1
|
Li J, Li Z, Dong Y, Wang Q, Li S, Wang Z, Wang C, Wu Q. Novel magnetic porous organic polymer containing amino and triazine bifunctional groups for efficient adsorption of nitroimidazoles. Food Chem 2024; 446:138879. [PMID: 38430773 DOI: 10.1016/j.foodchem.2024.138879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/17/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
In this paper, a novel magnetic hyper-crosslinked polymer with amino and triazine bifunctional groups (M-NH2-THCP) was developed. M-NH2-THCP has strong nitroimidazoles (NDZs) enrichment effect, and therefore it was used as an adsorbent to extract five NDZs from lake water, catfish and shrimp meat prior to HPLC. Polar interaction, π-π stacking interaction, hydrogen bond and Lewis acid-base interaction were attested to be the major adsorption mechanism. The method has a good linearity in the range of 0.1-100 ng mL-1 for lake water, 10-400 ng g-1 for catfish and shrimp muscle with R2 > 0.9964. The limits of detection of NDZs were 0.03-0.04 ng mL-1 for lake water, 1.0-2.0 ng g-1 for catfish and 2.0-2.5 ng g-1 for shrimp, which is superior to most reported method. The method recoveries were 87.6-119 %, and relative standard deviations were less than 8.7 %. M-NH2-THCP holds great application potential in pollutants enrichment, separation and removal.
Collapse
Affiliation(s)
- Jie Li
- College of Science, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Zhi Li
- College of Science, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Yanli Dong
- College of Science, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Qianqian Wang
- College of Science, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Shuofeng Li
- College of Science, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Zhi Wang
- College of Science, Hebei Agricultural University, Baoding 071001, Hebei, China; College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Chun Wang
- College of Science, Hebei Agricultural University, Baoding 071001, Hebei, China.
| | - Qiuhua Wu
- College of Science, Hebei Agricultural University, Baoding 071001, Hebei, China; College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
2
|
Yin P, Wang Q, Li S, Hao L, Wang C, Wang Z, Wu Q. One-step preparation of carboxyl-functionalized porous organic polymer as sorbent for enrichment of phenols in bottled water, juice and honey samples. J Chromatogr A 2024; 1714:464568. [PMID: 38086188 DOI: 10.1016/j.chroma.2023.464568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024]
Abstract
Herein, a novel carboxyl-functionalized porous organic polymer (COOH-POP) was prepared as sorbent. Due to multiple hydrogen bonds and π-π interactions between COOH-POP and phenols, COOH-POP shows good enrichment ability and very fast adsorption rate for phenols. Then, an analytical method was developed for determination of five phenols (2-chlorophenol, bisphenol A, 2,6-dichlorophenol, 2,4-dichlorophenol and p-tert-butylphenol) in bottled water, lemon juice, peach juice and honey samples using COOH-POP as solid phase extraction sorbent in combination with high performance liquid chromatography. Under optimal conditions, the COOH-POP based method gave the detection limits (S/N = 3) of 0.02-0.10 ng mL-1 for bottled water, 0.03-0.12 ng mL-1 for lemon juice, 0.03-0.25 ng mL-1 for peach juice and 0.7-1.5 ng g-1 for honey samples. The recoveries for spiked samples ranged from 84.0 % to 119.0 % with relative standard deviation less than 7.6 %. This study provides a new yet effective method for enrichment of phenols by designing carboxyl-functionalized porous organic polymer as sorbent.
Collapse
Affiliation(s)
- Peiying Yin
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Qianqian Wang
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Shuofeng Li
- College of Science, Hebei Agricultural University, Baoding 071001, China; College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Lin Hao
- College of Science, Hebei Agricultural University, Baoding 071001, China.
| | - Chun Wang
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Zhi Wang
- College of Science, Hebei Agricultural University, Baoding 071001, China; College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Qiuhua Wu
- College of Science, Hebei Agricultural University, Baoding 071001, China; College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
3
|
Ghani M, Khodkavandi S, Jafari Z, Ghamari kargar P, Maleki B, Fathnia Tabari H. Synthesis of cellulose nanofibers-based ImSalophen@Fe3O4 as a green sorbent for magnetic solid-phase extraction of chlorophenols followed by quantification via high-performance liquid chromatography-ultraviolet detection. Microchem J 2023. [DOI: 10.1016/j.microc.2022.108368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
4
|
Ferrocene-based magnetic hypercrosslinked polymer: a novel magnetic solid-phase extraction adsorbent for chlorophenols. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
5
|
Wang C, An Y, Li Z, Wang Q, Liu W, Hao L, Wang Z, Wu Q. Facile fabrication of hydroxyl-functionalized hypercrosslinked polymer for sensitive determination of chlorophenols. Food Chem 2022; 396:133694. [PMID: 35849985 DOI: 10.1016/j.foodchem.2022.133694] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 11/25/2022]
Abstract
Three hydroxyl-functionalized hypercrosslinked polymers (HCP-POL, HCP-HQ and HCP-PG) were synthesized by Friedel-Crafts reaction. The HCP-HQ displayed the largest surface area and highest adsorption capacity for chlorophenols (CPs). Thus, the HCP-HQ was further modified with magnetism to obtain M-HCP-HQ. An efficient magnetic solid-phase extraction method with M-HCP-HQ as adsorbent was developed for the first time to simultaneously extract four CPs from water and honey samples before analysis by high performance liquid chromatography-diode array detection. Under optimized conditions, the low detection limits (S/N = 3) were obtained to be 0.06-0.10 ng mL-1 for water and 0.80-1.75 ng g-1 for honey. The method recovery was 80.7%-119%, with relative standard deviations below 9.5%. The enrichment factors of the CPs were in the range of 57-220. The extraction mechanism could be attributed to the strong polar interaction, hydrogen bonding and π-π interactions between the M-HCP-HQ and CPs. The M-HCP-HQ based method can be served as a reliable and sensitive tool for detection CPs in water and honey samples.
Collapse
Affiliation(s)
- Chun Wang
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Yangjuan An
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Zhi Li
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Qianqian Wang
- College of Science, Hebei Agricultural University, Baoding 071001, China; College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Weihua Liu
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Lin Hao
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Zhi Wang
- College of Science, Hebei Agricultural University, Baoding 071001, China; College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Qiuhua Wu
- College of Science, Hebei Agricultural University, Baoding 071001, China; College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
6
|
Liu J, Wang J, Guo Y, Yang X, Wu Q, Wang Z. Effective solid-phase extraction of chlorophenols with covalent organic framework material as adsorbent. J Chromatogr A 2022; 1673:463077. [DOI: 10.1016/j.chroma.2022.463077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/28/2022] [Accepted: 04/16/2022] [Indexed: 10/18/2022]
|
7
|
Fabrication of carbonyl-functional hypercrosslinked polymers as solid-phase extraction sorbent for enrichment of chlorophenols from water, honey and beverage samples. Mikrochim Acta 2021; 189:21. [PMID: 34878596 DOI: 10.1007/s00604-021-05123-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/01/2021] [Indexed: 10/19/2022]
Abstract
Three carbonyl-functional novel hypercrosslinked polymers (HCP-TPS, HCP-TPA, and HCP-TPP) were successfully fabricated through an one-step Friedel-Crafts acylation reaction by copolymerizing paraphthaloyl chloride with triphenylsilane, triphenylamine, and triphenylphosphine, respectively. The resultant HCPs contained plenty of carbonyl-functional groups. Among the series of such HCPs, HCP-TPS displayed the best adsorption capability to chlorophenols (CPs), and thus it was employed as solid-phase extraction (SPE) adsorbent for enrichment of chlorophenols from water, honey, and white peach beverage prior to determination by high-performance liquid chromatography. Under the optimal conditions, the detection limits of the method (S/N = 3) were 0.15-0.3 ng mL-1 for tap water and leak water, 2.5-6.0 ng g-1 for honey sample and 0.4-0.6 ng mL-1 for white peach beverage sample. The recoveries of CPs in the spiked water, honey samples, and white peach beverage were in the range of 89.0-108.4%, 81.4-118.2%, and 85.0-113.5%, respectively. This work provides a new strategy for constructing functionalized HCPs as efficient SPE adsorbents. In this work, three novel hypercrosslinked polymers (HCPs) were synthesized by the Friedel-Crafts alkylation reaction (paraphthaloyl chloride as the alkylating agent, triphenylsilane, triphenylamine, and triphenylphosphine as the aromatic units). Then, HCP-TPS was applied to soild-phase extraction sorbent for enrichment CPs from water, honey, and white peach beverage samples.
Collapse
|
8
|
Zhang J, Yu C, Chen Z, Luo X, Zhao H, Wu F. Zeolitic imidazolate framework-8/ fluorinated graphene coated SiO 2 composites for pipette tip solid-phase extraction of chlorophenols in environmental and food samples. Talanta 2021; 228:122229. [PMID: 33773733 DOI: 10.1016/j.talanta.2021.122229] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/08/2021] [Accepted: 02/13/2021] [Indexed: 01/12/2023]
Abstract
In this work, a novel composite adsorbent was successfully prepared by zeolite imidazolate framework-8/fluorinated graphene layer-by-layer covalently bonded on SiO2 microspheres, and followed to be packed into micro pipette tip for extraction of trace chlorophenols prior to their detection by high performance liquid chromatography (HPLC). The morphology and structure of adsorbent material was characterized by field emission scanning electron microscopy with energy dispersive spectrometer, X-ray diffraction, and N2 adsorption. The parameters including the amount of adsorbent, sampling volume, sampling rate, sample pH, and desorption solvent affected the extraction performance was systematically investigated by pipette tip solid-phase extraction (PT-SPE) coupled with HPLC analysis. Under the optimized condition, the linearity of this method ranged from 20 to 2000 ng mL-1 for chlorophenols (CPs) with determination coefficient higher than 0.99. The limit of detection (at a signal-to-noise ratio of 3) were in the range 2-20 ng mL-1 for tap water and black tea drinks, 0.2-2 μg g-1 for honey. The relative recoveries of the CPs from spiked samples ranged from 71.8% to 104.7%, with relative standard deviations less than 6.2%. The filled extraction tube exhibited good stability and reproducibility. The proposed method has been successfully used to detect CPs in water and drinks with satisfactory recoveries.
Collapse
Affiliation(s)
- Juan Zhang
- Schoolof Chemistry and Environmental Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan, 430205, China.
| | - Chen Yu
- Schoolof Chemistry and Environmental Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Zhipeng Chen
- Schoolof Chemistry and Environmental Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Xiaogang Luo
- School of Chemical Engineering and Pharmacy, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan, 430205, China; School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Haiyan Zhao
- School of Pharmaceutical Sciences, South-central University for Nationalities, Wuhan, 430074, China
| | - Fengshou Wu
- School of Chemical Engineering and Pharmacy, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan, 430205, China.
| |
Collapse
|
9
|
Jagirani MS, Ozalp O, Soylak M. New Trend in the Extraction of Pesticides from the Environmental and Food Samples Applying Microextraction Based Green Chemistry Scenario: A Review. Crit Rev Anal Chem 2021; 52:1343-1369. [PMID: 33560139 DOI: 10.1080/10408347.2021.1874867] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review focused on the green microextraction methods used for the extraction of pesticides from the environmental and food samples. Microextraction techniques have been explored and applied in various fields of analytical chemistry since its beginning, as evinced by the numerous reviews published. The success of any technique in science and technology is measured by the simplicity, environmentally friendly, and its applications; and the microextraction technique is highly successive. Deliberations were attentive to studies where efforts have been made to validate the methods through the inter-laboratory comparison study to assess the analytical performance of microextraction techniques against conventional methods. Succinctly, developed microextraction methods are shown to impart significant benefits over conventional techniques. Provided that the analytical community continues to put forward attention and resources into the growth and validation of the microextraction technique, a promising future for microextraction is forecasted.
Collapse
Affiliation(s)
- Muhammad Saqaf Jagirani
- Faculty of Sciences, Department of Chemistry, Erciyes University, Kayseri, Turkey.,National Center of Excellence in Analytical Chemistry, University of Sindh, Sindh, Pakistan
| | - Ozgur Ozalp
- Faculty of Sciences, Department of Chemistry, Erciyes University, Kayseri, Turkey.,Technology Research and Application Center (TAUM), Erciyes University, Kayseri, Turkey
| | - Mustafa Soylak
- Faculty of Sciences, Department of Chemistry, Erciyes University, Kayseri, Turkey.,Technology Research and Application Center (TAUM), Erciyes University, Kayseri, Turkey
| |
Collapse
|
10
|
WANG P, CHEN Y, HU Y, LI G. [Synthesis and application progress of covalent organic polymers in sample preparation for food safety analysis]. Se Pu 2021; 39:162-172. [PMID: 34227349 PMCID: PMC9274845 DOI: 10.3724/sp.j.1123.2020.08013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Indexed: 11/25/2022] Open
Abstract
Food safety is closely related to human health and life. Contaminated foods may result in illness or poisoning. For example, perfluorinated compounds can concentrate in the human body, or they can be transferred to the baby during breastfeeding, thus leading to serious health risks. Phthalate esters may cause damage to the liver, lungs, and kidneys. Therefore, food safety has become a hot topic at a global level. Poisonous and harmful substances in foods are derived from the environment, planting or breeding, food contacting materials, and food processing, or due to unsuitable storage conditions. Residues of pesticides and veterinary drugs, organic pollutants, additives, heavy metals, and biotoxins often hamper food safety, causing diseases or even death. The diversity of available food species, complexity of the sample matrix, and lack of information about the source of pollutants render the direct determination of food contaminants difficult. Pretreatment is vital for the accurate analysis of trace toxins in foods. Optimal pretreatment can not only improve the extract efficiency and determination sensitivity, but also prevent instrument contamination. Pretreatment techniques have played an important role in trace determination for complex matrices. Pretreatment methods can be classified as solvent-based and adsorption-based methods. Adsorption-based techniques such as solid-phase extraction, magnetic solid-phase extraction, and solid-phase microextraction are simple and efficient, and hence, are widely used. In these pretreatment techniques, adsorbents play a key role in the extraction effect. In the last few years, metal organic frameworks, metal oxide materials, carbon nanotubes, graphene, and magnetic nanoparticles, as well as a combination of these materials, have been used as adsorbents. These materials are porous and have a large surface area; they are used to enrich trace targets and eliminate interferents. Covalent organic polymers (COPs) are a class of organic porous materials constructed from organic monomers via covalent bonding. Given their excellent characteristics such as light density, good stability, high surface area, structural controllability, and ease of modification, COPs are potential adsorbents. COPs are often synthesized by solvent thermal methods. However, these methods are time-consuming and require toxic solvents and harsh reaction conditions. As alternatives, room-temperature methods, mechanical chemical methods, microwave-assisted methods, and UV-assisted methods have been developed. This has facilitated the synthesis of a wide range of COPs. In this article, the recent applications of COPs in sample pretreatment for food safety analysis are reviewed. COPs can be used in solid-phase extraction by simple packing into columns, polymerization, or chemical bonding in the capillary. Magnetic compounds have been prepared by one-pot synthesis, in situ growth, in situ reduction, or coprecipitation methods and used in magnetic solid-phase extraction. Coatings of solid-phase microextraction fibers are fabricated by physical methods, chemical bonding, sol-gel methods, or in situ growth. Toxic and harmful substances in foods and foodstuffs are efficiently extracted by exploiting the high adsorbent capacities and specificity of COPs. Future development prospects and challenges in sample pretreatment are also discussed herein. There is increased focus on the development of simple, efficient, and environment-friendly methods to synthesize COPs with specific functions; further, high-throughput, sensitive analytical methods may be established. In the future, more specific COPs will be prepared in a cost-effective manner for widespread use in sample pretreatment.
Collapse
|