1
|
Ma BL, Zhang ZL. A point-of-care solid-phase colorimetric sensor based on the enzyme-induced metallization for ALP detection. Talanta 2024; 268:125365. [PMID: 37918249 DOI: 10.1016/j.talanta.2023.125365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/04/2023]
Abstract
Alkaline phosphatase (ALP) is a crucial biomarker for clinical diagnosis, which is closely related to the physiological homeostasis regulation process of human body. And the abnormal level of ALP is associated with numerous diseases, such as liver dysfunction, bone diseases, diabetes, and so on. In order to meet the demand of personalized healthcare, it is particularly important to develop a miniaturized point-of-care testing (POCT) device for ALP detection. Herein, a portable solid-phase colorimetric sensor based on enzyme-induced metallization signal amplification strategy was constructed for ALP detection. The AuNPs modified on the glass slides acted as crystal seeds, allowing Ag+ in the solution to be reduced and deposited on the surface of AuNPs, which further formed the gold core and silver shell (Au@Ag) complex and generated visual signals. The visual signals were recorded by a smartphone and quantified using open-source ImageJ software. Under the optimal conditions, the proposed method exhibited a good linear relationship from 2.0 to 16.0 pM, and the detection limit was as low as 0.9 pM. In addition, it was further successfully applied for ALP detection in non-transparent and complex samples (milk, different types of cells). A sensitive, low cost, rapid and convenient solid-phase sensor was developed for ALP detection, which was expected to provide a promising strategy for POCT devices.
Collapse
Affiliation(s)
- Bo-Ling Ma
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, PR China
| | - Zhi-Ling Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, PR China.
| |
Collapse
|
2
|
Gao Z, Zhu A, Wu M, Du Y, Zhang Y, Zhang H, Ren C, Chen H. Colorimetric detection of alkaline phosphatase based on the off-on effect of light-responsive oxidase mimicking activity of covalent organic framework (Cu-TpBpy-COF) under near-neutral condition. Mikrochim Acta 2024; 191:93. [PMID: 38217686 DOI: 10.1007/s00604-023-06128-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/28/2023] [Indexed: 01/15/2024]
Abstract
A colorimetric strategy has been developed for the detection of alkaline phosphatase (ALP) activity based on the off-on effect of the catalytic activity of light-responsive oxidase mimics covalent organic framework (Cu-TpBpy-COF) in near-neutral condition. Cu-TpBpy-COF can effectively catalyze the oxidation of the colorless substrate 3,3',5,5'-tetramethylbenzidine (TMB) by oxygen to form a blue oxidized product (oxTMB) with an absorption peak at 652 nm. Cu2+ is the active center of Cu-TpBpy-COF and pyrophosphate (PPi) can form a complex with Cu2+ to weaken the catalytic activity of Cu-TpBpy-COF. In the presence of ALP, PPi is hydrolyzed into orthophosphates (Pi) with low affinity to Cu2+, thus resulting in absorbance restoration. The absorbance at 652 nm is related to ALP activity in the linear range 10-150 U·L-1 with a detection limit of 7.17 U·L-1. The recoveries of ALP in serum samples are in the range 94.7~107.0% with relative standard deviations (RSD) lower than 5%. The decisive role of Cu2+ on the enhancing catalytic activities of Cu-TpBpy-COF in neutral condition was verified by TpBpy-COF and TpBD-COF as controls, in which the main difference between them is that TpBpy-COF contains pyridine nitrogen. Upon Cu2+ modification, Cu-TpBpy-COF has better catalytic activity than TpBpy-COF in a broader pH range because of the in situ generation of Cu+ under irradiation.
Collapse
Affiliation(s)
- Zixi Gao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Ailing Zhu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Mingfang Wu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Yongling Du
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Yang Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Huige Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Cuiling Ren
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Hongli Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
3
|
Chi J, Song Y, Feng L. A ratiometric fluorescent paper sensor based on dye-embedded MOF for high-sensitive detection of arginine. Biosens Bioelectron 2023; 241:115666. [PMID: 37690353 DOI: 10.1016/j.bios.2023.115666] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/23/2023] [Accepted: 09/02/2023] [Indexed: 09/12/2023]
Abstract
Ratiometric fluorescent sensors can suppress the interference of factors unrelated to analysis due to their built-in self-calibration characteristics, which exhibit higher sensitivity and more obvious visual detection in the process of qualitative and quantitative analysis. Herein, we constructed a ratiometric fluorescence probe based on fluorescent/colorimetric dual-mode method for the determination of arginine by encapsulating rhodamine B in-situ into UiO-66-NH2 MOFs (UiO-66-NH2@RhB). The as-prepared probe showed dual-emission characteristics under a single excitation wavelength. The fluorescence intensity of UiO-66-NH2 was increased significantly by arginine, while the emission peak intensity of rhodamine B remained stable, resulting in a single-signal response with fixed reference. Furthermore, the practicality of the presented sensor was successfully validated by quantitative detection of arginine in human serum. More significantly, paper-based sensors for arginine detection were devised by using carboxymethyl cellulose modified filter papers. Under the irradiation of ultraviolet light, the paper-based sensors would produce obvious color variation from lightpink to bluish violet. This work provided a convenient and efficient method for on-site detection of arginine.
Collapse
Affiliation(s)
- Jie Chi
- College of Sciences, Northeastern University, Shenyang, 110819, China; Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Yanyan Song
- College of Sciences, Northeastern University, Shenyang, 110819, China.
| | - Liang Feng
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China.
| |
Collapse
|
4
|
Zhou X, Pang Y, Wang Y, Yan W, Zhang Y, Zou J, Yuan Y. Colorimetric and fluorescence dual-mode pH sensor based on nitrogen-doped carbon dots and its diverse applications. Mikrochim Acta 2023; 190:478. [PMID: 37993700 DOI: 10.1007/s00604-023-06064-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/21/2023] [Indexed: 11/24/2023]
Abstract
A dual-mode pH sensor based on nitrogen-doped carbon dots (N-CDs) with the source of o-phenylenediamine and tryptophan has been constructed. Under the stimulation of pH, the N-CDs exhibited prominent both color and fluorescence changes, leading to the rarely discovered colorimetric and fluorescent dual-readouts for the evaluation of pH. The mathematic relationship was established between pH and fluorescence intensity of N-CDs, and between pH and the UV-Vis absorbance ratio at 630 nm and 488 nm of N-CDs, respectively, over a quite broad pH range of 2.2 to 12.0. Multiple techniques are used to explore the dual-mode pH-responsive mechanism, and the preliminary explanation is put forward. The experimental results show that the N-CDs have visualized pH sensing applicability for actual samples, including various water samples and HeLa cell. Furthermore, the N-CD ink is developed for successful information encryption and anti-counterfeiting. This work might provide valuable insights into the sensing mechanism of CDs, and the application potential of CDs in broader fields.
Collapse
Affiliation(s)
- Xueying Zhou
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, Guilin University of Technology, 12 Jiangan Road, Guilin, 541004, China
- College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin, 541004, China
| | - Yuanhao Pang
- College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin, 541004, China
| | - Yu Wang
- College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin, 541004, China
| | - Wenju Yan
- College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin, 541004, China
| | - Yun Zhang
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, Guilin University of Technology, 12 Jiangan Road, Guilin, 541004, China
- College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin, 541004, China
| | - Jianmei Zou
- College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin, 541004, China
| | - Yali Yuan
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, Guilin University of Technology, 12 Jiangan Road, Guilin, 541004, China.
- College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin, 541004, China.
| |
Collapse
|