1
|
Wei R, Chen H, Cai Y, Chen J. Application of intraoperative ultrasound in the resection of high-grade gliomas. Front Neurol 2023; 14:1240150. [PMID: 37965171 PMCID: PMC10640994 DOI: 10.3389/fneur.2023.1240150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/19/2023] [Indexed: 11/16/2023] Open
Abstract
The incidence of gliomas is approximately 3-5/100,000, with high-grade gliomas accounting for approximately 30-40% of these tumors. Surgery is a confirmed positive factor in prolonging the survival of these patients, and a larger resection range means a longer survival time. Therefore, surgery for high-grade glioma patients should aim to maximize the extent of resection while preserving neurological function to achieve a better quality of life. There is consensus regarding the need to lengthen progression-free survival (PFS) and overall survival (OS) times. In glioma surgery, methods such as intraoperative computed tomography (ICT), intraoperative magnetic resonance imaging (IMRI), navigation, 5-aminolevulinic acid (5-ALA), and intraoperative ultrasound (IOUS) are used to achieve an expanded resection during the surgical procedure. IOUS has been increasingly used in the surgery of high-grade gliomas and various tumors due to its convenient intraoperative use, its flexible repeatability, and the relatively low cost of operating room construction. With the continuous upgrading of ultrasound equipment, IOUS has been able to better assist surgeons in achieving an increased extent of resection. This review aims to summarize the application of ultrasound in the surgery of high-grade gliomas in the past decade, its improvement in patient prognosis, and its prospects.
Collapse
Affiliation(s)
- RenJie Wei
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hao Chen
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - YuXiang Cai
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - JingCao Chen
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
2
|
Application of Multiparametric Intraoperative Ultrasound in Glioma Surgery. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6651726. [PMID: 33954192 PMCID: PMC8068524 DOI: 10.1155/2021/6651726] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 04/05/2021] [Accepted: 04/09/2021] [Indexed: 12/30/2022]
Abstract
Gliomas are the most invasive and fatal primary malignancy of the central nervous system that have poor prognosis, with maximal safe resection representing the gold standard for surgical treatment. To achieve gross total resection (GTR), neurosurgery relies heavily on generating continuous, real-time, intraoperative glioma descriptions based on image guidance. Given the limitations of currently available equipment, developing a real-time image-guided resection technique that provides reliable functional and anatomical information during intraoperative settings is imperative. Nowadays, the application of intraoperative ultrasound (IOUS) has been shown to improve resection rates and maximize brain function preservation. IOUS, which presents an attractive option due to its low cost, minimal operational flow interruptions, and lack of radiation exposure, is able to provide real-time localization and accurate tumor size and shape descriptions while helping distinguish residual tumors and addressing brain shift. Moreover, the application of new advancements in ultrasound technology, such as contrast-enhanced ultrasound, three-dimensional ultrasound, navigable ultrasound, ultrasound elastography, and functional ultrasound, could help to achieve GTR during glioma surgery. The current review describes current advancements in ultrasound technology and evaluates the role and limitation of IOUS in glioma surgery.
Collapse
|
3
|
Neurophysiological examination combined with functional intraoperative navigation using TMS in patients with brain tumor near the central region-a pilot study. Acta Neurochir (Wien) 2019; 161:1853-1864. [PMID: 31297597 DOI: 10.1007/s00701-019-04004-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/05/2019] [Indexed: 10/26/2022]
Abstract
OBJECTIVE Feasibility and value of non-invasive transcranial magnetic brain stimulation (TMS MAGVENTURE® MagPro R30 Denmark) for preoperative diagnosis and surgical planning of brain tumor operations in everyday clinical practice. METHODS A prospective monocentric study was conducted, which included preoperative neurological and electrophysiological examination, TMS, and display of functional data in the navigation system (LOCALITE® TMS Navigator Germany). During surgery, the TMS data were correlated with the intraoperative monitoring (IOM). Twenty-four hours to 96 h and after at least 3 months, follow-ups with neurological, electrophysiological examinations and TMS stimulation were performed. RESULTS Twenty-five patients with tumors in or near by the primary motor cortex region were included in the study. Twenty-one patients completed preoperative and first postoperative TMS and the neurological examination. Eight of 21 patients showed slight worsening of primary motor cortex function, 8 patients had an unchanged state, and 4 patients showed an improvement early after surgery. The changes of the electrophysiological examination like significant delay of the latency and/or reduced amplitudes matched well with the postoperative neurological outcome: if patients showed a worsening of the SEP's and MEP's, the postoperative results revealed deterioration. CONCLUSION A preoperatively performed TMS using the MAGVENTURE® MagPro R30 and the LOCALITE® TMS Navigator could be established in our clinical daily practice and allowed a safe and reliable mapping of the primary motor cortex in order to minimize the risk of postoperative neurological deficits and improve the neurological outcome of the patients.
Collapse
|
4
|
Stember JN. Three-Dimensional Surface Point Cloud Ultrasound for Better Understanding and Transmission of Ultrasound Scan Information. J Digit Imaging 2018; 31:904-911. [PMID: 29796972 DOI: 10.1007/s10278-017-0046-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Ultrasound is notoriously plagued by high user dependence. There is a steep drop-off in information in going from what the sonographer sees during image acquisition and what the interpreting radiologist is able to view at the reading station. One countermeasure is probe localization and tracking. Current implementations are too difficult and expensive to use and/or do not provide adequate detail and perspective. The aim of this work was to demonstrate that a protocol combining surface three-dimensional photographic imaging with traditional ultrasound images may be a solution to the problem of probe localization, this approach being termed surface point cloud ultrasound (SPC-US). Ultrasound images were obtained of major vessels in an ultrasound training phantom, while simultaneously obtaining surface point cloud (SPC) 3D photographic images, with additional scanning performed on the right forearm soft tissues, kidneys, chest, and pelvis. The resulting sets of grayscale/color Doppler ultrasound and SPC images are juxtaposed and displayed for interpretation in a manner analogous to current text-based annotation or computer-generated stick figure probe position illustrations. Clearly demonstrated is that SPC-US better communicates information of probe position and orientation. Overall, it is shown that SPC-US provides much richer image representations of probe position on the patients than the current prevailing schemes. SPC-US turns out to be a rather general technique with many anticipated future applications, though only a few sample applications are illustrated in the present work.
Collapse
Affiliation(s)
- Joseph Nathaniel Stember
- Department of Radiology, Columbia University Medical Center, 622 West 168th Street, PB 1-301, New York, NY, 10032, USA.
| |
Collapse
|
5
|
Ilunga-Mbuyamba E, Avina-Cervantes JG, Lindner D, Arlt F, Ituna-Yudonago JF, Chalopin C. Patient-specific model-based segmentation of brain tumors in 3D intraoperative ultrasound images. Int J Comput Assist Radiol Surg 2018; 13:331-342. [PMID: 29330658 DOI: 10.1007/s11548-018-1703-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 01/04/2018] [Indexed: 11/27/2022]
Abstract
PURPOSE Intraoperative ultrasound (iUS) imaging is commonly used to support brain tumor operation. The tumor segmentation in the iUS images is a difficult task and still under improvement because of the low signal-to-noise ratio. The success of automatic methods is also limited due to the high noise sensibility. Therefore, an alternative brain tumor segmentation method in 3D-iUS data using a tumor model obtained from magnetic resonance (MR) data for local MR-iUS registration is presented in this paper. The aim is to enhance the visualization of the brain tumor contours in iUS. METHODS A multistep approach is proposed. First, a region of interest (ROI) based on the specific patient tumor model is defined. Second, hyperechogenic structures, mainly tumor tissues, are extracted from the ROI of both modalities by using automatic thresholding techniques. Third, the registration is performed over the extracted binary sub-volumes using a similarity measure based on gradient values, and rigid and affine transformations. Finally, the tumor model is aligned with the 3D-iUS data, and its contours are represented. RESULTS Experiments were successfully conducted on a dataset of 33 patients. The method was evaluated by comparing the tumor segmentation with expert manual delineations using two binary metrics: contour mean distance and Dice index. The proposed segmentation method using local and binary registration was compared with two grayscale-based approaches. The outcomes showed that our approach reached better results in terms of computational time and accuracy than the comparative methods. CONCLUSION The proposed approach requires limited interaction and reduced computation time, making it relevant for intraoperative use. Experimental results and evaluations were performed offline. The developed tool could be useful for brain tumor resection supporting neurosurgeons to improve tumor border visualization in the iUS volumes.
Collapse
Affiliation(s)
- Elisee Ilunga-Mbuyamba
- CA Telematics, Engineering Division, Campus Irapuato-Salamanca, University of Guanajuato, Carr. Salamanca-Valle de Santiago km 3.5 + 1.8, Comunidad de Palo Blanco, 36885, Salamanca, Mexico
- Innovation Center Computer Assisted Surgery (ICCAS), University of Leipzig, 04103, Leipzig, Germany
| | - Juan Gabriel Avina-Cervantes
- CA Telematics, Engineering Division, Campus Irapuato-Salamanca, University of Guanajuato, Carr. Salamanca-Valle de Santiago km 3.5 + 1.8, Comunidad de Palo Blanco, 36885, Salamanca, Mexico.
| | - Dirk Lindner
- Department of Neurosurgery, University Hospital Leipzig, 04103, Leipzig, Germany
| | - Felix Arlt
- Department of Neurosurgery, University Hospital Leipzig, 04103, Leipzig, Germany
| | - Jean Fulbert Ituna-Yudonago
- CA Telematics, Engineering Division, Campus Irapuato-Salamanca, University of Guanajuato, Carr. Salamanca-Valle de Santiago km 3.5 + 1.8, Comunidad de Palo Blanco, 36885, Salamanca, Mexico
| | - Claire Chalopin
- Innovation Center Computer Assisted Surgery (ICCAS), University of Leipzig, 04103, Leipzig, Germany
| |
Collapse
|
6
|
Nimsky C, Carl B. Historical, Current, and Future Intraoperative Imaging Modalities. Neurosurg Clin N Am 2017; 28:453-464. [DOI: 10.1016/j.nec.2017.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Moiyadi AV, Shetty P. Direct navigated 3D ultrasound for resection of brain tumors: a useful tool for intraoperative image guidance. Neurosurg Focus 2016; 40:E5. [PMID: 26926063 DOI: 10.3171/2015.12.focus15529] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Navigated 3D ultrasound is a novel intraoperative imaging adjunct permitting quick real-time updates to facilitate tumor resection. Image quality continues to improve and is currently sufficient to allow use of navigated ultrasound (NUS) as a stand-alone modality for intraoperative guidance without the need for preoperative MRI. METHODS The authors retrospectively analyzed cases involving operations performed at their institution in which a 3D ultrasound navigation system was used for control of resection of brain tumors in a "direct" 3D ultrasound mode, without preoperative MRI guidance. The usefulness of the ultrasound and its correlation with postoperative imaging were evaluated. RESULTS Ultrasound was used for resection control in 81 cases. In 53 of these 81 cases, at least 1 intermediate scan (range 1-3 intermediate scans) was obtained during the course of the resection, and in 50 of these 53 cases, the result prompted further resection. In the remaining 28 cases, intermediate scans were not performed either because the first ultrasound scan performed after resection was interpreted as showing no residual tumor (n = 18) and resection was terminated or because the surgeon intentionally terminated the resection prematurely due to the infiltrative nature of the tumor and extension of disease into eloquent areas (n = 10) and the final ultrasound scan was interpreted as showing residual disease. In an additional 20 cases, ultrasound navigation was used primarily for localization and not for resection control, making the total number of NUS cases where radical resection was planned 101. Gross-total resection (GTR) was planned in 68 of these 101 cases and cytoreduction in 33. Ultrasound-defined GTR was achieved in 51 (75%) of the cases in which GTR was planned. In the remaining 17, further resection had to be terminated (despite evidence of residual tumor on ultrasound) because of diffuse infiltration or proximity to eloquent areas. Of the 33 cases planned for cytoreduction, NUS guidance facilitated ultrasound-defined GTR in 4 cases. Overall, ultrasound-defined GTR was achieved in 50% of cases (55 of 111). Based on the postoperative imaging (MRI in most cases), GTR was achieved in 58 cases (53%). Final (postresection) ultrasonography was documented in 78 cases. The findings were compared with the postoperative imaging to ascertain concordance in detecting residual tumor. Overall concordance was seen in 64 cases (82.5%), positive concordance was seen in 33 (42.5%), and negative in 31 (40%). Discordance was seen in 14 cases-with ultrasound yielding false-positive results in 7 cases and false-negative results in 7 cases. Postoperative neurological worsening occurred in 15 cases (13.5%), and in most of these cases, it was reversible by the time of discharge. CONCLUSIONS The results of this study demonstrate that 3D ultrasound can be effectively used as a stand-alone navigation modality during the resection of brain tumors. The ability to provide repeated, high-quality intraoperative updates is useful for guiding resection. Attention to image acquisition technique and experience can significantly increase the quality of images, thereby improving the overall utility of this modality.
Collapse
Affiliation(s)
- Aliasgar V Moiyadi
- Division of Neurosurgery, Department of Surgical Oncology, Tata Memorial Centre, Mumbai, India
| | - Prakash Shetty
- Division of Neurosurgery, Department of Surgical Oncology, Tata Memorial Centre, Mumbai, India
| |
Collapse
|
8
|
Mohammadi A, Ahmadian A, Rabbani S, Fattahi E, Shirani S. A combined registration and finite element analysis method for fast estimation of intraoperative brain shift; phantom and animal model study. Int J Med Robot 2016; 13. [PMID: 27917580 DOI: 10.1002/rcs.1792] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 10/05/2016] [Accepted: 11/01/2016] [Indexed: 11/11/2022]
Abstract
BACKGROUND Finite element models for estimation of intraoperative brain shift suffer from huge computational cost. In these models, image registration and finite element analysis are two time-consuming processes. METHODS The proposed method is an improved version of our previously developed Finite Element Drift (FED) registration algorithm. In this work the registration process is combined with the finite element analysis. In the Combined FED (CFED), the deformation of whole brain mesh is iteratively calculated by geometrical extension of a local load vector which is computed by FED. RESULTS While the processing time of the FED-based method including registration and finite element analysis was about 70 s, the computation time of the CFED was about 3.2 s. The computational cost of CFED is almost 50% less than similar state of the art brain shift estimators based on finite element models. CONCLUSIONS The proposed combination of registration and structural analysis can make the calculation of brain deformation much faster.
Collapse
Affiliation(s)
- Amrollah Mohammadi
- Department of Medical Physics & Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Ahmadian
- Department of Medical Physics & Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Research Centre for Biomedical Technology and Robotics (RCBTR), Tehran, Iran
| | - Shahram Rabbani
- Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ehsan Fattahi
- Department of Neurosurgery, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shapour Shirani
- Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Intraoperative Ultrasound Technology in Neuro-Oncology Practice—Current Role and Future Applications. World Neurosurg 2016; 93:81-93. [DOI: 10.1016/j.wneu.2016.05.083] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 05/24/2016] [Accepted: 05/25/2016] [Indexed: 11/20/2022]
|
10
|
The use of ultrasound in intracranial tumor surgery. Acta Neurochir (Wien) 2016; 158:1179-85. [PMID: 27106844 DOI: 10.1007/s00701-016-2803-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 04/04/2016] [Indexed: 01/31/2023]
Abstract
BACKGROUND As an intraoperative imaging modality, ultrasound is a user-friendly and cost-effective real-time imaging technique. Despite this, it is still not routinely employed for brain tumor surgery. This may be due to the poor image quality in inexperienced hands, and the well-documented learning curve. However, with regular use, the operator issues are addressed, and intraoperative ultrasound can provide valuable real-time information. The aim of this review is to provide an understanding for neurosurgeons of the development and use of ultrasound in intracranial tumor surgery, and possible future advances. METHODS A systematic search of the electronic databases Embase, Medline OvidSP, PubMed, Cochrane, and Google Scholar regarding the use of ultrasound in intracranial tumor surgery was undertaken. RESULTS AND DISCUSSION Intraoperative ultrasound has been shown to be able to accurately account for brain shift and has potential for regular use in brain tumor surgery. Further developments in probe size, resolution, and image reconstruction techniques will ensure that intraoperative ultrasound is more accessible and attractive to the neuro-oncological surgeon. CONCLUSIONS This review has summarized the development of ultrasound and its uses with particular reference to brain tumor surgery, detailing the ongoing challenges in this area.
Collapse
|
11
|
Mahboob S, McPhillips R, Qiu Z, Jiang Y, Meggs C, Schiavone G, Button T, Desmulliez M, Demore C, Cochran S, Eljamel S. Intraoperative Ultrasound-Guided Resection of Gliomas: A Meta-Analysis and Review of the Literature. World Neurosurg 2016; 92:255-263. [PMID: 27178235 DOI: 10.1016/j.wneu.2016.05.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 05/02/2016] [Accepted: 05/03/2016] [Indexed: 11/28/2022]
Abstract
BACKGROUND Image-guided surgery has become standard practice during surgical resection, using preoperative magnetic resonance imaging. Intraoperative ultrasound (IoUS) has attracted interest because of its perceived safety, portability, and real-time imaging. This report is a meta-analysis of intraoperative ultrasound in gliomas. METHODS Critical literature review and meta-analyses, using the MEDLINE/PubMed service. The list of references in each article was double-checked for any missing references. We included all studies that reported the use of ultrasound to guide glioma-surgery. The meta-analyses were conducted according to statistical heterogeneity between the studies using Open MetaAnalyst Software. If there was no heterogeneity, fixed effects model was used for meta-analysis; otherwise, a random effect model was used. Statistical heterogeneity was explored by χ(2) and inconsistency (I(2)) statistics; an I(2) value of 50% or more represented substantial heterogeneity. RESULTS A wide search yielded 19,109 studies that might be relevant, of which 4819 were ultrasound in neurosurgery; 756 studies used ultrasound in cranial surgery, of which 24 studies used intraoperative ultrasound to guide surgical resection and 74 studies used it to guide biopsy. Fifteen studies fulfilled our stringent inclusion criteria, giving a total of 739 patients. The estimated average gross total resection rate was 77%. Furthermore, the relationship between extent of surgical resection and study population was not linear. Gross total resection was more likely under IoUS when the lesion was solitary and subcortical, with no history of surgery or radiotherapy. IoUS image quality, sensitivity, specificity, and positive and negative predictive values deteriorated as surgical resection proceeded. CONCLUSION IoUS-guided surgical resection of gliomas is a useful tool for guiding the resection and for improving the extent of resection. IoUS can be used in conjunction with other complementary technologies that can improve anatomic orientation during surgery. Real-time imaging, improved image quality, small probe sizes, repeatability, portability, and relatively low cost make IoUS a realistic, cost-effective tool that complements any existing tools in any neurosurgical operating environment.
Collapse
Affiliation(s)
- Syed Mahboob
- Division of Neuroscience, University of Dundee and Ninewells Hospital, Dundee, United Kingdom
| | - Rachael McPhillips
- Division of Cancer Research, University of Dundee, Dundee, United Kingdom
| | - Zhen Qiu
- Institute of Medical Science and Technology, University of Dundee, Dundee, United Kingdom
| | - Yun Jiang
- Applied Functional Materials Ltd, University of Birmingham, Birmingham, United Kingdom
| | - Carl Meggs
- Applied Functional Materials Ltd, University of Birmingham, Birmingham, United Kingdom
| | - Giuseppe Schiavone
- Research Institute in Signals, Sensors and Systems, Heriot Watt University, Edinburgh, United Kingdom
| | - Tim Button
- Applied Functional Materials Ltd, University of Birmingham, Birmingham, United Kingdom
| | - Marc Desmulliez
- Research Institute in Signals, Sensors and Systems, Heriot Watt University, Edinburgh, United Kingdom
| | - Christine Demore
- Division of Cancer Research, University of Dundee, Dundee, United Kingdom
| | - Sandy Cochran
- Division of Imaging and Technology, University of Dundee, Dundee, United Kingdom
| | - Sam Eljamel
- Department of Neurosurgery, University of Dundee and Ninewells Hospital, Dundee, United Kingdom.
| |
Collapse
|
12
|
Ilunga-Mbuyamba E, Avina-Cervantes JG, Lindner D, Cruz-Aceves I, Arlt F, Chalopin C. Vascular Structure Identification in Intraoperative 3D Contrast-Enhanced Ultrasound Data. SENSORS (BASEL, SWITZERLAND) 2016; 16:E497. [PMID: 27070610 PMCID: PMC4851011 DOI: 10.3390/s16040497] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 03/19/2016] [Accepted: 03/31/2016] [Indexed: 11/18/2022]
Abstract
In this paper, a method of vascular structure identification in intraoperative 3D Contrast-Enhanced Ultrasound (CEUS) data is presented. Ultrasound imaging is commonly used in brain tumor surgery to investigate in real time the current status of cerebral structures. The use of an ultrasound contrast agent enables to highlight tumor tissue, but also surrounding blood vessels. However, these structures can be used as landmarks to estimate and correct the brain shift. This work proposes an alternative method for extracting small vascular segments close to the tumor as landmark. The patient image dataset involved in brain tumor operations includes preoperative contrast T1MR (cT1MR) data and 3D intraoperative contrast enhanced ultrasound data acquired before (3D-iCEUS(start) and after (3D-iCEUS(end) tumor resection. Based on rigid registration techniques, a preselected vascular segment in cT1MR is searched in 3D-iCEUS(start) and 3D-iCEUS(end) data. The method was validated by using three similarity measures (Normalized Gradient Field, Normalized Mutual Information and Normalized Cross Correlation). Tests were performed on data obtained from ten patients overcoming a brain tumor operation and it succeeded in nine cases. Despite the small size of the vascular structures, the artifacts in the ultrasound images and the brain tissue deformations, blood vessels were successfully identified.
Collapse
Affiliation(s)
- Elisee Ilunga-Mbuyamba
- Telematics (CA), Engineering Division (DICIS), University of Guanajuato, Campus Irapuato-Salamanca, Carr. Salamanca-Valle km 3.5 + 1.8, Com. Palo Blanco, Salamanca, Gto. 36885, Mexico.
| | - Juan Gabriel Avina-Cervantes
- Telematics (CA), Engineering Division (DICIS), University of Guanajuato, Campus Irapuato-Salamanca, Carr. Salamanca-Valle km 3.5 + 1.8, Com. Palo Blanco, Salamanca, Gto. 36885, Mexico.
| | - Dirk Lindner
- Department of Neurosurgery, University Hospital Leipzig, Leipzig 04103, Germany.
| | - Ivan Cruz-Aceves
- CONACYT Research-Fellow, Center for Research in Mathematics (CIMAT), A.C., Jalisco S/N, Col. Valenciana, Guanajuato, Gto. 36000, Mexico.
| | - Felix Arlt
- Department of Neurosurgery, University Hospital Leipzig, Leipzig 04103, Germany.
| | - Claire Chalopin
- Innovation Center Computer Assisted Surgery (ICCAS), University of Leipzig, Leipzig 04103, Germany.
| |
Collapse
|
13
|
Miller D, Sure U. Current Standards and Future Perspectives in Intraoperative Ultrasound. Neurooncol Pract 2015. [DOI: 10.1093/nop/npv047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
14
|
Podlesek D, Meyer T, Morgenstern U, Schackert G, Kirsch M. Improved visualization of intracranial vessels with intraoperative coregistration of rotational digital subtraction angiography and intraoperative 3D ultrasound. PLoS One 2015; 10:e0121345. [PMID: 25803318 PMCID: PMC4372211 DOI: 10.1371/journal.pone.0121345] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 01/15/2015] [Indexed: 12/23/2022] Open
Abstract
Introduction Ultrasound can visualize and update the vessel status in real time during cerebral vascular surgery. We studied the depiction of parent vessels and aneurysms with a high-resolution 3D intraoperative ultrasound imaging system during aneurysm clipping using rotational digital subtraction angiography as a reference. Methods We analyzed 3D intraoperative ultrasound in 39 patients with cerebral aneurysms to visualize the aneurysm intraoperatively and the nearby vascular tree before and after clipping. Simultaneous coregistration of preoperative subtraction angiography data with 3D intraoperative ultrasound was performed to verify the anatomical assignment. Results Intraoperative ultrasound detected 35 of 43 aneurysms (81%) in 39 patients. Thirty-nine intraoperative ultrasound measurements were matched with rotational digital subtraction angiography and were successfully reconstructed during the procedure. In 7 patients, the aneurysm was partially visualized by 3D-ioUS or was not in field of view. Post-clipping intraoperative ultrasound was obtained in 26 and successfully reconstructed in 18 patients (69%) despite clip related artefacts. The overlap between 3D-ioUS aneurysm volume and preoperative rDSA aneurysm volume resulted in a mean accuracy of 0.71 (Dice coefficient). Conclusions Intraoperative coregistration of 3D intraoperative ultrasound data with preoperative rotational digital subtraction angiography is possible with high accuracy. It allows the immediate visualization of vessels beyond the microscopic field, as well as parallel assessment of blood velocity, aneurysm and vascular tree configuration. Although spatial resolution is lower than for standard angiography, the method provides an excellent vascular overview, advantageous interpretation of 3D-ioUS and immediate intraoperative feedback of the vascular status. A prerequisite for understanding vascular intraoperative ultrasound is image quality and a successful match with preoperative rotational digital subtraction angiography.
Collapse
Affiliation(s)
- Dino Podlesek
- Department of Neurosurgery, Dresden University of Technology, Carl Gustav Carus Faculty of Medicine, Dresden, Germany
| | - Tobias Meyer
- Institute of Biomedical Engineering, Dresden University of Technology, Faculty of Electrical Engineering and Information Technology, Dresden, Germany
| | - Ute Morgenstern
- Institute of Biomedical Engineering, Dresden University of Technology, Faculty of Electrical Engineering and Information Technology, Dresden, Germany
| | - Gabriele Schackert
- Department of Neurosurgery, Dresden University of Technology, Carl Gustav Carus Faculty of Medicine, Dresden, Germany
| | - Matthias Kirsch
- Department of Neurosurgery, Dresden University of Technology, Carl Gustav Carus Faculty of Medicine, Dresden, Germany
- * E-mail:
| |
Collapse
|
15
|
Current world literature. Curr Opin Urol 2012; 22:336-45. [PMID: 22677776 DOI: 10.1097/mou.0b013e3283551cbf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|