1
|
Li P, Zhang S, Xi J, Kong X, He H, Li CP, Guo F. Monitoring of trace oxytetracycline using a porphyrin-MOF layer-based electrochemical aptasensor. Chem Commun (Camb) 2024; 60:11584-11587. [PMID: 39315739 DOI: 10.1039/d4cc03645j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
A two-dimensional porphyrin-MOF nanolayer was developed to construct an electrochemical aptasensor for monitoring oxytetracycline from 0.01 pg mL-1 to 0.1 ng mL-1. This aptasensor exhibited high sensitivity, outstanding selectivity, good stability, fine reproducibility, and quantitative detection ability in real samples.
Collapse
Affiliation(s)
- Ping Li
- College of Chemistry, Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin 300387, P. R. China.
| | - Shan Zhang
- College of Chemistry, Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin 300387, P. R. China.
| | - Jie Xi
- College of Chemistry, Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin 300387, P. R. China.
| | - Xinying Kong
- College of Chemistry, Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin 300387, P. R. China.
| | - Hongming He
- College of Chemistry, Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin 300387, P. R. China.
- School of Laboratory Medicine, Youjiang Medical University for Nationalities, Baise, 533000 Guangxi, P. R. China.
| | - Cheng-Peng Li
- College of Chemistry, Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin 300387, P. R. China.
| | - Feng Guo
- School of Laboratory Medicine, Youjiang Medical University for Nationalities, Baise, 533000 Guangxi, P. R. China.
| |
Collapse
|
2
|
Guo M, Bi M, Zhang F, Ye X, Ma P, Gao D, Song D. A dual-response ratiometric fluorescent sensor for oxytetracycline determination in milk and mutton samples. Talanta 2024; 277:126382. [PMID: 38852347 DOI: 10.1016/j.talanta.2024.126382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 06/11/2024]
Abstract
Owing to the adverse effects of oxytetracycline (OTC) residues on human health, it is of great importance to construct a rapid and effective strategy for OTC detection. Herein, we developed a dual-response fluorescence sensing platform based on molybdenum sulfide quantum dots (MoS2 QDs) and europium ions (Eu3+) for ratiometric detection of OTC. The MoS2 QDs, synthesized through an uncomplicated one-step hydrothermal approach, upon OTC integration into the MoS2 QDs/Eu3+ sensing system, exhibit a significant quenching of blue fluorescence due to the inner filter effect (IFE), simultaneously enhancing the distinct red emission of Eu3+ at 624 nm, a phenomenon attributed to the antenna effect (AE). This sensor demonstrates exceptional selectivity and sensitivity towards OTC, characterized by a linear detection range of 0.2-10 μM and a notably low detection limit of 2.21 nM. Furthermore, we achieved a visual semi-quantitative assessment of OTC through the discernible fluorescence color transition from blue to red under a 365 nm ultraviolet lamp. The practical applicability of this sensor was validated through the successful detection of OTC in milk and mutton samples, underscoring its potential as a robust tool for OTC monitoring in foodstuffs to safeguard food safety.
Collapse
Affiliation(s)
- Mengjia Guo
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Ming Bi
- Hospital of Stomatology, Jilin University, Qinghua Road 1500, Changchun, 130012, China
| | - Fangmei Zhang
- XNA Platform, Institute of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiwen Ye
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Pinyi Ma
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China.
| | - Dejiang Gao
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China.
| | - Daqian Song
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China.
| |
Collapse
|
3
|
Jiang N, Li KX, Wang JJ, Zhu YL, Zhu CY, Xu YH, Bryce MR. Amphiphilic Polyurethane with Cluster-Induced Emission for Multichannel Bioimaging in Living Cell Systems. ACS Macro Lett 2024; 13:52-57. [PMID: 38147539 PMCID: PMC10795471 DOI: 10.1021/acsmacrolett.3c00657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/16/2023] [Accepted: 12/20/2023] [Indexed: 12/28/2023]
Abstract
The development of single-component materials with low cytotoxicity and multichannel fluorescence imaging capability is a research hotspot. In the present work, highly electron-deficient pyrazine monomers were covalently connected into a polyurethane backbone using addition polymerization with terminal poly(ethylene glycol) monomethyl ether units containing a high density of electron pairs. Thereby, an amphiphilic polyurethane-pyrazine (PUP) derivative has been synthesized. The polymer displays cluster-induced emission through compact inter- and/or intramolecular noncovalent interactions and extensive through-space electron coupling and delocalization. Molecular rigidity facilitates red-shifted emission. Based on hydrophilic/hydrophobic interactions and excitation dependence emission at low concentrations, PUP has been self-assembled into fluorescent nanoparticles (PUP NPs) without additional surfactant. PUP NPs have been used for cellular multicolor imaging to provide a variety of switchable colors on demand. This work provides a simple molecular design for environmentally sustainable, luminescent materials with excellent photophysical properties, biocompatibility, low cytotoxicity, and color modulation.
Collapse
Affiliation(s)
- Nan Jiang
- Key
Laboratory of Preparation and Applications of Environmental Friendly
Materials, Key Laboratory of Functional Materials Physics and Chemistry
of the Ministry of Education, Jilin Normal
University, Changchun 130103, China
| | - Ke-Xin Li
- Key
Laboratory of Preparation and Applications of Environmental Friendly
Materials, Key Laboratory of Functional Materials Physics and Chemistry
of the Ministry of Education, Jilin Normal
University, Changchun 130103, China
| | - Jia-Jun Wang
- Key
Laboratory of Preparation and Applications of Environmental Friendly
Materials, Key Laboratory of Functional Materials Physics and Chemistry
of the Ministry of Education, Jilin Normal
University, Changchun 130103, China
| | - You-Liang Zhu
- State
Key Laboratory of Supramolecular Structure and Materials, College
of Chemistry, Jilin University, Changchun 130012, China
| | - Chang-Yi Zhu
- Key
Laboratory of Preparation and Applications of Environmental Friendly
Materials, Key Laboratory of Functional Materials Physics and Chemistry
of the Ministry of Education, Jilin Normal
University, Changchun 130103, China
| | - Yan-Hong Xu
- Key
Laboratory of Preparation and Applications of Environmental Friendly
Materials, Key Laboratory of Functional Materials Physics and Chemistry
of the Ministry of Education, Jilin Normal
University, Changchun 130103, China
| | - Martin R. Bryce
- Department
of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
4
|
Akram Z, Raza A, Mehdi M, Arshad A, Deng X, Sun S. Recent Advancements in Metal and Non-Metal Mixed-Doped Carbon Quantum Dots: Synthesis and Emerging Potential Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2336. [PMID: 37630922 PMCID: PMC10459133 DOI: 10.3390/nano13162336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/05/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023]
Abstract
In nanotechnology, the synthesis of carbon quantum dots (CQDs) by mixed doping with metals and non-metals has emerged as an appealing path of investigation. This review offers comprehensive insights into the synthesis, properties, and emerging applications of mixed-doped CQDs, underlining their potential for revolutionary advancements in chemical sensing, biosensing, bioimaging, and, thereby, contributing to advancements in diagnostics, therapeutics, and the under standing of complex biological processes. This synergistic combination enhances their sensitivity and selectivity towards specific chemical analytes. The resulting CQDs exhibit remarkable fluorescence properties that can be involved in precise chemical sensing applications. These metal-modified CQDs show their ability in the selective and sensitive detection from Hg to Fe and Mn ions. By influencing their exceptional fluorescence properties, they enable precise detection and monitoring of biomolecules, such as uric acid, cholesterol, and many antibiotics. Moreover, when it comes to bioimaging, these doped CQDs show unique behavior towards detecting cell lines. Their ability to emit light across a wide spectrum enables high-resolution imaging with minimal background noise. We uncover their potential in visualizing different cancer cell lines, offering valuable insights into cancer research and diagnostics. In conclusion, the synthesis of mixed-doped CQDs opens the way for revolutionary advancements in chemical sensing, biosensing, and bioimaging. As we investigate deeper into this field, we unlock new possibilities for diagnostics, therapeutics, and understanding complex biological processes.
Collapse
Affiliation(s)
- Zubair Akram
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China; (Z.A.); (A.R.); (A.A.); (X.D.)
| | - Ali Raza
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China; (Z.A.); (A.R.); (A.A.); (X.D.)
| | - Muhammad Mehdi
- College of Chemistry & Pharmacy, Northwest A&F University, Xianyang 712100, China;
| | - Anam Arshad
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China; (Z.A.); (A.R.); (A.A.); (X.D.)
| | - Xiling Deng
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China; (Z.A.); (A.R.); (A.A.); (X.D.)
| | - Shiguo Sun
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China; (Z.A.); (A.R.); (A.A.); (X.D.)
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| |
Collapse
|