1
|
Wang LS, Guo YJ, Li YH, Zhao YS, Wei Q, Gao ZF. High-performance electrochemical immunosensor based on bimetallic gold/silver functionalized carbon spheres for CYFRA 21-1 detection and information protection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6802-6809. [PMID: 39264253 DOI: 10.1039/d4ay01550a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Bimetallic nanomaterial-based systems have been widely utilized across various fields due to their remarkable expandability and flexibility, including nanomedicine, diagnostics, and molecular information technology. Here, we constructed an electrochemical immunosensor using bimetallic gold/silver functionalized carbon spheres (AuAg@CSs) and mesoporous silica nanoparticles (MSNs) for the sensitive determination of cytokeratin 19 fragment antigen 21-1 (CYFRA 21-1) and ensuring information protection for textual data. The AuAg@CSs demonstrated exceptional catalytic activity towards hydrogen peroxide, generating a significant current signal. The introduction of CYFRA 21-1 facilitated the binding of MSNs, thereby forming a sandwich-type electrochemical immunosensor that resulted in a notable decrease in current. Notably, the detection limit for CYFRA 21-1 was determined to be 31 fg mL-1, accompanied by high selectivity. Furthermore, extensive textual information can be encrypted and concealed within the current responses of the electrochemical nanosensing system. By establishing a threshold, these current signals can be represented as a series of binary strings, which can subsequently be segmented into shorter strings. Through information coding methods, these shorter binary strings can be assembled and decrypted, ultimately merging into meaningful textual content. This study promotes the synthesis and multifunctional application of bimetallic nanomaterials, providing innovative solutions to enhance the sensing sensitivity of electrochemical immunosensors and paving the way for advancements in molecular digitization.
Collapse
Affiliation(s)
- Lin Sheng Wang
- Key Laboratory of Interfacial Reaction and Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China.
| | - Yu Jian Guo
- Key Laboratory of Interfacial Reaction and Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China.
| | - Yu Hao Li
- Key Laboratory of Interfacial Reaction and Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China.
| | - Yong Sen Zhao
- Key Laboratory of Interfacial Reaction and Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China.
| | - Qin Wei
- Key Laboratory of Interfacial Reaction and Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China.
| | - Zhong Feng Gao
- Key Laboratory of Interfacial Reaction and Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China.
| |
Collapse
|
2
|
Shen Q, Ding J, Guo Z, Yang X, Zhang Y, Xu B, Yang H, Sun Y, Hang L. Dual-responsive electrochemical immunosensor for CYFRA21-1 detection based on Au/Co Co-loaded 3D ordered macroporous carbon interconnected framework. Colloids Surf B Biointerfaces 2024; 242:114111. [PMID: 39053032 DOI: 10.1016/j.colsurfb.2024.114111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/26/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
Cytokeratin 19 fragment antigen 21-1 (CYFRA21-1) is a protein fragment released into the bloodstream during the death of lung epithelial cells, serving as a predictive biomarker in diagnosing non-small cell lung cancer (NSCLC) and need to be accurately detected. Herein, a dual-responsive label-free electrochemical immunosensor was developed based on a three-dimensional ordered interconnecting macroporous carbon skeleton material modified with gold-cobalt nanoparticles (Au/Co NPs-3D MCF) to detect cytokeratin-19 fragment (CYFRA21-1). The three-dimensional ordered interconnect macroporous structure, by providing a high specific surface area and an electrochemically active area, not only enhances the electron transport channel and reduces mass transfer resistance, but also offers a confined region that elevates the collision frequency with the active site. In addition to exhibiting excellent biocompatibility for antibody binding, gold-cobalt nanoparticles contribute significantly to the overall robustness of the immunosensor. By capitalizing on the 3D network structure and collective effect of Au and Co NPs, the Au/Co NPs-3D MCF immunosensors exhibit exceptional response signals in both chronocurrent testing and square-wave voltammetry, allowing for a wide linear response range of 0.0001-100 ng/mL and a low detection limit. Moreover, the constructed immunosensor is capable of detecting CYFRA21-1 in human serum and has the potential for further extension to detect multiple biomarkers. This work opens up new avenues for the construction of other highly selective 3D network immunosensors.
Collapse
Affiliation(s)
- Qi Shen
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250055, PR China
| | - Jianjun Ding
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250055, PR China
| | - Zengsheng Guo
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250055, PR China
| | - Xiaodong Yang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250055, PR China
| | - Yuhan Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250055, PR China
| | - Bo Xu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250055, PR China
| | - Hongxiao Yang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250055, PR China
| | - Yiqiang Sun
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250055, PR China.
| | - Lifeng Hang
- The Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou 518037, PR China.
| |
Collapse
|
3
|
Cheng K, Wan S, Yang JW, Chen SY, Wang HL, Xu CH, Qiao SH, Li XR, Li Y. Applications of Biosensors in Bladder Cancer. Crit Rev Anal Chem 2024:1-20. [PMID: 38978228 DOI: 10.1080/10408347.2024.2373923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Bladder cancer (BC) is the tenth most common cancer globally, predominantly affecting men. Early detection and treatment are crucial due to high recurrence rates and poor prognosis for advanced stages. Traditional diagnostic methods like cystoscopy and imaging have limitations, leading to the exploration of noninvasive methods such as liquid biopsy. This review highlights the application of biosensors in BC, including electrochemical and optical sensors for detecting tumor markers like proteins, nucleic acids, and other biomolecules, noting their clinical relevance. Emerging therapeutic approaches, such as antibody-drug conjugates, targeted therapy, immunotherapy, and gene therapy, are also explored, the role of biosensors in detecting corresponding biomarkers to guide these treatments is examined. Finally, the review addresses the current challenges and future directions for biosensor applications in BC, highlighting the need for large-scale clinical trials and the integration of advanced technologies like deep learning to enhance diagnostic accuracy and treatment efficacy.
Collapse
Affiliation(s)
- Kun Cheng
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, P.R. China
- Gansu Province Clinical Research Center for Urology, Lanzhou, P.R. China
| | - Shun Wan
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, P.R. China
- Gansu Province Clinical Research Center for Urology, Lanzhou, P.R. China
| | - Jian-Wei Yang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, P.R. China
- Gansu Province Clinical Research Center for Urology, Lanzhou, P.R. China
| | - Si-Yu Chen
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, P.R. China
- Gansu Province Clinical Research Center for Urology, Lanzhou, P.R. China
| | - Hai-Long Wang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, P.R. China
- Gansu Province Clinical Research Center for Urology, Lanzhou, P.R. China
| | - Chang-Hong Xu
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, P.R. China
- Gansu Province Clinical Research Center for Urology, Lanzhou, P.R. China
| | - Si-Hang Qiao
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, P.R. China
- Gansu Province Clinical Research Center for Urology, Lanzhou, P.R. China
| | - Xiao-Ran Li
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, P.R. China
- Gansu Province Clinical Research Center for Urology, Lanzhou, P.R. China
| | - Yang Li
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, P.R. China
- Gansu Province Clinical Research Center for Urology, Lanzhou, P.R. China
| |
Collapse
|
4
|
Cheng K, Wan S, Chen SY, Yang JW, Wang HL, Xu CH, Qiao SH, Yang L. Nuclear matrix protein 22 in bladder cancer. Clin Chim Acta 2024; 560:119718. [PMID: 38718852 DOI: 10.1016/j.cca.2024.119718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/02/2024] [Accepted: 05/05/2024] [Indexed: 05/19/2024]
Abstract
Bladder cancer (BC) is ranked as the ninth most common malignancy worldwide, with approximately 570,000 new cases reported annually and over 200,000 deaths. Cystoscopy remains the gold standard for the diagnosis of BC, however, its invasiveness, cost, and discomfort have driven the demand for the development of non-invasive, cost-effective alternatives. Nuclear matrix protein 22 (NMP22) is a promising non-invasive diagnostic tool, having received FDA approval. Traditional methods for detecting NMP22 require a laboratory environment equipped with specialized equipment and trained personnel, thus, the development of NMP22 detection devices holds substantial potential for application. In this review, we evaluate the NMP22 sensors developed over the past decade, including electrochemical, colorimetric, and fluorescence biosensors. These sensors have enhanced detection sensitivity and overcome the limitations of existing diagnostic methods. However, many emerging devices exhibit deficiencies that limit their potential clinical use, therefore, we propose how sensor design can be optimized to enhance the likelihood of clinical translation and discuss the future applications of NMP22 as a legacy biomarker, providing insights for the design of new sensors.
Collapse
Affiliation(s)
- Kun Cheng
- Department of Urology, Lanzhou University Second Hospital, Lanzhou 730000, PR China; Gansu Province Clinical Research Center for Urology, Lanzhou 730000, PR China
| | - Shun Wan
- Department of Urology, Lanzhou University Second Hospital, Lanzhou 730000, PR China; Gansu Province Clinical Research Center for Urology, Lanzhou 730000, PR China
| | - Si-Yu Chen
- Department of Urology, Lanzhou University Second Hospital, Lanzhou 730000, PR China; Gansu Province Clinical Research Center for Urology, Lanzhou 730000, PR China
| | - Jian-Wei Yang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou 730000, PR China; Gansu Province Clinical Research Center for Urology, Lanzhou 730000, PR China
| | - Hai-Long Wang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou 730000, PR China; Gansu Province Clinical Research Center for Urology, Lanzhou 730000, PR China
| | - Chang-Hong Xu
- Department of Urology, Lanzhou University Second Hospital, Lanzhou 730000, PR China; Gansu Province Clinical Research Center for Urology, Lanzhou 730000, PR China
| | - Si-Hang Qiao
- Department of Urology, Lanzhou University Second Hospital, Lanzhou 730000, PR China; Gansu Province Clinical Research Center for Urology, Lanzhou 730000, PR China
| | - Li Yang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou 730000, PR China; Gansu Province Clinical Research Center for Urology, Lanzhou 730000, PR China.
| |
Collapse
|
5
|
Regiart M, Fernández-Baldo MA, Navarrete BA, Morales García C, Gómez B, Tortella GR, Valero T, Ortega FG. Five years of advances in electrochemical analysis of protein biomarkers in lung cancer: a systematic review. Front Chem 2024; 12:1390050. [PMID: 38764920 PMCID: PMC11099832 DOI: 10.3389/fchem.2024.1390050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/01/2024] [Indexed: 05/21/2024] Open
Abstract
Lung cancer is the leading cause of cancer death in both men and women. It represents a public health problem that must be addressed through the early detection of specific biomarkers and effective treatment. To address this critical issue, it is imperative to implement effective methodologies for specific biomarker detection of lung cancer in real clinical samples. Electrochemical methods, including microfluidic devices and biosensors, can obtain robust results that reduce time, cost, and assay complexity. This comprehensive review will explore specific studies, methodologies, and detection limits and contribute to the depth of the discussion, making it a valuable resource for researchers and clinicians interested in lung cancer diagnosis.
Collapse
Affiliation(s)
- Matías Regiart
- Instituto de Química San Luis (INQUISAL), Departamento de Química, Universidad Nacional de San Luis, CONICET, San Luis, Argentina
| | - Martín A. Fernández-Baldo
- Instituto de Química San Luis (INQUISAL), Departamento de Química, Universidad Nacional de San Luis, CONICET, San Luis, Argentina
| | - Bernardino Alcázar Navarrete
- IBS Granada, Institute of Biomedical Research, Granada, Spain
- Pulmonology Unit, Hospital Universitario Virgen de las Nieves, Granada, Spain
- CIBERES, Instituto de Salud Carlos III, Madrid, Spain
| | - Concepción Morales García
- IBS Granada, Institute of Biomedical Research, Granada, Spain
- Pulmonology Unit, Hospital Universitario Virgen de las Nieves, Granada, Spain
| | - Beatriz Gómez
- IBS Granada, Institute of Biomedical Research, Granada, Spain
- Pulmonology Unit, Hospital Universitario Virgen de las Nieves, Granada, Spain
| | - Gonzalo R. Tortella
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| | - Teresa Valero
- IBS Granada, Institute of Biomedical Research, Granada, Spain
- Department of Medicinal and Organic Chemistry and Excellence Research Unit of “Chemistry Applied to Biomedicine and the Environment”, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Francisco Gabriel Ortega
- IBS Granada, Institute of Biomedical Research, Granada, Spain
- Pulmonology Unit, Hospital Universitario Virgen de las Nieves, Granada, Spain
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Granada, Spain
- UGC Cartuja, Distrito Sanitario Granada Metropolitano, Granada, Spain
| |
Collapse
|
6
|
Zhang T, Ma Y, Tian R, Zhang Y. CTAB-Co-MOFs@AuPt NPs as signal probes for the electrochemical detection of carcinoembryonic antigen 15-3. Mikrochim Acta 2024; 191:176. [PMID: 38438573 DOI: 10.1007/s00604-024-06254-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/01/2024] [Indexed: 03/06/2024]
Abstract
A sensitive electrochemical strategy for carcinoembryonic antigen 15-3 (CA15-3) detection is reported using CTAB-Co-MOFs@AuPt NPs as signal probes. The electrochemical strategy was designed as follows: First, the graphene aerogel@gold nanoparticles (GA@Au NPs) nanocomposites were employed to modify the sensing surface for promoting electron transfer rate and primary antibody (Ab1) immobilization due to GA possesses a large specific surface area, eminent conductivity, and a 3D network structure. Cobalt metal-organic frameworks (CTAB-Co-MOFs) synthesized were then used as a carrier for AuPt NPs and secondary antibody (Ab2) immobilization (notes: labelled-Ab2). With sandwich immunoreaction, the labelled-Ab2 was captured on the surface of the GA@Au NPs nanocomposites. Finally, differential pulse voltammetry (DPV) was employed to register the electrochemical signal of the immunosensor at the potential of - 0.85 V (vs SCE) in phosphate buffer saline (PBS) containing 2.5 mM H2O2. It was verified that the electrochemical reduction signal from Co3+ to Co2+ was recorded. The AuPt NPs could catalyze the reaction of H2O2 oxidizing Co2+ to Co3+, resulting in the amplification of the electrochemical signal. Under the selected conditions, the immunosensor can detect CA15-3 in the range 10 µU/mL to 250 U/mL with a low detection limit of 1.1 µU/mL. In the designed strategy, the CTAB-Co-MOFs were not only employed as carriers for AuPt NPs, but also acted as signal probes. The CTAB-Co-MOFs were investigated including SEM, TEM, XPS, and XRD. The application ability of the immunosensor was evaluated using serum sample, demonstrating the immunosensor can be applied to clinic serum analysis.
Collapse
Affiliation(s)
- Tingting Zhang
- College of Chemistry and Materials Science, Anhui Key Laboratory of Chem-Biosensing, Anhui Normal University, Wuhu, 241002, People's Republic of China
| | - Yan Ma
- College of Chemistry and Materials Science, Anhui Key Laboratory of Chem-Biosensing, Anhui Normal University, Wuhu, 241002, People's Republic of China
| | - Ruifen Tian
- College of Chemistry and Materials Science, Anhui Key Laboratory of Chem-Biosensing, Anhui Normal University, Wuhu, 241002, People's Republic of China
| | - Yuzhong Zhang
- College of Chemistry and Materials Science, Anhui Key Laboratory of Chem-Biosensing, Anhui Normal University, Wuhu, 241002, People's Republic of China.
| |
Collapse
|
7
|
Aydın EB, Aydın M, Sezgintürk MK. A novel electrochemical impedance immunosensor for the quantification of CYFRA 21-1 in human serum. Mikrochim Acta 2023; 190:235. [PMID: 37219635 DOI: 10.1007/s00604-023-05813-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/21/2023] [Indexed: 05/24/2023]
Abstract
A sensitive, simple, and reliable immunosensor was constructed to detect the lowest alteration of a fragment of cytokeratin subunit 19 (CYFRA 21-1), a protein lung carcinoma biomarker. The proposed immunosensor was manufactured with a carbon black C45/polythiophene polymer-containing amino terminal groups (C45-PTNH2) conductive nanocomposite, resulting in an excellent, biocompatible, low-cost, and electrically conductive electrode surface. Anti-CYFRA 21-1 biorecognition molecules were attached to the electrode thanks to the amino terminal groups of the used PTNH2 polymer with a relatively simple procedure. All electrode surfaces after modifications were characterized by electrochemical, chemical, and microscopic techniques. Electrochemical impedance spectroscopy (EIS) was also utilized for the evaluation of the analytical feature of the immunosensor. The charge transfer resistance of the immunosensor signal was correlated with the CYFRA 21-1 concentration in the concentration range 0.03 to 90 pg/mL. The limit of detection (LOD) and the limit of quantification (LOQ) of the suggested system were 4.7 fg/mL and 14.1 fg/mL, respectively. The proposed biosensor had favorable repeatability and reproducibility, long storage stability, excellent selectivity, and low cost. Furthermore, it was applied to determine CYFRA 21-1 in commercial serum samples, and satisfactory recovery results (98.63-106.18%) were obtained. Thus, this immunosensor can be offered for clinical purposes as a rapid, stable, low-cost, selective, reproducible, and reusable tool.
Collapse
Affiliation(s)
- Elif Burcu Aydın
- Scientific and Technological Research Center, Tekirdağ Namık Kemal University, Tekirdağ, Turkey.
| | - Muhammet Aydın
- Scientific and Technological Research Center, Tekirdağ Namık Kemal University, Tekirdağ, Turkey
| | - Mustafa Kemal Sezgintürk
- Bioengineering Department, Faculty of Engineering, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| |
Collapse
|
8
|
Zheng JY, Wei JJ, Yang HY, Xu F, Lou Y, Song P, Wang AJ, Mei LP, Zhang L, Feng JJ. Hollow SnO 2/CdS QDs/CdCO 3 heterostructured nanocubes coupled with hollow PtPd/MnCo-CeO 2 nanozyme-mediated synergistic amplification for ultrasensitive PEC immunoanalysis of lung cancer biomarker. Biosens Bioelectron 2023; 235:115398. [PMID: 37209517 DOI: 10.1016/j.bios.2023.115398] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/03/2023] [Accepted: 05/13/2023] [Indexed: 05/22/2023]
Abstract
Nowadays, lung cancer is one of the most dangerous cancers threatening human life all over the world. As a crucial biomarker, cytokeratin 19 fragment 21-1 (CYFRA 21-1) is extraordinary important for diagnosis of non-small cell lung cancer (NSCLC). In this work, we synthesized hollow SnO2/CdS QDs/CdCO3 heterostructured nanocubes with high and stable photocurrents, which applied to construction of a sandwich-typed photoelectrochemical (PEC) immunosensor for detection of CYFRA 21-1, integrated by in-situ catalytic precipitation strategy with home-built PtPd alloy anchored MnCo-CeO2 (PtPd/MnCo-CeO2) nanozyme for synergistic amplification. The interfacial electron transfer mechanism upon visible-light irradiation was investigated in details. Further, the PEC responses were seriously quenched by the specific immunoreaction and precipitation catalyzed by the PtPd/MnCo-CeO2 nanozyme. The established biosensor showed a wider linear range of 0.001-200 ng mL-1 and a lower limit of detection (LOD = 0.2 pg mL-1, S/N = 3), coupled by exploring such analysis even in diluted human serum sample. This work opens a constructive avenue to develop ultrasensitive PEC sensing platforms for detecting diverse cancer biomarkers in clinic.
Collapse
Affiliation(s)
- Jia-Ying Zheng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Jing-Jing Wei
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Hong-Ying Yang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Fan Xu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Yang Lou
- Department of Cardiothoracic Surgery, Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000, China
| | - Pei Song
- Department of Cardiothoracic Surgery, Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000, China
| | - Ai-Jun Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Li-Ping Mei
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Lu Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Jiu-Ju Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|