chromatography Platform for Enrichment of Phosphopeptides. ChemistrySelect 2021. [DOI: 10.1002/slct.202004650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Jianglong Du
- School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry Ningbo University Ningbo 315211 China
| | - Yinghua Yan
- School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry Ningbo University Ningbo 315211 China
| | - Keqi Tang
- School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry Ningbo University Ningbo 315211 China
| | - Chuan‐Fan Ding
- School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry Ningbo University Ningbo 315211 China
| |
Collapse
|
18
|
Kip C, Hamaloğlu KÖ, Demir C, Tuncel A. Recent trends in sorbents for bioaffinity chromatography. J Sep Sci 2021; 44:1273-1291. [PMID: 33370505 DOI: 10.1002/jssc.202001117] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 12/24/2022]
Abstract
Isolation or enrichment of biological molecules from complex biological samples is mostly a prerequisite in proteomics, genomics, and glycomics. Different techniques have been used to advance the efficiency of the purification of biological molecules. Bioaffinity chromatography is one of the most powerful technique that plays an important role in the isolation of target biological molecules by the specific interactions with ligands that are immobilized on different support materials. This review examines the recent developments in bioaffinity chromatography particularly over the past 5 years in the literature. Also properties of supports, immobilization techniques, types of binding agents, and methods used in bioaffinity chromatography applications are summarized.
Collapse
Affiliation(s)
- Cigdem Kip
- Chemical Engineering Department, Hacettepe University, Ankara, Turkey
| | | | - Cihan Demir
- Chemical Engineering Department, Hacettepe University, Ankara, Turkey.,Nanotechnology and Nanomedicine Division, Hacettepe University, Ankara, Turkey
| | - Ali Tuncel
- Chemical Engineering Department, Hacettepe University, Ankara, Turkey
| |
Collapse
|
19
|
Riley NM, Bertozzi CR, Pitteri SJ. A Pragmatic Guide to Enrichment Strategies for Mass Spectrometry-Based Glycoproteomics. Mol Cell Proteomics 2020; 20:100029. [PMID: 33583771 PMCID: PMC8724846 DOI: 10.1074/mcp.r120.002277] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 12/26/2022] Open
Abstract
Glycosylation is a prevalent, yet heterogeneous modification with a broad range of implications in molecular biology. This heterogeneity precludes enrichment strategies that can be universally beneficial for all glycan classes. Thus, choice of enrichment strategy has profound implications on experimental outcomes. Here we review common enrichment strategies used in modern mass spectrometry-based glycoproteomic experiments, including lectins and other affinity chromatographies, hydrophilic interaction chromatography and its derivatives, porous graphitic carbon, reversible and irreversible chemical coupling strategies, and chemical biology tools that often leverage bioorthogonal handles. Interest in glycoproteomics continues to surge as mass spectrometry instrumentation and software improve, so this review aims to help equip researchers with the necessary information to choose appropriate enrichment strategies that best complement these efforts.
Collapse
Affiliation(s)
- Nicholas M Riley
- Department of Chemistry, Stanford University, Stanford, California, USA.
| | - Carolyn R Bertozzi
- Department of Chemistry, Stanford University, Stanford, California, USA; Howard Hughes Medical Institute, Stanford, California, USA
| | - Sharon J Pitteri
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, California, USA.
| |
Collapse
|