1
|
Nemati SS, Dehghan G. Photoelectrochemical biosensors: Prospects of graphite carbon nitride-based sensors in prostate-specific antigen diagnosis. Anal Biochem 2025; 696:115686. [PMID: 39393750 DOI: 10.1016/j.ab.2024.115686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/07/2024] [Accepted: 10/07/2024] [Indexed: 10/13/2024]
Abstract
Prostate cancer (PC) is very common in old age and causes many deaths. Early diagnosis and monitoring of the progress of the disease and the effectiveness of PC treatment are critical. On the other hand, choosing a specific biomarker for PCs is essential. Prostate-specific antigen (PSA) is a specific biomarker secreted in the prostate epithelial cells, which increases in cancer cells. Between all employed sensing mechanism, electrochemical sensors based on nanomaterials have created many hopes. Meanwhile, graphite carbon nitride (g-C3N4) is interested in developing photoelectrochemical sensors due to its large surface area, stability, easy modification, and good photoelectronic properties. In this review, electrochemical sensors based on nanocomposites containing g-C3N4 have been investigated in PSA detection. After providing an overview of the characteristics of g-C3N4 and cancer biomarkers, it reviews the strategies and mechanisms involved in identifying PSA. Different approaches to photoelectrochemistry, impedimetric immunosensors, photocatalysis, and luminescence have been used in diagnostic mechanisms. Then, challenges and prospects for electrochemical sensors based on nanocomposites containing g-C3N4 in PSA detection have been analyzed. The recent review generally opens an efficient view in PSA diagnosis and the application of g-C3N4-based electrochemical sensors in personalized medicine diagnosis and treatment.
Collapse
Affiliation(s)
- Seyed Saman Nemati
- Laboratory of Biochemistry and Molecular Biology, Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran.
| | - Gholamreza Dehghan
- Laboratory of Biochemistry and Molecular Biology, Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
2
|
Kumar S, Poria R, Kala D, Nagraik R, Dhir Y, Dhir S, Singh B, Kaushik NK, Noorani MS, Kumar D, Gupta S, Kaushal A. Recent advances in ctDNA detection using electrochemical biosensor for cancer. Discov Oncol 2024; 15:517. [PMID: 39356360 PMCID: PMC11448507 DOI: 10.1007/s12672-024-01365-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/18/2024] [Indexed: 10/03/2024] Open
Abstract
In the quest for early cancer diagnosis, early identification and treatment are paramount. Recently, ctDNA detection has emerged as a viable avenue for early screening of cancer. The examination of ctDNA in fluid biopsies has gained substantial attention in tumor diagnosis and therapy. Both the scientific community and industry are actively exploring this field. However, developing cost-effective, portable, and real-time ctDNA measurement methods using conventional gene detection equipment poses a significant challenge. This challenge has led to the exploration of alternative approaches. Electrochemical biosensors, distinguished by their heightened sensitivity, remarkable specificity, affordability, and excellent portability, have emerged as a promising avenue for ctDNA detection. This review is dedicated to the specific focus on ctDNA detection, highlighting recent advancements in this evolving detection technology. We aimed to reference previous studies related to ctDNA-targeted cancer detection using electrochemical biosensors to advocate the utilization of electrochemical biosensors in healthcare diagnostics. Further research is imperative for the effective integration of ctDNA analysis into point-of-care cancer testing. Innovative approaches utilizing multiple markers need to be explored to advance this technology and make substantial contributions to societal well-being.
Collapse
Affiliation(s)
- Sahil Kumar
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, 133203, Ambala, India
| | - Renu Poria
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, 133203, Ambala, India
| | - Deepak Kala
- NL-11 Centera Tetrahertz Laboratory, Institute of High Pressure Physics, Polish Academy of Sciences, 29/37 Sokolowska Street, Warsaw, 01142, Poland
| | - Rupak Nagraik
- School of Bioengineering and Food Technology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, India
| | - Yashika Dhir
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, 133203, Ambala, India
| | - Sunny Dhir
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, 133203, Ambala, India
| | - Bharat Singh
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, 133203, Ambala, India
| | - Naveen Kumar Kaushik
- Department of Industrial Biotechnology, College of Biotechnology, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana, India
| | - Md Salik Noorani
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, 173229, Himachal Pradesh, India.
| | - Shagun Gupta
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, 133203, Ambala, India.
| | - Ankur Kaushal
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, 133203, Ambala, India.
| |
Collapse
|
3
|
Turk Z, Armani A, Jafari-Gharabaghlou D, Madakbas S, Bonabi E, Zarghami N. A new insight into the early detection of HER2 protein in breast cancer patients with a focus on electrochemical biosensors approaches: A review. Int J Biol Macromol 2024; 272:132710. [PMID: 38825266 DOI: 10.1016/j.ijbiomac.2024.132710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/04/2024]
Abstract
Breast cancer is one of the leading causes of death in women and is a prevalent kind of cancerous growth, representing a substantial risk to women's health. Early detection of breast cancer is essential for effective treatment and improved survival rates. Biomarkers, active substances that signal the existence and advancement of a tumor, play a significant role in the early detection of breast cancer. Hence, accurate identification of biomarkers for tumors is crucial for diagnosing and treating breast cancer. However, the primary diagnostic methods used for the detection of breast cancer require specific equipment, skilled professionals, and specialized analysis, leading to elevated detection expenses. Regarding this obstacle, recent studies emphasize electrochemical biosensors as more advanced and sensitive detection tools compared to traditional methods. Electrochemical biosensors are employed to identify biomarkers that act as unique indicators for the onset, recurrence, and monitoring of therapeutic interventions for breast cancer. This study aims to provide a summary of the electrochemical biosensors that have been employed for the detection of breast cancer at an early stage over the past decade. Initially, the text provides concise information about breast cancer and tumor biomarkers. Subsequently, an in-depth analysis is conducted to systematically review the progress of electrochemical biosensors developed for the stable, specific, and sensitive identification of biomarkers associated with breast cancer. Particular emphasis was given to crucial clinical biomarkers, specifically the human epidermal growth factor receptor-2 (HER2). The analysis then explores the limitations and challenges inherent in the design of effective biosensors for diagnosing and treating breast cancer. Ultimately, we provided an overview of future research directions and concluded by outlining the advantages of electrochemical biosensor approaches.
Collapse
Affiliation(s)
- Zeynep Turk
- Department of Chemistry, Faculty of Science, Marmara University, Istanbul, Türkiye; Department of Analytical Chemistry, Faculty of Pharmacy, Istanbul Aydin University, Istanbul, Türkiye
| | - Arta Armani
- Department of Medical Biology and Genetics, Faculty of Medicine, Istanbul Aydin University, Istanbul, Türkiye
| | - Davoud Jafari-Gharabaghlou
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyfullah Madakbas
- Department of Chemistry, Faculty of Science, Marmara University, Istanbul, Türkiye
| | - Esat Bonabi
- Department of Medical Microbiology, Faculty of Medicine, Istanbul Aydin University, Istanbul, Türkiye
| | - Nosratollah Zarghami
- Department of Medical Biochemistry, Faculty of Medicine, Istanbul Aydin University, Istanbul, Türkiye.
| |
Collapse
|
4
|
Bi L, Teng Y, Baghayeri M, Bao J. Employing Pd nanoparticles decorated on halloysite nanotube/carbon composite for electrochemical aptasensing of HER2 in breast cancer patients. ENVIRONMENTAL RESEARCH 2023; 237:117030. [PMID: 37659641 DOI: 10.1016/j.envres.2023.117030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/19/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
An effective biosensing platform is described based on halloysite nanotube/carbon composite decorated with Pd nanoparticles (HNT/C@Pd NPs). A novel electrochemical aptasensor was designed using the proposed nano-platform to determine human epidermal growth factor receptor 2 (HER2), a breast cancer biomarker. Inherently, aptasensing interfaces provide high sensitivity and selectivity for tumor markers owing to the high specific surface area of HNT/C and good conductivity stems from deposition of Pd NPs into HNT/C composite. With a correlation coefficient of 0.996, the electrochemical aptasensor demonstrated a wide linear range from 0.03 ng/mL to 9 ng/mL. The limit of detection (LOD) of the established assay was 8 pg/mL based on S/N = 3 method. Further, the designed biosensor demonstrated acceptable selectivity, good reproducibility, and high stability. The applicability of the impedimetric sensor in human serum samples was also examined and compared to enzyme-linked immunosorbent assay (ELISA) assay (p-value >0.05). Based on the results, it was found that the proposed methodology can be used in quantification of breast cancer markers for early diagnosis and treatment.
Collapse
Affiliation(s)
- Liangliang Bi
- Department of Ultrasound Diagnosis, Affiliated Hospital of Hebei University, Baoding, 071000, Hebei, China
| | - Yue Teng
- Faculty of Medicine, Health and Life Science, Swansea University, SA2 8PP, Swansea, Wales, UK
| | - Mehdi Baghayeri
- Department of Chemistry, Faculty of Science, Hakim Sabzevari University, PO. Box 397, Sabzevar, Iran.
| | - Jinlei Bao
- College of Nursing, Shandong Xiehe University, Jinan, Shandong, China
| |
Collapse
|
5
|
Shi SS, Jia LP, Zhang W, Ma RN, Shang L, Li XJ, Zhao HQ, Wang HS. A label-free electrochemical aptasensor based on Bi-Sb alloy materials for potential POCT of HER-2. Analyst 2023; 148:4037-4043. [PMID: 37522239 DOI: 10.1039/d3an00606a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
As a prognostic biomarker for breast cancer, human epidermal growth factor receptor 2 (HER-2) is of crucial diagnostic value. Here, a label-free electrochemical aptasensor was established for the ultrasensitive detection of HER-2 using a modified electrode of Bi-Sb alloy materials (Bi-Sb AMs). The performance of the aptasensor was enhanced greatly due to the introduction of Bi-Sb alloy materials (Bi-Sb AMs) with high conductivity. Furthermore, by integrating the aptasensor with the Sensit Smart U-disk electrochemical analyzer, the point-of-care testing (POCT) for HER-2 was realized. Under the optimal experimental parameters, the POCT analyzer showed a wide linear response from 0.01 pg mL-1 to 100 ng mL-1, with a low detection limit (LOD) of 5.96 fg mL-1 for the detection of HER-2. The presented POCT analyzer exhibited good specificity, stability, and reproducibility. Benefiting from the simple operation and rapid testing, the developed analyzer will have potential application in the prognostic diagnosis and treatment of breast cancer.
Collapse
Affiliation(s)
- Shan-Shan Shi
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China.
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, PR China.
| | - Li-Ping Jia
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, PR China.
| | - Wei Zhang
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, PR China.
| | - Rong-Na Ma
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, PR China.
| | - Lei Shang
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, PR China.
| | - Xiao-Jian Li
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, PR China.
| | - Huai-Qing Zhao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China.
| | - Huai-Sheng Wang
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, PR China.
| |
Collapse
|
6
|
Khumngern S, Jeerapan I. Advances in wearable electrochemical antibody-based sensors for cortisol sensing. Anal Bioanal Chem 2023:10.1007/s00216-023-04577-y. [PMID: 36781449 DOI: 10.1007/s00216-023-04577-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/15/2023]
Abstract
Cortisol is a crucial hormone involving many physiological processes. Hence, cortisol detection is essential. This review highlights the key progress made on wearable electrochemical sensors using antibodies. It covers the design, principle, and electroanalytical methodology for detecting cortisol noninvasively. This article also analyzes and collects the analytical performances of electrochemical cortisol sensors. The development of these sensors continues to face challenges such as biofouling, sample management, sensitivity, flexibility, stability, and recognition layer performance. It is also necessary to develop a sensitive electrode and material. This article also presents potential strategies for designing antibody electrodes and provides examples of sensing systems. Additionally, it discusses the challenges in translating research into practical applications.
Collapse
Affiliation(s)
- Suntisak Khumngern
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand.,Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand
| | - Itthipon Jeerapan
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand. .,Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand. .,Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand.
| |
Collapse
|
7
|
Joshi A, Vishnu G K A, Dhruv D, Kurpad V, Pandya HJ. Morphology-Tuned Electrochemical Immunosensing of a Breast Cancer Biomarker Using Hierarchical Palladium Nanostructured Interfaces. ACS OMEGA 2022; 7:34177-34189. [PMID: 36188250 PMCID: PMC9520690 DOI: 10.1021/acsomega.2c03532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/30/2022] [Indexed: 05/28/2023]
Abstract
Metallic nanostructures are considered attractive candidates for designing novel biosensors due to their enormously significant surface area, accelerated kinetics, and improved affinity. Controllable morphological tuning of metallic nanostructures on sensing interfaces is crucial for attaining clinically relevant sensitivity and exquisite selectivity in a complex biological environment. Therefore, a facile, convenient, and robust one-step electroreduction method was employed to develop different morphological variants of palladium (Pd) nanostructures supported onto oxidized carbon nanotubes to facilitate label-free electrochemical immunosensing of HER2. The morphological and structural attributes of the synthesized Pd nanostructures were thoroughly investigated using scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and atomic force microscopy techniques. In-depth electrochemical investigations revealed an intimate correlation between the nanostructured sensor and electrochemical response, suggesting the suitability of hierarchical palladium nanostructures supported onto carbon nanotubes [Pd(-0.1 V)/CNT] for sensitive detection of HER2. The high surface area of hierarchical Pd nanostructures enabled an ultrasensitive electrochemical response toward HER2 (detection limit: 1 ng/mL) with a wide detection range of 10 to 100 ng/mL. The ease of surface modification, sensitivity, and reliable electrochemical response in human plasma samples suggested the enormous potential of Pd nanostructuring for chip-level point-of-care screening of HER2-positive breast cancer patients.
Collapse
Affiliation(s)
- Anju Joshi
- Department
of Electronic Systems Engineering, Division of EECS, Indian Institute of Science, Bangalore 560012, India
| | - Anil Vishnu G K
- Centre
for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Dhananjay Dhruv
- Natubhai
V. Patel College of Pure and Applied Sciences, Charutar Vidya Mandal University, Vallabh Vidyanagar, Anand 388120, Gujarat, India
| | - Vishnu Kurpad
- SriShankara
Cancer Hospital and Research Centre, Bengaluru 560004, Karnataka, India
| | - Hardik J. Pandya
- Department
of Electronic Systems Engineering, Division of EECS, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
8
|
Xie Y, Wen Y, Su X, Zheng C, Li M. Label-Free Plasmon-Enhanced Spectroscopic HER2 Detection for Dynamic Therapeutic Surveillance of Breast Cancer. Anal Chem 2022; 94:12762-12771. [PMID: 36069700 DOI: 10.1021/acs.analchem.2c02419] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The expression of human epidermal growth factor receptor-2 (HER2) has important implications for pathogenesis, progression, and therapeutic efficacy of breast cancer. The detection of its variation during the treatment is crucial for therapeutic decision-making but remains a grand challenge, especially at the cellular level. Here, we develop a machine learning-driven surface-enhanced Raman spectroscopy (SERS)-integrated strategy for label-free detection of cellular HER2. Specifically, our method allows the extraction of cell-rich spectral signatures utilized for identification and classification of cancer cells with distinct HER2 expression with a high accuracy of 99.6%. By combining label-free SERS detection and machine learning-driven chemometric analysis, we are able to perform longitudinal monitoring of therapeutic efficacy at the cellular level during the treatment of HER2+ breast cancer, which aids in the subsequent decision-making and management. This work provides a promising technique capable of performing dynamic label-free spectroscopic detection for therapeutic surveillance of diseases.
Collapse
Affiliation(s)
- Yangcenzi Xie
- School of Materials Science and Engineering, Central South University, Changsha 410083, Hunan, China
| | - Yu Wen
- School of Materials Science and Engineering, Central South University, Changsha 410083, Hunan, China
| | - Xiaoming Su
- School of Materials Science and Engineering, Central South University, Changsha 410083, Hunan, China.,College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Chao Zheng
- Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, Shandong, China
| | - Ming Li
- School of Materials Science and Engineering, Central South University, Changsha 410083, Hunan, China
| |
Collapse
|
9
|
Ahirwar R, Bhattacharya A, Kumar S. Unveiling the underpinnings of various non-conventional ELISA variants: a review article. Expert Rev Mol Diagn 2022; 22:761-774. [PMID: 36004453 DOI: 10.1080/14737159.2022.2117615] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Enzyme-linked immunosorbent assay (ELISA) is a key bio-analytical technique used for the detection of a large array of antigenic substances of scientific, clinical, food safety, and environmental importance. The assay primarily involves capturing and detecting target analytes using specific antigen-antibody interactions. The wide usage of ELISA shoulders on its high specificity and reproducibility. Notwithstanding, the conventional microwell plate-based format of ELISA has some major drawbacks, such as long assay time (4 - 18 h), large sample volumes requirement (100 - 200 μL), lack of multiplicity, and burdensome procedures that limit its utility in rapid and affordable diagnostics. AREAS COVERED Here, we reviewed microfluidic-ELISA, paper-ELISA, aptamer-ELISA, and those based on novel incubation such as heat-ELISA, pressure-ELISA, microwave-ELISA, and sound-ELISA. Further, the current trends and future prospects of these ELISA protocols in clinical diagnostics are discussed. EXPERT OPINION The reviewed non-conventional ELISA formats are relatively rapid, require low reagent volumes, are multiplexable, and could be performed in a low-cost setup. In our opinion, these non-conventional variants of ELISA are on a par with the conventional format for clinical diagnostics and fundamental biological research and hold added clinical translational potential for quick, inexpensive, and convenient measurements.
Collapse
Affiliation(s)
- Rajesh Ahirwar
- Department of Environmental Biochemistry, ICMR-National Institute for Research in Environmental Health, Bhopal-462030, India
| | - Akanksha Bhattacharya
- Department of Environmental Biochemistry, ICMR-National Institute for Research in Environmental Health, Bhopal-462030, India
| | - Saroj Kumar
- School of Biosciences, Apeejay Stya University, Gurgaon- 122103, India
| |
Collapse
|
10
|
Ni Y, Ouyang H, Yu L, Ling C, Zhu Z, He A, Liu R. Label-free electrochemical aptasensor based on magnetic α-Fe2O3/Fe3O4 heterogeneous hollow nanorods for the detection of cancer antigen 125. Bioelectrochemistry 2022; 148:108255. [DOI: 10.1016/j.bioelechem.2022.108255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/25/2022] [Accepted: 08/28/2022] [Indexed: 11/24/2022]
|
11
|
Li X, Wang Y, Zhao Y, Wei Y. Fast Speckle Noise Suppression Algorithm in Breast Ultrasound Image Using Three-Dimensional Deep Learning. Front Physiol 2022; 13:880966. [PMID: 35492597 PMCID: PMC9043555 DOI: 10.3389/fphys.2022.880966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/28/2022] [Indexed: 11/22/2022] Open
Abstract
The rapid development of ultrasound medical imaging technology has greatly broadened the scope of application of ultrasound, which has been widely used in the screening, diagnosis of breast diseases and so on. However, the presence of excessive speckle noise in breast ultrasound images can greatly reduce the image resolution and affect the observation and judgment of patients’ condition. Therefore, it is particularly important to investigate image speckle noise suppression. In the paper, we propose fast speckle noise suppression algorithm in breast ultrasound image using three-dimensional (3D) deep learning. Firstly, according to the gray value of the breast ultrasound image, the input breast ultrasound image contrast is enhanced using logarithmic and exponential transforms, and guided filter algorithm was used to enhance the details of glandular ultrasound image, and spatial high-pass filtering algorithm was used to suppress the excessive sharpening of breast ultrasound image to complete the pre-processing of breast ultrasound image and improve the image clarity; Secondly, the pre-processed breast ultrasound images were input into the 3D convolutional cloud neural network image speckle noise suppression model; Finally, the edge sensitive terms were introduced into the 3D convolutional cloud neural network to suppress the speckle noise of breast ultrasound images while retaining image edge information. The experiments demonstrate that the mean square error and false recognition rate all reduced to below 1.2% at the 100th iteration of training, and the 3D convolutional cloud neural network is well trained, and the signal-to-noise ratio of ultrasound image speckle noise suppression is greater than 60 dB, the peak signal-to-noise ratio is greater than 65 dB, the edge preservation index value exceeds the experimental threshold of 0.45, the speckle noise suppression time is low, the edge information is well preserved, and the image details are clearly visible. The speckle noise suppression time is low, the edge information is well preserved, and the image details are clearly visible, which can be applied to the field of breast ultrasound diagnosis.
Collapse
Affiliation(s)
- Xiaofeng Li
- Department of Information Engineering, Heilongjiang International University, Harbin, China
- *Correspondence: Xiaofeng Li,
| | - Yanwei Wang
- School of Mechanical Engineering, Harbin Institute of Petroleum, Harbin, China
| | | | - Yanbo Wei
- School of Automatic Control Engineering, Harbin Institute of Petroleum, Harbin, China
| |
Collapse
|