1
|
Strelko O, Swanson J, Woldt P, Frazzetta J, Simon J, Ng I, Baker MS, Barton KP, Thakkar JP, Prabhu VC, Germanwala AV. National Trends and Factors Associated with Voluntary Refusal of Glioblastoma Treatment: A Retrospective Review of the National Cancer Database. World Neurosurg 2024; 189:e419-e426. [PMID: 38906477 DOI: 10.1016/j.wneu.2024.06.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 06/23/2024]
Abstract
OBJECTIVE Adherence to combinatorial treatments are important predictors of improved long-term outcomes for patients with glioblastoma (GB); however, factors associated with refusal of surgery, chemotherapy, or radiotherapy (RT) by patients with GB have not been studied. METHODS The National Cancer Database was queried from 2004 to 2018 to identify patients with a primary diagnosis of GB who underwent surgical resection alone or followed by either RT or chemotherapy. Adult patients who voluntarily rejected a physician's recommendations for 1 or more treatment were selected. Multivariable regression was used to identify factors associated with rejection of surgical resection, chemotherapy, and RT. Patients receiving treatment were 3:1 propensity score matched to those rejecting treatment and median overall survival (OS) was compared. RESULTS 58,788 patients were included in the analysis. Factors associated with voluntary refusal of GB treatment included: old age, nonprivate insurance, female sex, Black race, comorbidities, treatment at a nonacademic facility, and living 55+ miles away from a treatment facility (P < 0.05). On propensity matched analysis, refusal of surgery conferred a 4 month decrease in OS (P < 0.001), RT an 8 month decrease in OS (P < 0.001), and chemotherapy a 7 month decrease in OS (P < 0.001). CONCLUSIONS In patients with GB, age, sex, race, nonprivate insurance, medical comorbidities, distance from treatment facility, and geographic location were associated with refusal of surgery, postsurgical RT, and chemotherapy. In addition, treatment refusal had a significant impact on OS length.
Collapse
Affiliation(s)
- Oleksandr Strelko
- Loyola University Stritch School of Medicine, Maywood, Illinois, USA.
| | - James Swanson
- Loyola University Stritch School of Medicine, Maywood, Illinois, USA
| | - Parker Woldt
- Loyola University Stritch School of Medicine, Maywood, Illinois, USA
| | - Joseph Frazzetta
- Department of Neurological Surgery, Loyola University Stritch School of Medicine, Maywood, Illinois, USA
| | - Joshua Simon
- Department of Neurological Surgery, Loyola University Stritch School of Medicine, Maywood, Illinois, USA
| | - Isaac Ng
- Department of Neurological Surgery, Loyola University Stritch School of Medicine, Maywood, Illinois, USA
| | - Marshall S Baker
- Department of Surgery, University of Utah, Salt Lake City, Utah, USA
| | - Kevin P Barton
- Department of Oncology, Loyola University Stritch School of Medicine, Maywood, Illinois, USA
| | - Jigisha P Thakkar
- Department of Neurology, Loyola University Stritch School of Medicine, Maywood, Illinois, USA
| | - Vikram C Prabhu
- Department of Neurological Surgery, Loyola University Stritch School of Medicine, Maywood, Illinois, USA
| | - Anand V Germanwala
- Department of Neurological Surgery, Loyola University Stritch School of Medicine, Maywood, Illinois, USA
| |
Collapse
|
2
|
Tamai S, Ichinose T, Jiapaer S, Hirai N, Sabit H, Tanaka S, Kinoshita M, Kobayashi M, Hirao A, Nakada M. Therapeutic potential of pentamidine for glioma-initiating cells and glioma cells through multimodal antitumor effects. Cancer Sci 2023. [PMID: 37142416 DOI: 10.1111/cas.15827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 05/06/2023] Open
Abstract
Glioma-initiating cells, which comprise a heterogeneous population of glioblastomas, contribute to resistance against aggressive chemoradiotherapy. Using drug reposition, we investigated a therapeutic drug for glioma-initiating cells. Drug screening was undertaken to select candidate agents that inhibit proliferation of two different glioma-initiating cells lines. The alteration of proliferation and stemness of the two glioma-initiating cell lines, and proliferation, migration, cell cycle, and survival of these two differentiated glioma-initiating cell lines and three different glioblastoma cell lines treated with the candidate agent were evaluated. We also used a xenograft glioma mouse model to evaluate anticancer effects of treated glioma cell lines. Among the 1301 agents, pentamidine-an antibiotic for Pneumocystis jirovecii-emerged as a successful antiglioma agent. Pentamidine treatment suppressed proliferation and stemness in glioma-initiating cell lines. Proliferation and migration were inhibited in all differentiated glioma-initiating cells and glioblastoma cell lines, with cell cycle arrest and caspase-dependent apoptosis induction. The in vivo study reproduced the same findings as the in vitro studies. Pentamidine showed a stronger antiproliferative effect on glioma-initiating cells than on differentiated cells. Western blot analysis revealed pentamidine inhibited phosphorylation of signal transducer and activator of transcription 3 in all cell lines, whereas Akt expression was suppressed in glioma-initiating cells but not in differentiated lines. In the present study, we identified pentamidine as a potential therapeutic drug for glioma. Pentamidine could be promising for the treatment of glioblastomas by targeting both glioma-initiating cells and differentiated cells through its multifaceted antiglioma effects.
Collapse
Affiliation(s)
- Sho Tamai
- Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Ishikawa, Japan
| | - Toshiya Ichinose
- Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Ishikawa, Japan
| | - Shabierjiang Jiapaer
- Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Ishikawa, Japan
| | - Nozomi Hirai
- Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Ishikawa, Japan
- Department of Neurosurgery, Toho University Ohashi Medical Center, Tokyo, Japan
| | - Hemragul Sabit
- Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Ishikawa, Japan
| | - Shingo Tanaka
- Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Ishikawa, Japan
| | - Masashi Kinoshita
- Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Ishikawa, Japan
| | - Masahiko Kobayashi
- Division of Molecular Genetics, Cancer Research Institute, Kanazawa University, Ishikawa, Japan
| | - Atsushi Hirao
- Division of Molecular Genetics, Cancer Research Institute, Kanazawa University, Ishikawa, Japan
| | - Mitsutoshi Nakada
- Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Ishikawa, Japan
| |
Collapse
|
3
|
Liu J, Li C, Wang Y, Ji P, Guo S, Zhai Y, Wang N, Xu M, Wang J, Wang L. Prognostic and predictive factors of secondary gliosarcoma: A single-institution series of 18 cases combined with 89 cases from literature. Front Oncol 2023; 12:1026747. [PMID: 36798692 PMCID: PMC9927223 DOI: 10.3389/fonc.2022.1026747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 12/27/2022] [Indexed: 02/04/2023] Open
Abstract
Introduction Secondary gliosarcomas (SGS) are rare malignancies that are diagnosed subsequent to pre-existing glioma. Clinical features and optimal treatment strategies for SGS have not been conclusively established. This study aimed to assess the clinicopathological features and outcomes of SGS. Methods We assessed the clinicopathological features and outcomes of SGS via retrospective analysis of data for SGS patients at Tangdu Hospital. Data from SGS patients in prior publications were also analyzed in accordance with PRISMA guidelines. Results Eighteen SGS patients who had been treated at Tangdu Hospital between 2013 and 2020 were enrolled in this study. Additional 89 eligible SGS patients were identified from 39 studies. The median age for the patients was 53 years old, and the most common location was the temporal lobe. The most common initial diagnosis was glioblastoma (GBM) (72.0%). Radiology revealed enhanced masses in 94.8% (73/77) of patients. Ten patients (10/107, 9.35%) had extracranial metastases at or after SGS diagnosis. Patients with initial diagnosis of non-GBM and who were younger than 60 years of age were significantly associated with a long duration of disease progression to SGS. After SGS diagnosis, patients with initial non-GBM diagnosis, gross total resection and chemoradiotherapy exhibited prolonged survival outcomes. Patients who had been initially diagnosed with GBM and received both chemoradiotherapy and active therapy after disease progression to SGS, had a significantly longer overall survival than patients who did not. Conclusion Initial diagnosis of GBM was a poor prognostic factor for SGS. Patients who underwent gross total resection and chemoradiation had better overall survival outcomes than those who did not. However, during treatment, clinicians should be cognizant of possible extracranial metastases.
Collapse
Affiliation(s)
- Jinghui Liu
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
| | - Chen Li
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
| | - Yuan Wang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
| | - Peigang Ji
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
| | - Shaochun Guo
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
| | - Yulong Zhai
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
| | - Na Wang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
| | - Meng Xu
- Evidence-Based Social Sciences Research Centre, School of Public Health, Lanzhou University, Lanzhou, China
| | - Julei Wang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China,*Correspondence: Julei Wang, ; Liang Wang,
| | - Liang Wang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China,Innovation Center for Advanced Medicine, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China,*Correspondence: Julei Wang, ; Liang Wang,
| |
Collapse
|
4
|
Li G, Rodrigues A, Kim L, Garcia C, Jain S, Zhang M, Hayden-Gephart M. 5-Aminolevulinic Acid Imaging of Malignant Glioma. Surg Oncol Clin N Am 2022; 31:581-593. [DOI: 10.1016/j.soc.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Intraoperative 5-ALA fluorescence-guided resection of high-grade glioma leads to greater extent of resection with better outcomes: a systematic review. J Neurooncol 2022; 156:233-256. [PMID: 34989964 DOI: 10.1007/s11060-021-03901-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/12/2021] [Indexed: 12/13/2022]
Abstract
IMPORTANCE High-grade gliomas (HGG) are the most aggressive and common malignant brain tumors in adults. They have a dismally fatal prognosis. Even if gross total resection of the enhancing tumor is achieved, inevitably, invading tumor cells that are indistinguishable to the un-aided eye are left behind, which eventually leads to tumor recurrence. 5-aminolevulinic acid (5-ALA) is an increasingly utilized intraoperative fluorescent imaging agent for patients with HGG. It enhances visualization of HGG tissue. Despite early promising randomized clinical trial data suggesting a survival benefit for 5-ALA-guided surgery, the growing body of literature must be analyzed to confirm efficacy on patient outcomes. OBJECTIVE To perform a systematic review of the literature to evaluate whether there is a beneficial effect upon survival and extent of resection due to the utilization of 5-ALA in HGG surgery. EVIDENCE REVIEW Literature regarding 5-ALA usage in HGG surgery was reviewed according to the PRISMA guidelines. Two databases, PubMed and SCOPUS, were searched for assorted combinations of the keywords "5-ALA," "high-grade glioma," "5-aminolevulinic acid," and "resection" in July 2020 for case reports and retrospective, prospective, and randomized clinical trials assessing and analyzing 5-ALA intraoperative use in patients with HGG. Entailed studies on PubMed and SCOPUS were found for screening using a snowball search technique upon the initially searched papers. Systematic reviews and meta-analyses were excluded from our PRISMA table. FINDINGS 3756 previously published studies were screened, 536 of which were further evaluated, and ultimately 45 were included in our systematic review. There were no date restrictions on the screened publications. Our literature search was finalized on July 16, 2020. We found an observed increase in the overall survival (OS) and progression-free survival (PFS) of the 5-ALA group compared to the white light group, as well as an observed increase in the OS and PFS of complete resections compared to incomplete resections. Of the studies that directly compared the use of 5-ALA to white light (13 of the total analyzed 45, or 28.9%), 5-ALA lead to a better PFS and OS in 88.4 and 67.5% of patients, respectively. When the studies that reported postoperative neurologic outcomes of surgeries using 5-ALA vs. white light were analyzed, 42.2% of subjects demonstrated 5-ALA use was associated with less post-op neurological deficits, whereas 34.5% demonstrated no difference between 5-ALA and without. 23.3% of studies showed that intraoperative 5-ALA guided surgeries lead to more post-op neurological deficits. CONCLUSIONS AND RELEVANCE Utilization of 5-ALA was found to be associated with a greater extent of resection in HGG surgeries, as well as longer OS and PFS. Postop neurologic deficit rates were mixed and inconclusive when comparing 5-ALA groups to white light groups. 5-ALA is a useful surgical adjunct for resection of HGG when patient safety is preserved.
Collapse
|
6
|
Interstitial Photodynamic Therapy for Glioblastomas: A Standardized Procedure for Clinical Use. Cancers (Basel) 2021; 13:cancers13225754. [PMID: 34830908 PMCID: PMC8616201 DOI: 10.3390/cancers13225754] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary The most frequent primary high-grade brain tumors are glioblastomas (GBMs). The current standard of care for GBM is maximal surgical resection followed by radiotherapy and chemotherapy. Despite all these treatments, the overall survival is still limited, with a median of 15 months. The challenge is to improve the local control of this infiltrative disease. Interstitial photodynamic therapy (iPDT) is a minimally invasive treatment relying on the interaction of light, a photosensitizer and oxygen. It consists of introducing optical fibers inside the tumor to illuminate the cancer cells which have been sensitized to light thanks to a natural photosensitizer agent. Herein, we propose a standardized and reproducible workflow for the clinical application of iPDT to GBM. This workflow, which involves intraoperative imaging, a dedicated treatment planning system (TPS) and robotic assistance for the implantation of stereotactic optical fibers, represents a key step in the deployment of iPDT for the treatment of GBM. Abstract Glioblastomas (GBMs) are high-grade malignancies with a poor prognosis. The current standard of care for GBM is maximal surgical resection followed by radiotherapy and chemotherapy. Despite all these treatments, the overall survival is still limited, with a median of 15 months. For patients harboring inoperable GBM, due to the anatomical location of the tumor or poor general condition of the patient, the life expectancy is even worse. The challenge of managing GBM is therefore to improve the local control especially for non-surgical patients. Interstitial photodynamic therapy (iPDT) is a minimally invasive treatment relying on the interaction of light, a photosensitizer and oxygen. In the case of brain tumors, iPDT consists of introducing one or several optical fibers in the tumor area, without large craniotomy, to illuminate the photosensitized tumor cells. It induces necrosis and/or apoptosis of the tumor cells, and it can destruct the tumor vasculature and produces an acute inflammatory response that attracts leukocytes. Interstitial PDT has already been applied in the treatment of brain tumors with very promising results. However, no standardized procedure has emerged from previous studies. Herein, we propose a standardized and reproducible workflow for the clinical application of iPDT to GBM. This workflow, which involves intraoperative imaging, a dedicated treatment planning system (TPS) and robotic assistance for the implantation of stereotactic optical fibers, represents a key step in the deployment of iPDT for the treatment of GBM. This end-to-end procedure has been validated on a phantom in real operating room conditions. The thorough description of a fully integrated iPDT workflow is an essential step forward to a clinical trial to evaluate iPDT in the treatment of GBM.
Collapse
|
7
|
Xia X, Cao F, Yuan X, Zhang Q, Chen W, Yu Y, Xiao H, Han C, Yao S. Low expression or hypermethylation of PLK2 might predict favorable prognosis for patients with glioblastoma multiforme. PeerJ 2019; 7:e7974. [PMID: 31763067 PMCID: PMC6873877 DOI: 10.7717/peerj.7974] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 10/02/2019] [Indexed: 01/26/2023] Open
Abstract
Background As the most aggressive brain tumor, patients with glioblastoma multiforme (GBM) have a poor prognosis. Our purpose was to explore prognostic value of Polo-like kinase 2 (PLK2) in GBM, a member of the PLKs family. Methods The expression profile of PLK2 in GBM was obtained from The Cancer Genome Atlas database. The PLK2 expression in GBM was tested. Kaplan–Meier curves were generated to assess the association between PLK2 expression and overall survival (OS) in patients with GBM. Furthermore, to assess its prognostic significance in patients with primary GBM, we constructed univariate and multivariate Cox regression models. The association between PLK2 expression and its methylation was then performed. Differentially expressed genes correlated with PLK2 were identified by Pearson test and functional enrichment analysis was performed. Results Overall survival results showed that low PLK2 expression had a favorable prognosis of patients with GBM (P-value = 0.0022). Furthermore, PLK2 (HR = 0.449, 95% CI [0.243–0.830], P-value = 0.011) was positively associated with OS by multivariate Cox regression analysis. In cluster 5, DNA methylated PLK2 had the lowest expression, which implied that PLK2 expression might be affected by its DNA methylation status in GBM. PLK2 in CpG island methylation phenotype (G-CIMP) had lower expression than non G-CIMP group (P = 0.0077). Regression analysis showed that PLK2 expression was negatively correlated with its DNA methylation (P = 0.0062, Pearson r = −0.3855). Among all differentially expressed genes of GBM, CYGB (r = 0.5551; P < 0.0001), ISLR2 (r = 0.5126; P < 0.0001), RPP25 (r = 0.5333; P < 0.0001) and SOX2 (r = −0.4838; P < 0.0001) were strongly correlated with PLK2. Functional enrichment analysis results showed that these genes were enriched several biological processes or pathways that were associated with GBM. Conclusion Polo-like kinase 2 expression is regulated by DNA methylation in GBM, and its low expression or hypermethylation could be considered to predict a favorable prognosis for patients with GBM.
Collapse
Affiliation(s)
- Xiangping Xia
- Department of Cerebrovascular Disease, The First Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Fang Cao
- Department of Cerebrovascular Disease, The First Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Xiaolu Yuan
- Department of Cerebrovascular Disease, The First Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Qiang Zhang
- Department of Cerebrovascular Disease, The First Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Wei Chen
- Department of Cerebrovascular Disease, The First Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Yunhu Yu
- Department of Stroke Unit and Neurosurgery, The First People's Hospital of Zunyi, Zunyi, Guizhou, China
| | - Hua Xiao
- Department of Cerebrovascular Disease, The First Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Chong Han
- Department of Cerebrovascular Disease, The First Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Shengtao Yao
- Department of Cerebrovascular Disease, The First Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China.,Department of Stroke Unit and Neurosurgery, The First People's Hospital of Zunyi, Zunyi, Guizhou, China
| |
Collapse
|
8
|
Goryaynov SA, Okhlopkov VA, Golbin DA, Chernyshov KA, Svistov DV, Martynov BV, Kim AV, Byvaltsev VA, Pavlova GV, Batalov A, Konovalov NA, Zelenkov PV, Loschenov VB, Potapov AA. Fluorescence Diagnosis in Neurooncology: Retrospective Analysis of 653 Cases. Front Oncol 2019; 9:830. [PMID: 31552168 PMCID: PMC6747044 DOI: 10.3389/fonc.2019.00830] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 08/13/2019] [Indexed: 12/14/2022] Open
Abstract
Objective: This study is to analyze fluorescence sensitivity in the diagnosis of brain and spinal cord tumors. Material and methods: The authors conducted a multicenter retrospective analysis of data on 653 cases in 641 patients: 553 of them had brain tumors and 88 spinal cord tumors. Brain tumor resection was performed in 523 patients, of whom 484 were adults and 39 children. The analyzed series was presented by 320 gliomas, 101 meningiomas, and 72 metastases. A stereotactic biopsy was performed in 20 patients and endoscopic surgery in 10 patients. In all cases, 20 mg/kg of 5-Aminolaevulinic acid was administered orally 2-h before surgery. All surgical interventions were performed with a microscope BLUE 400 to visualize fluorescence, while endoscopic surgery-with an endoscope equipped with a fluorescent module. Fluorescence spectroscopy was conducted in 20 cases of stereotactic biopsies and in 88 cases of spinal cord tumors. Results: Among adult brain tumors operated by microsurgical techniques, meningiomas showed the highest 5-ALA fluorescence sensitivity 94% (n = 95/101), brain metastases 84.7% (n = 61/72), low-grade gliomas 46.4% (n = 26/56), and high-grade gliomas 90.2% (n = 238/264). In children the highest 5-ALA visible fluorescence was observed in anaplastic astrocytomas 100% (n = 4/4) and in anaplastic ependymomas 100% (n = 4/4); in low-grade gliomas it made up 31.8% (n = 7/22). As for the spinal cord tumors in adults, the highest sensitivity was demonstrated by glioblastomas 100% (n = 4/4) and by meningiomas 100% (n = 4/4); Fluorescence was not found in gemangioblastomas (n = 0/6) and neurinomas (n = 0/4). Fluorescence intensity reached 60% (n = 6/10) in endoscopic surgery and 90% (n = 18/20) in stereotactic biopsy. Conclusion: 5-ALA fluorescence diagnosis proved to be most sensitive in surgery of HGG and meningioma (90.2 and 94.1%, respectively). Sensitivity in surgery of intracranial metastases and spinal cord tumors was slightly lower (84.7 and 63.6%, correspondingly). The lowest fluorescence sensitivity was marked in pediatric tumors and LGG (50 and 46.4%, correspondingly). Fluorescence diagnosis can also be used in transnasal endoscopic surgery of skull base tumors and in stereotactic biopsy.
Collapse
Affiliation(s)
- Sergey A. Goryaynov
- N. N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Vladimir A. Okhlopkov
- N. N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Denis A. Golbin
- N. N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Konstantin A. Chernyshov
- I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Dmitrij V. Svistov
- S. M. Kirov Military Medical Academy of the Ministry of Defense of the Russian Federation, St-Petersburg, Russia
| | - Boris V. Martynov
- S. M. Kirov Military Medical Academy of the Ministry of Defense of the Russian Federation, St-Petersburg, Russia
| | - Alexandr V. Kim
- V. A. Almazov Federal North-West Medical Research Centre of the Ministry of Health of the Russian Federation, St-Petersburg, Russia
| | - Vadim A. Byvaltsev
- Laboratory of Neurosurgery, Irkutsk Scientific Center of Surgery and Traumatology, Irkutsk, Russia
- Department of Neurosurgery, Irkutsk State Medical University, Irkutsk, Russia
| | - Galina V. Pavlova
- Institute of Gene Biology, Russian Academy of Science, Moscow, Russia
| | - Artem Batalov
- N. N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Nikolay A. Konovalov
- N. N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Petr V. Zelenkov
- N. N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Victor B. Loschenov
- Prokhorov General Physics Institute of the Russian Academy of Science, Moscow, Russia
- National Research Nuclear University MEPhI, Moscow, Russia
| | - Alexandr A. Potapov
- N. N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
9
|
Zhang DY, Singhal S, Lee JYK. Optical Principles of Fluorescence-Guided Brain Tumor Surgery: A Practical Primer for the Neurosurgeon. Neurosurgery 2019; 85:312-324. [PMID: 30085129 DOI: 10.1093/neuros/nyy315] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 06/18/2018] [Indexed: 01/21/2023] Open
Abstract
Fluorescence-guided surgery is a rapidly growing field that has produced some of the most important innovations in surgical oncology in the past decade. These intraoperative imaging technologies provide information distinguishing tumor tissue from normal tissue in real time as the surgery proceeds and without disruption of the workflow. Many of these fluorescent tracers target unique molecular or cellular features of tumors, which offers the opportunity for identifying pathology with high precision to help surgeons achieve their primary objective of a maximal safe resection. As novel fluorophores and fluorescent probes emerge from preclinical development, a practical understanding of the principles of fluorescence remains critical for evaluating the clinical utility of these agents and identifying opportunities for further innovation. In this review, we provide an "in-text glossary" of the fundamental principles of fluorescence with examples of direct applications to fluorescence-guided brain surgery. We offer a detailed discussion of the various advantages and limitations of the most commonly used intraoperative imaging agents, including 5-aminolevulinic acid, indocyanine green, and fluorescein, with a particular focus on the photophysical properties of these specific agents as they provide a framework through which to understand the new agents that are entering clinical trials. To this end, we conclude with a survey of the fluorescent properties of novel agents that are currently undergoing or will soon enter clinical trials for the intraoperative imaging of brain tumors.
Collapse
Affiliation(s)
- Daniel Y Zhang
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sunil Singhal
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - John Y K Lee
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
10
|
Kamp MA, Knipps J, Neumann LM, Mijderwijk HJ, Dibué-Adjei M, Steiger HJ, Slotty PJ, Rapp M, Cornelius JF, Sabel M. Is the Intensity of 5-Aminolevulinic Acid-Derived Fluorescence Related to the Light Source? World Neurosurg 2019; 131:e271-e276. [PMID: 31351208 DOI: 10.1016/j.wneu.2019.07.136] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 11/28/2022]
Abstract
OBJECTIVE With the introduction of the 5-aminolevulinic acid (5-ALA) technique, surgical neuro-oncology has made a major advance. 5-ALA fluorescence-guided resection of malignant glioma results in more complete surgical resections and subsequently prolonged survival. However, it remains uncertain how light intensities of the blue light source and 5-ALA-derived fluorescence intensities of the illuminated tissue are connected. The aim of the present study was to compare light intensities of different blue light sources and protoporphyrin (PpIX) fluorescence intensities of PpIX solutions with defined concentrations after illumination with different light sources. MATERIAL AND METHODS The light spectrum of 7 different blue light sources and the fluorescence intensity of 2 PpIX solutions (0.15 μg/mL and 5 μg/mL) were quantified after illumination. We compared the Zeiss OPMI Pentero microscope, the Zeiss OPMI Pentero 900 microscope, the Leica M530 OH6 microscope, an endoscope equipped with the 5-ALA technique, a mini-spectrometer equipped with a multi-channel light-emitting diode (LED) source emitting monochromatic light, a modified commercially available LED head lamp, and a commercially available unmodified UV-LED lamp. PpIX fluorescence was quantified in a standardized setup using a mini-spectrometer. RESULTS Maximum light intensities of the evaluated light sources were reached at different wavelengths. All tested devices were able to detect PpIX-induced fluorescence. However, the intensity of PpIX fluorescence of the differently concentrated PpIX solutions (0.15 μg/mL and 5 μg/mL) was significantly dependent on the light source used. CONCLUSIONS Intensity of the 5-ALA-derived fluorescence is related to the light source used.
Collapse
Affiliation(s)
- Marcel A Kamp
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Düsseldorf, Germany.
| | - Johannes Knipps
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Düsseldorf, Germany
| | - Lisa Margarete Neumann
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Düsseldorf, Germany
| | - Hendrik-Jan Mijderwijk
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Düsseldorf, Germany
| | - Maxine Dibué-Adjei
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Düsseldorf, Germany
| | - Hans-Jakob Steiger
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Düsseldorf, Germany
| | - Philipp J Slotty
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Düsseldorf, Germany
| | - Marion Rapp
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Düsseldorf, Germany
| | - Jan-Frederick Cornelius
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Düsseldorf, Germany
| | - Michael Sabel
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
11
|
Picart T, Berhouma M, Dumot C, Pallud J, Metellus P, Armoiry X, Guyotat J. Optimization of high-grade glioma resection using 5-ALA fluorescence-guided surgery: A literature review and practical recommendations from the neuro-oncology club of the French society of neurosurgery. Neurochirurgie 2019; 65:164-177. [PMID: 31125558 DOI: 10.1016/j.neuchi.2019.04.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 04/17/2019] [Accepted: 04/28/2019] [Indexed: 11/20/2022]
Abstract
BACKGROUND When feasible, the surgical resection is the standard first step of the management of high-grade gliomas. 5-ALA fluorescence-guided-surgery (5-ALA-FGS) was developed to ease the intra-operative delineation of tumor borders in order to maximize the extent of resection. METHODS A Medline electronic database search was conducted. English language studies from January 1998 until July 2018 were included, following the PRISMA guidelines. RESULTS 5-ALA can be considered as a specific tool for the detection of tumor remnant but has a weaker sensibility (level 2). 5-ALA-FGS is associated with a significant increase in the rate of gross total resection reaching more than 90% in some series (level 1). Consistently, 5-ALAFGS improves progression-free survival (level 1). However, the gain in overall survival is more debated. The use of 5-ALA-FGS in eloquent areas is feasible but requires simultaneous intraoperative electrophysiologic functional brain monitoring to precisely locate and preserve eloquent areas (level 2). 5-ALA is usable during the first resection of a glioma but also at recurrence (level 2). From a practical standpoint, 5-ALA is orally administered 3 hours before the induction of anesthesia, the recommended dose being 20 mg/kg. Intra-operatively, the procedure is performed as usually with a central debulking and a peripheral dissection during which the surgeon switches from white to blue light. Provided that some precautions are observed, the technique does not expose the patient to particular complications. CONCLUSION Although 5-ALA-FGS contributes to improve gliomas management, there are still some limitations. Future methods will be developed to improve the sensibility of 5-ALA-FGS.
Collapse
Affiliation(s)
- T Picart
- Service de neurochirurgie D, hospices civils de Lyon, hôpital neurologique Pierre-Wertheimer, 59, boulevard Pinel, 69677 Bron, France; Inserm 1052, UMR 5286,Team ATIP/AVENIR Transcriptomic diversity of stem cells, centre de cancérologie de Lyon, centre Léon-Bérard, 69008 Lyon, France.
| | - M Berhouma
- Service de neurochirurgie D, hospices civils de Lyon, hôpital neurologique Pierre-Wertheimer, 59, boulevard Pinel, 69677 Bron, France; CREATIS Laboratory, Inserm U1206, UMR 5220, université de Lyon, 69100 Villeurbanne, France
| | - C Dumot
- Service de neurochirurgie D, hospices civils de Lyon, hôpital neurologique Pierre-Wertheimer, 59, boulevard Pinel, 69677 Bron, France; CREATIS Laboratory, Inserm U1206, UMR 5220, université de Lyon, 69100 Villeurbanne, France
| | - J Pallud
- Département de neurochirurgie, hôpital Sainte-Anne, 75014 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 75005 Paris, France; IMA-Brain, Inserm U894, institut de psychiatrie et neurosciences de Paris, 7013 Paris, France
| | - P Metellus
- Hôpital Privé Clairval, Ramsay général de santé, 13009 Marseille, France; UMR 7051, institut de neurophysiopathologie, université d'Aix-Marseille, 13344 Marseille, France
| | - X Armoiry
- MATEIS (Team I2B), University of Lyon, Lyon school of pharmacy, 69008 Lyon, France; Édouard-Herriot Hospital, Pharmacy Department, 69008 Lyon, France; University of Warwick, Warwick Medical School, Coventry, UK
| | - J Guyotat
- Service de neurochirurgie D, hospices civils de Lyon, hôpital neurologique Pierre-Wertheimer, 59, boulevard Pinel, 69677 Bron, France
| |
Collapse
|
12
|
Kim JY, Jackman JG, Woodring S, McSherry F, Herndon JE, Desjardins A, Friedman HS, Peters KB. Second primary cancers in long-term survivors of glioblastoma. Neurooncol Pract 2019; 6:386-391. [PMID: 31555453 PMCID: PMC6753354 DOI: 10.1093/nop/npz001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Background Overall survival (OS) in glioblastoma (GBM) is poor at an average of 14 to 18 months, and long-term survivors (LTS) of GBM are rare. LTS of GBM, defined as surviving >5 years postdiagnosis, represent only 2% to 10% of all GBM patients. LTS of cancer are at high risk of developing second primary neoplasms. This study looks at occurrences of second primary neoplasms in LTS of GBM. Methods Records from adult patients newly diagnosed with GBM between January 1, 1998 and February 8, 2010, were retrospectively reviewed to identify LTS, defined as patients who survived ≥5 years. We focused on the identification of a new diagnosis of cancer occurring at least 2 years after the initial GBM diagnosis. Results We identified 155 LTS of GBM, with a median OS of 11.0 years (95% CI: 9.0 to 13.1 years) and a median follow-up of 9.6 years (95% CI: 8.7 to 10.7 years). In this cohort of patients, 13 (8.4%) LTS of GBM developed 17 secondary cancers. Eight could potentially be attributed to previous radiation and chemotherapy (skin cancer in radiation field [n = 4], leukemia [n = 2], low-grade glioma [n = 1], and sarcoma of the scalp [n = 1]). The other 9 cases included melanoma (n = 2), prostate cancer (n = 2), bladder cancer (n = 1), endometrioid adenocarcinoma (n = 1), basal cell carcinoma (n = 1), and renal cell carcinoma (n = 1). Conclusions Although second primary cancers are rare in GBM LTS, providers should continue close monitoring with appropriate oncologic care. Moreover, this highlights the need for survivorship care of patients with GBM.
Collapse
Affiliation(s)
- Jung-Young Kim
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | - Jennifer G Jackman
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | - Sarah Woodring
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | - Frances McSherry
- Department of Biostatistics, Duke University School of Medicine, Durham, NC, USA
| | - James E Herndon
- Department of Biostatistics, Duke University School of Medicine, Durham, NC, USA
| | - Annick Desjardins
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | - Henry S Friedman
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | - Katherine B Peters
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
13
|
Stepp H, Stummer W. 5‐ALA in the management of malignant glioma. Lasers Surg Med 2018; 50:399-419. [DOI: 10.1002/lsm.22933] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Herbert Stepp
- LIFE Center and Department of UrologyUniversity Hospital of MunichFeodor‐Lynen‐Str. 1981377MunichGermany
| | - Walter Stummer
- Department of NeurosurgeryUniversity Clinic MünsterAlbert‐Schweitzer‐Campus 1, Gebäude A148149MünsterGermany
| |
Collapse
|
14
|
Furuta T, Sabit H, Dong Y, Miyashita K, Kinoshita M, Uchiyama N, Hayashi Y, Hayashi Y, Minamoto T, Nakada M. Biological basis and clinical study of glycogen synthase kinase- 3β-targeted therapy by drug repositioning for glioblastoma. Oncotarget 2017; 8:22811-22824. [PMID: 28423558 PMCID: PMC5410264 DOI: 10.18632/oncotarget.15206] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 01/25/2017] [Indexed: 11/25/2022] Open
Abstract
Background Glycogen synthase kinase (GSK)-3β has emerged as an appealing therapeutic target for glioblastoma (GBM). Here, we investigated the therapeutic effect of the current approved drugs against GBM via inhibition of GSK3β activity both, in experimental setting and in a clinical study for recurrent GBM patients by repositioning existent drugs in combination with temozolomide (TMZ). Materials and Methods Progression-free and overall survival rates were compared between patients with low or high expression of active GSK3β in the primary tumor. GBM cells and a mouse model were examined for the effects of GSK3β-inhibitory drugs, cimetidine, lithium, olanzapine, and valproate. The safety and efficacy of the cocktail of these drugs (CLOVA cocktail) in combination with TMZ were tested in the mouse model and in a clinical study for recurrent GBM patients. Results Activation of GSK3β in the tumor inversely correlated with patient survival as an independent prognostic factor. CLOVA cocktail significantly inhibited cell invasion and proliferation. The patients treated with CLOVA cocktail in combination with TMZ showed increased survival compared to the control group treated with TMZ alone. Conclusions Repositioning of the GSK3β-inhibitory drugs improved the prognosis of refractory GBM patients with active GSK3β in tumors. Combination of CLOVA cocktail and TMZ is a promising approach for recurrent GBM.
Collapse
Affiliation(s)
- Takuya Furuta
- Department of Neurosurgery, Division of Neuroscience, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Hemragul Sabit
- Department of Neurosurgery, Division of Neuroscience, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Yu Dong
- Department of Neurosurgery, Division of Neuroscience, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Katsuyoshi Miyashita
- Department of Neurosurgery, Division of Neuroscience, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Masashi Kinoshita
- Department of Neurosurgery, Division of Neuroscience, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Naoyuki Uchiyama
- Department of Neurosurgery, Division of Neuroscience, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Yasuhiko Hayashi
- Department of Neurosurgery, Division of Neuroscience, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Yutaka Hayashi
- Department of Neurosurgery, Division of Neuroscience, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Toshinari Minamoto
- Division of Translational and Clinical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Mitsutoshi Nakada
- Department of Neurosurgery, Division of Neuroscience, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
15
|
Illic R, Somma T, Savic D, Frio F, Milicevic M, Solari D, Nikitovic M, Lavrnic S, Raicevic S, Milosevic S, Cavallo LM, Cappabianca P, Grujicic D. A Survival Analysis with Identification of Prognostic Factors in a Series of 110 Patients with Newly Diagnosed Glioblastoma Before and After Introduction of the Stupp Regimen: A Single-Center Observational Study. World Neurosurg 2017; 104:581-588. [DOI: 10.1016/j.wneu.2017.05.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 05/02/2017] [Accepted: 05/04/2017] [Indexed: 11/25/2022]
|
16
|
|
17
|
Senders JT, Muskens IS, Schnoor R, Karhade AV, Cote DJ, Smith TR, Broekman MLD. Agents for fluorescence-guided glioma surgery: a systematic review of preclinical and clinical results. Acta Neurochir (Wien) 2017; 159:151-167. [PMID: 27878374 PMCID: PMC5177668 DOI: 10.1007/s00701-016-3028-5] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/09/2016] [Indexed: 01/09/2023]
Abstract
BACKGROUND Fluorescence-guided surgery (FGS) is a technique used to enhance visualization of tumor margins in order to increase the extent of tumor resection in glioma surgery. In this paper, we systematically review all clinically tested fluorescent agents for application in FGS for glioma and all preclinically tested agents with the potential for FGS for glioma. METHODS We searched the PubMed and Embase databases for all potentially relevant studies through March 2016. We assessed fluorescent agents by the following outcomes: rate of gross total resection (GTR), overall and progression-free survival, sensitivity and specificity in discriminating tumor and healthy brain tissue, tumor-to-normal ratio of fluorescent signal, and incidence of adverse events. RESULTS The search strategy resulted in 2155 articles that were screened by titles and abstracts. After full-text screening, 105 articles fulfilled the inclusion criteria evaluating the following fluorescent agents: 5-aminolevulinic acid (5-ALA) (44 studies, including three randomized control trials), fluorescein (11), indocyanine green (five), hypericin (two), 5-aminofluorescein-human serum albumin (one), endogenous fluorophores (nine) and fluorescent agents in a pre-clinical testing phase (30). Three meta-analyses were also identified. CONCLUSIONS 5-ALA is the only fluorescent agent that has been tested in a randomized controlled trial and results in an improvement of GTR and progression-free survival in high-grade gliomas. Observational cohort studies and case series suggest similar outcomes for FGS using fluorescein. Molecular targeting agents (e.g., fluorophore/nanoparticle labeled with anti-EGFR antibodies) are still in the pre-clinical phase, but offer promising results and may be valuable future alternatives.
Collapse
Affiliation(s)
- Joeky T Senders
- Department of Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Ivo S Muskens
- Department of Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Rosalie Schnoor
- Department of Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Aditya V Karhade
- Department of Neurosurgery, Cushing Neurosurgery Outcomes Center, Brigham and Women's Hospital, Harvard Medical School, 15 Francis Street, Boston, MA, 02115, USA
| | - David J Cote
- Department of Neurosurgery, Cushing Neurosurgery Outcomes Center, Brigham and Women's Hospital, Harvard Medical School, 15 Francis Street, Boston, MA, 02115, USA
| | - Timothy R Smith
- Department of Neurosurgery, Cushing Neurosurgery Outcomes Center, Brigham and Women's Hospital, Harvard Medical School, 15 Francis Street, Boston, MA, 02115, USA
| | - Marike L D Broekman
- Department of Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.
| |
Collapse
|
18
|
Abstract
Gliomas are characterized by their invasiveness, angiogenesis, glycolysis and poor prognosis. Determining how to inhibit angiogenesis and glycolysis and induce cell death in gliomas is essential to the development of an effective therapy. CD147, a highly glycosylated transmembrane glycoprotein with two Ig-like extracellular domains that belongs to the immunoglobulin superfamily, plays an important role in the regulation of tumor invasiveness, angiogenesis and glycolysis by inducing the secretion of matrix metalloproteinases and vascular endothelial growth factor and by interacting with monocarboxylate transporters. In this review, we first summarize the roles played by CD147 in gliomas and then propose that CD147 may be a complementary prognostic biomarker and a possible therapeutic target for glioma treatment.
Collapse
Affiliation(s)
- Fei Fei
- a 1 Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an 71032, P.R. China.,b 2 Department of Cell Biology, College of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, P.R. China
| | - Sanzhong Li
- c 3 Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, P.R. China
| | - Zhou Fei
- c 3 Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, P.R. China
| | - Zhinan Chen
- b 2 Department of Cell Biology, College of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, P.R. China
| |
Collapse
|
19
|
Pan IW, Ferguson SD, Lam S. Patient and treatment factors associated with survival among adult glioblastoma patients: A USA population-based study from 2000-2010. J Clin Neurosci 2015; 22:1575-81. [PMID: 26122381 DOI: 10.1016/j.jocn.2015.03.032] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 03/03/2015] [Indexed: 10/23/2022]
Abstract
In this study, we utilized the USA surveillance, epidemiology, and end results (SEER) database to examine factors influencing survival of glioblastoma multiforme (GBM) patients. GBM is the most common primary malignant brain tumor in adults and despite advances in treatment, prognosis remains poor. Using the SEER database, we defined a cohort of adult patients for the years 2000-2009 with confirmed GBM and minimum follow-up of 12 months. A total of 14,675 patients with GBM met the inclusion criteria. Demographic, clinical, and treatment variables were examined. Death was the primary outcome. Median survival time was 11 months. Patients had increasingly longer survival over the decade span. We found, on multivariate analysis, that significantly worse survival was associated with age >75 years, male sex, unmarried status, and non-Hispanic Caucasian race/ethnicity. Patients in the Northeast had a significantly lower risk of mortality. Patients with tumors that were non-lateralized and >3 cm fared worse. Patients who did not receive adjuvant radiation also had worse outcomes. Gross total resection imparted a survival advantage for patients compared to biopsy or partial resection. Thus, this report adds to the growing body of literature supporting the positive role of maximal resection on patient survival.
Collapse
Affiliation(s)
- I-Wen Pan
- Department of Neurosurgery, Baylor College of Medicine, 6701 Fannin Street, Suite 1230, Houston, TX 77030, USA; Division of Pediatric Neurosurgery, Texas Children's Hospital, Houston, TX, USA
| | - Sherise D Ferguson
- Department of Neurosurgery, Baylor College of Medicine, 6701 Fannin Street, Suite 1230, Houston, TX 77030, USA; Department of Neurosurgery, MD Anderson Cancer Center, Houston, TX, USA
| | - Sandi Lam
- Department of Neurosurgery, Baylor College of Medicine, 6701 Fannin Street, Suite 1230, Houston, TX 77030, USA; Division of Pediatric Neurosurgery, Texas Children's Hospital, Houston, TX, USA.
| |
Collapse
|
20
|
Eljamel S. 5-ALA Fluorescence Image Guided Resection of Glioblastoma Multiforme: A Meta-Analysis of the Literature. Int J Mol Sci 2015; 16:10443-56. [PMID: 25961952 PMCID: PMC4463655 DOI: 10.3390/ijms160510443] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 04/17/2015] [Accepted: 04/27/2015] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is one of the most deadly cancers in humans. Despite recent advances in anti-cancer therapies, most patients with GBM die from local disease progression. Fluorescence image guided surgical resection (FIGR) was recently advocated to enhance local control of GBM. This is meta-analyses of 5-aminolevulinic (5-ALA) induced FIGR. MATERIALS Review of the literature produced 503 potential publications; only 20 of these fulfilled the inclusion criteria of this analysis, including a total of 565 patients treated with 5-ALA-FIGR reporting on its outcomes and 800 histological samples reporting 5-ALA-FIGR sensitivity and specificity. RESULTS The mean gross total resection (GTR) rate was 75.4% (95% CI: 67.4-83.5, p<0.001). The mean time to tumor progression (TTP) was 8.1 months (95% CI: 4.7-12, p<0.001). The mean overall survival gain reported was 6.2 months (95% CI: -1-13, p<0.001). The specificity was 88.9% (95% CI: 83.9-93.9, p<0.001) and the sensitivity was 82.6% (95% CI: 73.9-91.9, p<0.001). CONCLUSION 5-ALA-FIGR in GBM is highly sensitive and specific, and imparts significant benefits to patients in terms of improved GTR and TTP.
Collapse
Affiliation(s)
- Samy Eljamel
- Neurological Surgery, High Tech Neuro & Micro Surgery, Edinburgh EH3 8JB, UK.
| |
Collapse
|
21
|
Leroy HA, Vermandel M, Lejeune JP, Mordon S, Reyns N. Fluorescence guided resection and glioblastoma in 2015: A review. Lasers Surg Med 2015; 47:441-51. [DOI: 10.1002/lsm.22359] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2015] [Indexed: 12/31/2022]
Affiliation(s)
- Henri-Arthur Leroy
- INSERM; U1189 ONCO-THAI; Lille France
- CHRU de lille; Department of Neurosurgery; Lille France
- University of Lille; Lille France
| | - Maximilien Vermandel
- INSERM; U1189 ONCO-THAI; Lille France
- CHRU de lille; Department of Neurosurgery; Lille France
- University of Lille; Lille France
| | - Jean-Paul Lejeune
- INSERM; U1189 ONCO-THAI; Lille France
- CHRU de lille; Department of Neurosurgery; Lille France
- University of Lille; Lille France
| | | | - Nicolas Reyns
- INSERM; U1189 ONCO-THAI; Lille France
- CHRU de lille; Department of Neurosurgery; Lille France
- University of Lille; Lille France
| |
Collapse
|
22
|
Burnet N, Jena R, Burton K, Tudor G, Scaife J, Harris F, Jefferies S. Clinical and Practical Considerations for the Use of Intensity-modulated Radiotherapy and Image Guidance in Neuro-oncology. Clin Oncol (R Coll Radiol) 2014; 26:395-406. [DOI: 10.1016/j.clon.2014.04.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 04/04/2014] [Indexed: 12/26/2022]
|
23
|
Burnet N. Developments in the Management of Central Nervous System Tumours. Clin Oncol (R Coll Radiol) 2014; 26:361-3. [DOI: 10.1016/j.clon.2014.04.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 04/11/2014] [Indexed: 11/28/2022]
|
24
|
Pezuk JA, Brassesco MS, Morales AG, de Oliveira JC, de Paula Queiroz RG, Machado HR, Carlotti CG, Neder L, Scrideli CA, Tone LG. Polo-like kinase 1 inhibition causes decreased proliferation by cell cycle arrest, leading to cell death in glioblastoma. Cancer Gene Ther 2013; 20:499-506. [PMID: 23887645 DOI: 10.1038/cgt.2013.46] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 05/19/2013] [Indexed: 02/02/2023]
Abstract
Glioblastoma (GBM) is one of the most aggressive central nervous system tumors with a patient's median survival of <1 year. Polo-like kinases (PLKs) are a family of serine/threonine kinases that have key roles in cell cycle control and DNA-damage response. We evaluated PLK1, 2, 3 and 4 gene expression in 8 GBM cell lines and 17 tumor samples, and analyzed the effect of the PLK1 inhibition on SF188 and T98G GBM cell lines and 13 primary cultures. Our data showed PLK1 overexpression and a variable altered expression of PLK2, 3 and 4 genes in GBM tumor samples and cell lines. Treatments with nanomolar concentrations of BI 2536, BI 6727, GW843682X or GSK461364 caused a significant decrease in GBM cells proliferation. Colony formation was also found to be inhibited (P<0.05), whereas apoptosis rate and mitotic index were significantly increased (P<0.05) after PLK1 inhibition in both GBM cell lines. Cell cycle analysis showed an arrest at G2 (P<0.05) and cell invasion was also decreased after PLK1 inhibition. Furthermore, simultaneous combinations of BI 2536 and temozolomide produced synergistic effects for both the cell lines after 48 h of treatment. Our findings suggest that PLK1 might be a promising target for the treatment of GBMs.
Collapse
Affiliation(s)
- J A Pezuk
- Department of Genetics, Faculty of Medicine of Ribeirão Preto, University of São Paulo
| | | | | | | | | | | | | | | | | | | |
Collapse
|