1
|
Meng X, Pang X, Liu X, Luo S, Zhang X, Dong H. Ultrasensitive Electrochemiluminescence Biosensor Based on DNA-Bio-Bar-Code and Hybridization Chain Reaction Dual Signal Amplification for Exosomes Detection. Anal Chem 2024. [PMID: 39090799 DOI: 10.1021/acs.analchem.4c02917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Exosomes have received considerable attention as potent reference markers for the diagnosis of various neoplasms due to their close and direct relationship with the proliferation, adhesion, and migration of tumor. The ultrasensitive detection of cancer-derived low-abundance exosomes is imperative, but still a great challenge. Herein, we report an electrochemiluminescence (ECL) biosensor based on the DNA-bio-bar-code and hybridization chain reaction (HCR)-mediated dual signal amplification for the ultrasensitive detection of cancer-derived exosomes. In this system, two types of aptamers were modified on the magnetic nanoprobe (MNPs) and gold nanoparticles (AuNPs) with numerous bio-bar-code DNA, respectively, which formed "sandwich" structures in the presence of specific target exosomes. The "sandwich" structures were separated under magnetic field, and the numerous bio-bar-code DNA were released by dissolving AuNPs. The released bio-bar-code DNA triggered the HCR procedure to produce a good deal of long DNA duplex structure for embedding in hemin, which generated strong ECL signal in the presence of coreactors for ultrasensitive detection of exosomes. Under the optimal conditions, it exhibited a good linearly of exosomes ranging from 10 to 104 exosomes particle μL-1 with limit of detection down to 5.01 exosome particle μL-1. Furthermore, the high ratio of ECL signal and minor change of ECL intensity indicated the good specificity, stability, and repeatability of this ECL biosensor. Given the good performance for exosome analysis, this ultrasensitive ECL biosensor has a promising application in the clinical diagnosis of early cancers.
Collapse
Affiliation(s)
- Xiangdan Meng
- Beijing Key Laboratory for Bioengineering and Sensing Technology Research Centre for Bioengineering and Sensing Technology School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 10083, P. R. China
| | - Xuejiao Pang
- Beijing Key Laboratory for Bioengineering and Sensing Technology Research Centre for Bioengineering and Sensing Technology School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 10083, P. R. China
| | - Xiangyu Liu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
| | - Shuiyou Luo
- Beijing Key Laboratory for Bioengineering and Sensing Technology Research Centre for Bioengineering and Sensing Technology School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 10083, P. R. China
| | - Xueji Zhang
- Beijing Key Laboratory for Bioengineering and Sensing Technology Research Centre for Bioengineering and Sensing Technology School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 10083, P. R. China
- Marshall Laboratory of Biomedical Engineering, Shenzhen Key Laboratory for Nano-Biosensing Technology, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Guangdong 518060, P. R. China
| | - Haifeng Dong
- Beijing Key Laboratory for Bioengineering and Sensing Technology Research Centre for Bioengineering and Sensing Technology School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 10083, P. R. China
- Marshall Laboratory of Biomedical Engineering, Shenzhen Key Laboratory for Nano-Biosensing Technology, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Guangdong 518060, P. R. China
| |
Collapse
|
2
|
Meng X, Pang X, Yang J, Zhang X, Dong H. Recent Advances in Electrochemiluminescence Biosensors for MicroRNA Detection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307701. [PMID: 38152970 DOI: 10.1002/smll.202307701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/06/2023] [Indexed: 12/29/2023]
Abstract
Electrochemiluminescence (ECL) as an analytical technology with a perfect combination of electrochemistry and spectroscopy has received considerable attention in bioanalysis due to its high sensitivity and broad dynamic range. Given the selectivity of bio-recognition elements and the high sensitivity of the ECL analysis technique, ECL biosensors are powerful platforms for the sensitive detection of biomarkers, achieving the accurate prognosis and diagnosis of diseases. MicroRNAs (miRNAs) are crucial biomarkers involved in a variety of physiological and pathological processes, whose aberrant expression is often related to serious diseases, especially cancers. ECL biosensors can fulfill the highly sensitive and selective requirements for accurate miRNA detection, prompting this review. The ECL mechanisms are initially introduced and subsequently categorize the ECL biosensors for miRNA detection in terms of the quenching agents. Furthermore, the work highlights the signal amplification strategies for enhancing ECL signal to improve the sensitivity of miRNA detection and finally concludes by looking at the challenges and opportunities in ECL biosensors for miRNA detection.
Collapse
Affiliation(s)
- Xiangdan Meng
- Beijing Key Laboratory for Bioengineering and Sensing Technology Research Centre for Bioengineering and Sensing Technology School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 10083, P. R. China
| | - Xuejiao Pang
- Beijing Key Laboratory for Bioengineering and Sensing Technology Research Centre for Bioengineering and Sensing Technology School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 10083, P. R. China
| | - Junyan Yang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Xueji Zhang
- Beijing Key Laboratory for Bioengineering and Sensing Technology Research Centre for Bioengineering and Sensing Technology School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 10083, P. R. China
- Marshall Laboratory of Biomedical Engineering, Precision Medicine and Health Research Institute, Shenzhen Key Laboratory for Nano-Biosensing Technology, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Guangdong, 518060, P. R. China
| | - Haifeng Dong
- Beijing Key Laboratory for Bioengineering and Sensing Technology Research Centre for Bioengineering and Sensing Technology School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 10083, P. R. China
- Marshall Laboratory of Biomedical Engineering, Precision Medicine and Health Research Institute, Shenzhen Key Laboratory for Nano-Biosensing Technology, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Guangdong, 518060, P. R. China
| |
Collapse
|