1
|
Denis M, Lauzier B, Roumeliotis N, Orliaguet G, Emeriaud G, Javouhey E, Brossier D. Severe Traumatic Brain Injury in French-Speaking Pediatric Intensive Care Units: Study of Practices. J Pediatr Intensive Care 2024; 13:389-398. [PMID: 39629349 PMCID: PMC11584275 DOI: 10.1055/s-0042-1744298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/10/2022] [Indexed: 10/18/2022] Open
Abstract
Best strategies for managing severe pediatric traumatic brain injury (TBI) are not established, with wide variations among professional practices. The main objective of this study was to assess compliance with updated pediatric TBI management guidelines (2019). A survey was distributed among French-speaking pediatric intensive care physicians from April 1 to June 30, 2019. The survey was based on a clinical case with a total of 70 questions that cover the 15 items of the 2019 TBI guidelines. The questions evaluated the assessment and management of TBI during the acute and intensive care phases. Of 487 e-mails sent, 78 surveys were included. Guidelines were adhered to (> 60%) for 10 of 15 items in the guidelines. Strong adherence to recent guideline changes was achieved for seizure prophylaxis with levetiracetam ( n = 21/33, 64%) and partial pressure of carbon dioxide threshold ( n = 52, 67%). However, management of the sodium and glucose thresholds and the role of transcranial Doppler were not consistent with the guidelines. Assessment of brain tissue oxygenation ( n = 12, 16%) and autoregulation ( n = 35, 45%) was not a common practice. There was strong agreement among clinicians on the intracranial pressure (> 80%) and cerebral perfusion pressure (> 70%) thresholds used according to age. Overall, stated practices for the management of TBI appear to be relatively standardized among responders. Variations persist in areas with a lack of evidence and pediatric-specific recommendations.
Collapse
Affiliation(s)
- Manon Denis
- Pediatric Intensive Care Unit, CHU de Caen, Caen, France
- Pediatric Intensive Care Unit, CHU de Nantes, Nantes, France
- Institut du thorax, INSERM, CNRS, Nantes Université, CHU de Nantes, France
- Institut du thorax, INSERM, CNRS, Nantes Université, France
| | | | - Nadia Roumeliotis
- Pediatric Intensive Care Unit, CHU Sainte Justine, Montréal, Quebec, Canada
- Department of Pediatrics, Université de Montréal, Montréal, Quebec, Canada
| | - Gilles Orliaguet
- Surgical Pediatric Intensive Care Unit, Necker–Enfants Malades University Hospital, Paris, France
- Department of Pediatric and Obstetrical Anaesthesia and Intensive Care, Necker–Enfants Malades University Hospital, GHU AP-HP Centre - Université de Paris, Paris, France
- EA08 Pharmacologie et évaluation des thérapeutiques chez l'enfant et la femme enceinte, Université de Paris, Paris, France
| | - Guillaumes Emeriaud
- Pediatric Intensive Care Unit, CHU Sainte Justine, Montréal, Quebec, Canada
- Department of Pediatrics, Université de Montréal, Montréal, Quebec, Canada
| | - Etienne Javouhey
- Pediatric Intensive Care Unit, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France
| | - David Brossier
- Pediatric Intensive Care Unit, CHU de Caen, Caen, France
- Department of Pediatrics, Université de Montréal, Montréal, Quebec, Canada
- School of Medicine, University Caen Normandie, Caen, F-14000, France
| |
Collapse
|
2
|
Fedriga M, Martini S, Iodice FG, Sortica da Costa C, Pezzato S, Moscatelli A, Beqiri E, Czosnyka M, Smielewski P, Agrawal S. Cerebral autoregulation in pediatric and neonatal intensive care: A scoping review. J Cereb Blood Flow Metab 2024; 44:1208-1226. [PMID: 38867574 PMCID: PMC11542144 DOI: 10.1177/0271678x241261944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/09/2024] [Accepted: 05/24/2024] [Indexed: 06/14/2024]
Abstract
Deranged cerebral autoregulation (CA) is associated with worse outcome in adult brain injury. Strategies for monitoring CA and maintaining the brain at its 'best CA status' have been implemented, however, this approach has not yet developed for the paediatric population. This scoping review aims to find up-to-date evidence on CA assessment in children and neonates with a view to identify patient categories in which CA has been measured so far, CA monitoring methods and its relationship with clinical outcome if any. A literature search was conducted for studies published within 31st December 2022 in 3 bibliographic databases. Out of 494 papers screened, this review includes 135 studies. Our literature search reveals evidence for CA measurement in the paediatric population across different diagnostic categories and age groups. The techniques adopted, indices and thresholds used to assess and define CA are heterogeneous. We discuss the relevance of available evidence for CA assessment in the paediatric population. However, due to small number of studies and heterogeneity of methods used, there is no conclusive evidence to support universal adoption of CA monitoring, technique, and methodology. This calls for further work to understand the clinical impact of CA monitoring in paediatric and neonatal intensive care.
Collapse
Affiliation(s)
- Marta Fedriga
- Neonatal and Paediatric Intensive Care Unit, IRCCS Giannina Gaslini Institute, Genoa, Italy
| | - Silvia Martini
- Neonatal Intensive Care Unit, IRCCS AOUBO, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Francesca G Iodice
- Paediatric Cardiac Anaesthesia and Intensive Care Unit, IRCCS, Bambino Gesu' Hospital, Rome, Italy
| | | | - Stefano Pezzato
- Neonatal and Paediatric Intensive Care Unit, IRCCS Giannina Gaslini Institute, Genoa, Italy
| | - Andrea Moscatelli
- Neonatal and Paediatric Intensive Care Unit, IRCCS Giannina Gaslini Institute, Genoa, Italy
| | - Erta Beqiri
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, UK
| | - Marek Czosnyka
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, UK
| | - Peter Smielewski
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, UK
| | - Shruti Agrawal
- Department of Paediatric Intensive Care, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| |
Collapse
|
3
|
Carlson AP, Mayer AR, Cole C, van der Horn HJ, Marquez J, Stevenson TC, Shuttleworth CW. Cerebral autoregulation, spreading depolarization, and implications for targeted therapy in brain injury and ischemia. Rev Neurosci 2024; 35:651-678. [PMID: 38581271 PMCID: PMC11297425 DOI: 10.1515/revneuro-2024-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 03/25/2024] [Indexed: 04/08/2024]
Abstract
Cerebral autoregulation is an intrinsic myogenic response of cerebral vasculature that allows for preservation of stable cerebral blood flow levels in response to changing systemic blood pressure. It is effective across a broad range of blood pressure levels through precapillary vasoconstriction and dilation. Autoregulation is difficult to directly measure and methods to indirectly ascertain cerebral autoregulation status inherently require certain assumptions. Patients with impaired cerebral autoregulation may be at risk of brain ischemia. One of the central mechanisms of ischemia in patients with metabolically compromised states is likely the triggering of spreading depolarization (SD) events and ultimately, terminal (or anoxic) depolarization. Cerebral autoregulation and SD are therefore linked when considering the risk of ischemia. In this scoping review, we will discuss the range of methods to measure cerebral autoregulation, their theoretical strengths and weaknesses, and the available clinical evidence to support their utility. We will then discuss the emerging link between impaired cerebral autoregulation and the occurrence of SD events. Such an approach offers the opportunity to better understand an individual patient's physiology and provide targeted treatments.
Collapse
Affiliation(s)
- Andrew P. Carlson
- Department of Neurosurgery, University of New Mexico School of Medicine, MSC10 5615, 1 UNM, Albuquerque, NM, 87131, USA
- Department of Neurosciences, University of New Mexico School of Medicine, 915 Camino de Salud NE, Albuquerque, NM, 87106, USA
| | - Andrew R. Mayer
- Mind Research Network, 1101 Yale, Blvd, NE, Albuquerque, NM, 87106, USA
| | - Chad Cole
- Department of Neurosurgery, University of New Mexico School of Medicine, MSC10 5615, 1 UNM, Albuquerque, NM, 87131, USA
| | | | - Joshua Marquez
- University of New Mexico School of Medicine, 915 Camino de Salud NE, Albuquerque, NM, 87106, USA
| | - Taylor C. Stevenson
- Department of Neurosurgery, University of New Mexico School of Medicine, MSC10 5615, 1 UNM, Albuquerque, NM, 87131, USA
| | - C. William Shuttleworth
- Department of Neurosciences, University of New Mexico School of Medicine, 915 Camino de Salud NE, Albuquerque, NM, 87106, USA
| |
Collapse
|
4
|
Vu EL, Brown CH, Brady KM, Hogue CW. Monitoring of cerebral blood flow autoregulation: physiologic basis, measurement, and clinical implications. Br J Anaesth 2024; 132:1260-1273. [PMID: 38471987 DOI: 10.1016/j.bja.2024.01.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 01/18/2024] [Accepted: 01/28/2024] [Indexed: 03/14/2024] Open
Abstract
Cerebral blood flow (CBF) autoregulation is the physiologic process whereby blood supply to the brain is kept constant over a range of cerebral perfusion pressures ensuring a constant supply of metabolic substrate. Clinical methods for monitoring CBF autoregulation were first developed for neurocritically ill patients and have been extended to surgical patients. These methods are based on measuring the relationship between cerebral perfusion pressure and surrogates of CBF or cerebral blood volume (CBV) at low frequencies (<0.05 Hz) of autoregulation using time or frequency domain analyses. Initially intracranial pressure monitoring or transcranial Doppler assessment of CBF velocity was utilised relative to changes in cerebral perfusion pressure or mean arterial pressure. A more clinically practical approach utilising filtered signals from near infrared spectroscopy monitors as an estimate of CBF has been validated. In contrast to the traditional teaching that 50 mm Hg is the autoregulation threshold, these investigations have found wide interindividual variability of the lower limit of autoregulation ranging from 40 to 90 mm Hg in adults and 20-55 mm Hg in children. Observational data have linked impaired CBF autoregulation metrics to adverse outcomes in patients with traumatic brain injury, ischaemic stroke, subarachnoid haemorrhage, intracerebral haemorrhage, and in surgical patients. CBF autoregulation monitoring has been described in both cardiac and noncardiac surgery. Data from a single-centre randomised study in adults found that targeting arterial pressure during cardiopulmonary bypass to above the lower limit of autoregulation led to a reduction of postoperative delirium and improved memory 1 month after surgery compared with usual care. Together, the growing body of evidence suggests that monitoring CBF autoregulation provides prognostic information on eventual patient outcomes and offers potential for therapeutic intervention. For surgical patients, personalised blood pressure management based on CBF autoregulation data holds promise as a strategy to improve patient neurocognitive outcomes.
Collapse
Affiliation(s)
- Eric L Vu
- Department of Anesthesiology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA; The Department of Anesthesiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Charles H Brown
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kenneth M Brady
- The Department of Anesthesiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Charles W Hogue
- The Department of Anesthesiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
5
|
Velle F, Lewén A, Howells T, Hånell A, Nilsson P, Enblad P. The effects of cerebral pressure autoregulation status and CPP levels on cerebral metabolism in pediatric traumatic brain injury. Acta Neurochir (Wien) 2024; 166:190. [PMID: 38653934 DOI: 10.1007/s00701-024-06085-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND Cerebral perfusion pressure (CPP) management in the developing child with traumatic brain injury (TBI) is challenging. The pressure reactivity index (PRx) may serve as marker of cerebral pressure autoregulation (CPA) and optimal CPP (CPPopt) may be assessed by identifying the CPP level with best (lowest) PRx. To evaluate the potential of CPPopt guided management in children with severe TBI, cerebral microdialysis (CMD) monitoring levels of lactate and the lactate/pyruvate ratio (LPR) (indicators of ischemia) were related to actual CPP levels, autoregulatory state (PRx) and deviations from CPPopt (ΔCPPopt). METHODS Retrospective study of 21 children ≤ 17 years with severe TBI who had both ICP and CMD monitoring were included. CPP, PRx, CPPopt and ΔCPPopt where calculated, dichotomized and compared with CMD lactate and lactate-pyruvate ratio. RESULTS Median age was 16 years (range 8-17) and median Glasgow coma scale motor score 5 (range 2-5). Both lactate (p = 0.010) and LPR (p = < 0.001) were higher when CPP ≥ 70 mmHg than when CPP < 70. When PRx ≥ 0.1 both lactate and LPR were higher than when PRx < 0.1 (p = < 0.001). LPR was lower (p = 0.012) when CPPopt ≥ 70 mmHg than when CPPopt < 70, but there were no differences in lactate levels. When ΔCPPopt > 10 both lactate (p = 0.026) and LPR (p = 0.002) were higher than when ΔCPPopt < -10. CONCLUSIONS Increased levels of CMD lactate and LPR in children with severe TBI appears to be related to disturbed CPA (PRx). Increased lactate and LPR also seems to be associated with actual CPP levels ≥ 70 mmHg. However, higher lactate and LPR values were also seen when actual CPP was above CPPopt. Higher CPP appears harmful when CPP is above the upper limit of pressure autoregulation. The findings indicate that CPPopt guided CPP management may have potential in pediatric TBI.
Collapse
Affiliation(s)
- Fartein Velle
- Department of Medical Sciences, Section of Neurosurgery, Uppsala University Hospital, Uppsala University, SE 751 85, Uppsala, Sweden.
| | - Anders Lewén
- Department of Medical Sciences, Section of Neurosurgery, Uppsala University Hospital, Uppsala University, SE 751 85, Uppsala, Sweden
| | - Tim Howells
- Department of Medical Sciences, Section of Neurosurgery, Uppsala University Hospital, Uppsala University, SE 751 85, Uppsala, Sweden
| | - Anders Hånell
- Department of Medical Sciences, Section of Neurosurgery, Uppsala University Hospital, Uppsala University, SE 751 85, Uppsala, Sweden
| | - Pelle Nilsson
- Department of Medical Sciences, Section of Neurosurgery, Uppsala University Hospital, Uppsala University, SE 751 85, Uppsala, Sweden
| | - Per Enblad
- Department of Medical Sciences, Section of Neurosurgery, Uppsala University Hospital, Uppsala University, SE 751 85, Uppsala, Sweden
| |
Collapse
|
6
|
Risinger Liljegren A, Brorsson C, Karlsson M, Koskinen LOD, Sundström N. Cerebrovascular Pressure Reactivity Measures: Index Comparison and Clinical Outcome in Patients With Traumatic Brain Injury Treated According to an Intracranial Pressure-Focused Management: Rejection of the Null Hypothesis. Neurotrauma Rep 2023; 4:848-856. [PMID: 38156075 PMCID: PMC10754344 DOI: 10.1089/neur.2023.0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2023] Open
Abstract
The aim was to investigate whether the pressure reactivity indices PRx, long-PRx (L-PRx), and pressure reactivity (PR) are interchangeable as measures of vascular reactivity, and whether they correlate with clinical outcome when an intracranial pressure (ICP)-targeted treatment regimen is applied in patients with traumatic brain injury (TBI). Patients with TBI (n = 29) that arrived at the hospital within 24 h of injury were included. PRx and L-PRx were derived from Pearson correlations between mean arterial pressure (MAP) and ICP over a short- and long-time interval. PR was the regression coefficient between the hourly mean values of ICP and MAP. Indices were compared to each other, parameters at admission, and outcome assessed by the extended Glasgow Outcome Scale-Extended (GOSE) at 6 and 12 months. PRx and L-PRx had the strongest correlation with each other (R = 0.536, p < 0.01). A correlation was also noted between L-PRx and PR (R = 0.475, p < 0.01), but not between PRx and PR. A correlation was found between age and PRx (R = 0.482, p = 0.01). No association with outcome for any of the indices was found. PRx/L-PRx and L-PRx/PR were moderately correlated with each other. Age was associated with PRx. None of the indices correlated with outcome when our ICP treatment regime was applied. Part of our null hypothesis, that the three indices are associated with outcome, must be rejected. There was, however, an association between some of the indices. To further understand the relation of treatment regimes and pressure reactivity indices, a larger, randomized study is warranted.
Collapse
Affiliation(s)
- Axel Risinger Liljegren
- Department of Clinical Science-Neurosciences, Radiation Physics, Biomedical Engineering, Umeå University, Umeå, Sweden
| | - Camilla Brorsson
- Department of Surgery and Perioperative Sciences, Radiation Physics, Biomedical Engineering, Umeå University, Umeå, Sweden
| | - Marcus Karlsson
- Department of Radiation Sciences, Radiation Physics, Biomedical Engineering, Umeå University, Umeå, Sweden
| | - Lars-Owe D. Koskinen
- Department of Clinical Science-Neurosciences, Radiation Physics, Biomedical Engineering, Umeå University, Umeå, Sweden
| | - Nina Sundström
- Department of Radiation Sciences, Radiation Physics, Biomedical Engineering, Umeå University, Umeå, Sweden
| |
Collapse
|
7
|
Figaji A. An update on pediatric traumatic brain injury. Childs Nerv Syst 2023; 39:3071-3081. [PMID: 37801113 PMCID: PMC10643295 DOI: 10.1007/s00381-023-06173-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 09/28/2023] [Indexed: 10/07/2023]
Abstract
INTRODUCTION Traumatic brain injury (TBI) remains the commonest neurological and neurosurgical cause of death and survivor disability among children and young adults. This review summarizes some of the important recent publications that have added to our understanding of the condition and advanced clinical practice. METHODS Targeted review of the literature on various aspects of paediatric TBI over the last 5 years. RESULTS Recent literature has provided new insights into the burden of paediatric TBI and patient outcome across geographical divides and the severity spectrum. Although CT scans remain a standard, rapid sequence MRI without sedation has been increasingly used in the frontline. Advanced MRI sequences are also being used to better understand pathology and to improve prognostication. Various initiatives in paediatric and adult TBI have contributed regionally and internationally to harmonising research efforts in mild and severe TBI. Emerging data on advanced brain monitoring from paediatric studies and extrapolated from adult studies continues to slowly advance our understanding of its role. There has been growing interest in non-invasive monitoring, although the clinical applications remain somewhat unclear. Contributions of the first large scale comparative effectiveness trial have advanced knowledge, especially for the use of hyperosmolar therapies and cerebrospinal fluid drainage in severe paediatric TBI. Finally, the growth of large and even global networks is a welcome development that addresses the limitations of small sample size and generalizability typical of single-centre studies. CONCLUSION Publications in recent years have contributed iteratively to progress in understanding paediatric TBI and how best to manage patients.
Collapse
Affiliation(s)
- Anthony Figaji
- Division of Neurosurgery and Neurosciences Institute, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
8
|
Svedung Wettervik T, Velle F, Hånell A, Howells T, Nilsson P, Lewén A, Enblad P. ICP, PRx, CPP, and ∆CPPopt in pediatric traumatic brain injury: the combined effect of insult intensity and duration on outcome. Childs Nerv Syst 2023; 39:2459-2466. [PMID: 37270434 PMCID: PMC10432317 DOI: 10.1007/s00381-023-05982-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/30/2023] [Indexed: 06/05/2023]
Abstract
PURPOSE The aim was to investigate the combined effect of insult intensity and duration, regarding intracranial pressure (ICP), pressure reactivity index (PRx), cerebral perfusion pressure (CPP), and optimal CPP (CPPopt), on clinical outcome in pediatric traumatic brain injury (TBI). METHOD This observational study included 61 pediatric patients with severe TBI, treated at the Uppsala University Hospital, between 2007 and 2018, with at least 12 h of ICP data the first 10 days post-injury. ICP, PRx, CPP, and ∆CPPopt (actual CPP-CPPopt) insults were visualized as 2-dimensional plots to illustrate the combined effect of insult intensity and duration on neurological recovery. RESULTS This cohort was mostly adolescent pediatric TBI patients with a median age at 15 (interquartile range 12-16) years. For ICP, brief episodes (minutes) above 25 mmHg and slightly longer episodes (20 min) of ICP 20-25 mmHg correlated with unfavorable outcome. For PRx, brief episodes above 0.25 as well as slightly lower values (around 0) for longer periods of time (30 min) were associated with unfavorable outcome. For CPP, there was a transition from favorable to unfavorable outcome for CPP below 50 mmHg. There was no association between high CPP and outcome. For ∆CPPopt, there was a transition from favorable to unfavorable outcome when ∆CPPopt went below -10 mmHg. No association was found for positive ∆CPPopt values and outcome. CONCLUSIONS This visualization method illustrated the combined effect of insult intensity and duration in relation to outcome in severe pediatric TBI, supporting previous notions to avoid high ICP and low CPP for longer episodes of time. In addition, higher PRx for longer episodes of time and CPP below CPPopt more than -10 mmHg were associated with worse outcome, indicating a potential role for autoregulatory-oriented management in pediatric TBI.
Collapse
Affiliation(s)
- Teodor Svedung Wettervik
- Department of Medical Sciences, Section of Neurosurgery, Uppsala University, SE-751 85, Uppsala, Sweden.
| | - Fartein Velle
- Department of Medical Sciences, Section of Neurosurgery, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Anders Hånell
- Department of Medical Sciences, Section of Neurosurgery, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Timothy Howells
- Department of Medical Sciences, Section of Neurosurgery, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Pelle Nilsson
- Department of Medical Sciences, Section of Neurosurgery, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Anders Lewén
- Department of Medical Sciences, Section of Neurosurgery, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Per Enblad
- Department of Medical Sciences, Section of Neurosurgery, Uppsala University, SE-751 85, Uppsala, Sweden
| |
Collapse
|
9
|
Gritti P, Bonfanti M, Zangari R, Bonanomi E, Pellicioli I, Mandelli P, Longhi L, Rasulo FA, Bertuetti R, Farina A, Biroli F, Lorini FL. Evaluation and application of ultra-low-frequency pressure reactivity index in pediatric traumatic brain injury patients. Acta Neurochir (Wien) 2023; 165:865-874. [PMID: 36847979 DOI: 10.1007/s00701-023-05538-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 02/18/2023] [Indexed: 03/01/2023]
Abstract
PURPOSE While clinical practice suggests that knowing the cerebral autoregulation (CA) status of traumatic brain injury (TBI) patients is crucial in assessing the best treatment, evidence in pediatric TBI (pTBI) is limited. The pressure reactivity index (PRx) is a surrogate method for the continuous estimation of CA in adults; however, calculations require continuous, high-resolution monitoring data. We evaluate an ultra-low-frequency pressure reactivity index (UL-PRx), based on data sampled at ∼5-min periods, and test its association with 6-month mortality and unfavorable outcome in a cohort of pTBI patients. METHODS Data derived from pTBI patients (0-18 years) requiring intracranial pressure (ICP) monitoring were retrospectively collected and processed in MATLAB using an in-house algorithm. RESULTS Data on 47 pTBI patients were included. UL-PRx mean values, ICP, cerebral perfusion pressure (CPP), and derived indices showed significant association with 6-month mortality and unfavorable outcome. A value of UL-PRx of 0.30 was identified as the threshold to better discriminate both surviving vs deceased patients (AUC: 0.90), and favorable vs unfavorable outcomes (AUC: 0.70) at 6 months. At multivariate analysis, mean UL-PRx and % time with ICP > 20 mmHg, remained significantly associated with 6-month mortality and unfavorable outcome, even when adjusted for International Mission for Prognosis and Analysis of Clinical Trials in TBI (IMPACT)-Core variables. In six patients undergoing secondary decompressive craniectomy, no significant changes in UL-PRx were found after surgery. CONCLUSIONS UL-PRx is associated with a 6-month outcome even if adjusted for IMPACT-Core. Its application in pediatric intensive care unit could be useful to evaluate CA and offer possible prognostic and therapeutic implications in pTBI patients. CLINICALTRIALS GOV: NCT05043545, September 14, 2021, retrospectively registered.
Collapse
Affiliation(s)
- Paolo Gritti
- Department of Anesthesia and Critical Care Medicine, Papa Giovanni XXIII Hospital, Bergamo, Italy.
| | - Marco Bonfanti
- FROM Research Foundation, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Rosalia Zangari
- FROM Research Foundation, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Ezio Bonanomi
- Department of Anesthesia and Critical Care Medicine, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Isabella Pellicioli
- Department of Anesthesia and Critical Care Medicine, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Pietro Mandelli
- Department of Anesthesia and Critical Care Medicine, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Luca Longhi
- Department of Anesthesia and Critical Care Medicine, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Frank A Rasulo
- Anesthesiology, Intensive Care and Emergency Medicine, Department of Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Rita Bertuetti
- Anesthesiology, Intensive Care and Emergency Medicine, Department of Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Alessia Farina
- Department of Anesthesia and Critical Care Medicine, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Francesco Biroli
- FROM Research Foundation, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Ferdinando Luca Lorini
- Department of Anesthesia and Critical Care Medicine, Papa Giovanni XXIII Hospital, Bergamo, Italy
| |
Collapse
|
10
|
Cerebrovascular Pressure Reactivity Has a Strong and Independent Association With Outcome in Children With Severe Traumatic Brain Injury. Crit Care Med 2023; 51:573-583. [PMID: 36790173 PMCID: PMC10090365 DOI: 10.1097/ccm.0000000000005815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
OBJECTIVES To examine cerebrovascular pressure reactivity index (PRx) in a large cohort of children with severe traumatic brain injury (sTBI) in association with physiologic variables and outcome. DESIGN Retrospective observational cohort study. SETTING Red Cross War Memorial Children's Hospital in Cape Town, South Africa. PATIENTS Pediatric (≤ 14 yr old) sTBI patients with intracranial pressure (ICP) monitoring (postresuscitation Glasgow Coma Score [Glasgow Coma Scale (GCS)] of ≤ 8). MEASUREMENTS AND MAIN RESULTS Data were analyzed from ICM+ files sampled at 100Hz. PRx (a mathematical indicator of pressure reactivity) was calculated as a moving correlation coefficient between ICP and mean arterial pressure (MAP) as previously described. Associations between PRx, age, GCS, ICP, MAP, and cerebral perfusion pressure (CPP) were examined with summary measures and correlation analysis using high-frequency data. Associations between PRx and mortality/outcome were examined with multivariable logistic regression analysis and the prognostic ability of PRx with receiver operating characteristic (ROCs) curves. The dataset included over 1.7 million minutes (28,634 hr) of MAP and ICP data in 196 children. The series mortality was 10.7% (21/196), and unfavorable outcome 29.6% (58/196). PRx had a moderate positive correlation with ICP (r = 0.44; p < 0.001), a moderate negative correlation with CPP (r = -0.43; p < 0.001), and a weak negative correlation with MAP (r = -0.21; p = 0.004). PRx was consistently higher in patients with poor outcome and had a strong, independent association with mortality (ROC area under the curve = 0.91). A PRx threshold of 0.25 showed the best predictive ability for mortality. CONCLUSIONS This is the largest cohort of children with PRx analysis of cerebrovascular reactivity to date. PRx had a strong association with outcome that was independent of ICP, CPP, GCS, and age. The data suggest that impaired autoregulation is an independent factor associated with poor outcome and may be useful in directing clinical care.
Collapse
|
11
|
Thamjamrassri T, Watanitanon A, Moore A, Chesnut RM, Vavilala MS, Lele AV. A Pilot Prospective Observational Study of Cerebral Autoregulation and 12-Month Outcomes in Children With Complex Mild Traumatic Brain Injury: The Argument for Sufficiency Conditions Affecting TBI Outcomes. J Neurosurg Anesthesiol 2022; 34:384-391. [PMID: 34009858 PMCID: PMC8563492 DOI: 10.1097/ana.0000000000000775] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/25/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND The relationship between cerebral autoregulation and outcomes in pediatric complex mild traumatic brain injury (TBI) is unknown, and explored in this study. METHODS We conducted a prospective observational study of patients aged 0 to 18 years hospitalized with complex mild TBI (admission Glasgow Coma Scale score 13 to 15 with either abnormal computerized tomogram of the head or history of loss of consciousness). Cerebral autoregulation was tested using transcranial Doppler ultrasonography, and impaired autoregulation defined as autoregulation index<0.4. We collected Glasgow Outcome Scale Extended-Pediatrics score and health-related quality of life data at 3, 6, and 12 months after discharge. RESULTS Twenty-four patients aged 1.8 to 16.6 years (58.3% male) with complete 12-month outcome data were included in the analysis. Median admission Glasgow Coma Scale score was 15 (range: 13 to 15), median injury severity score was 12 (range: 4 to 29) and 23 patients (96%) had isolated TBI. Overall, 10 (41.7%) patients had impaired cerebral autoregulation. Complete recovery was observed in 6 of 21 (28.6%) children at 3 months, in 4 of 16 (25%) children at 6 months, and in 8 of 24 (33.3%) children at 12 months. There was no difference in median (interquartile range) Glasgow Outcome Scale Extended-Pediatrics score (2 [2.3] vs. 2 [interquartile range 1.3]) or health-related quality of life scores (91.5 [21.1] vs. 90.8 [21.6]) at 12 months between those with intact and impaired autoregulation, respectively. Age-adjusted hypotension occurred in 2/24 (8.3%) patients. CONCLUSION Two-thirds of children with complex mild TBI experienced incomplete functional recovery at 1 year. The co-occurrence of hypotension and cerebral autoregulation may be a sufficiency condition needed to affect TBI outcomes.
Collapse
Affiliation(s)
| | | | - Anne Moore
- Department of Neurological Surgery, University of Washington, Harborview Medical Center
| | - Randall M. Chesnut
- Department of Neurological Surgery, University of Washington, Harborview Medical Center
- Orthopedics and Sport Medicine, Seattle, WA
| | - Monica S. Vavilala
- Harborview Injury Prevention and Research Center
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle
| | - Abhijit V. Lele
- Harborview Injury Prevention and Research Center
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle
| |
Collapse
|
12
|
Monitoring of cerebrovascular pressure reactivity in children may predict neurologic outcome after hypoxic-ischemic brain injury. Childs Nerv Syst 2022; 38:1717-1726. [PMID: 35680685 PMCID: PMC9463308 DOI: 10.1007/s00381-022-05579-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/23/2022] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Impaired cerebral blood flow is a first-line reason of ischemic-hypoxic brain injury in children. The principal goal of intensive care management is to detect and prevent further cerebral blood flow deficits. This can be achieved by actively managing cerebral perfusion pressure (CPP) using input from cerebrovascular autoregulation (CAR). The main objective of the current study was to investigate CAR after cardiac arrest in children. METHODS Nineteen consecutive children younger than 18 years after cardiopulmonary resuscitation, in whom intracranial pressure (ICP) was continuously measured, were included. Blood pressure and ICP were continuously monitored via ICM + software and actively managed using the pressure reactivity index (PRx) to achieve and maintain an optimal CPP. Outcome was scored using the extended Glasgow outcome scale (eGOS) at discharge and 6 months. RESULTS Eight children died in hospital. At 6 months, further 4 children had an unfavorable (eGOS1-4) and 7 a favorable (eGOS5-8) outcome. Over the entire monitoring period, we found an elevated ICP (24.5 vs 7.4 mmHg), a lower CPP (50.3 vs 66.2 mmHg) and a higher PRx (0.24 vs - 0.01), indicating impaired CAR, in patients with unfavorable outcome. The dose of impaired autoregulation was significantly higher in unfavorable outcome (54.6 vs 29.3%). Analyzing only the first 72 h after cardiac arrest, ICP ≥ 10 mmHg and PRx > 0.2 correlated to unfavorable outcome. CONCLUSIONS Significant doses of impaired CAR within 72 h after resuscitation are associated with unfavorable outcome. The inability to restore autoregulation despite active attempts to do so as well as an elevated ICP may serve as a bad prognostic sign indicating a severe initial hypoxic-ischemic brain injury.
Collapse
|
13
|
Zipfel J, Engel J, Hockel K, Heimberg E, Schuhmann MU, Neunhoeffer F. Effects of hypertonic saline on intracranial pressure and cerebral autoregulation in pediatric traumatic brain injury. J Neurosurg Pediatr 2021; 28:631-637. [PMID: 34560657 DOI: 10.3171/2021.6.peds21143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/07/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Hypertonic saline (HTS) is commonly used in children to lower intracranial pressure (ICP) after severe traumatic brain injury (sTBI). While ICP and cerebral perfusion pressure (CPP) correlate moderately to TBI outcome, indices of cerebrovascular autoregulation enhance the correlation of neuromonitoring data to neurological outcome. In this study, the authors sought to investigate the effect of HTS administration on ICP, CPP, and autoregulation in pediatric patients with sTBI. METHODS Twenty-eight pediatric patients with sTBI who were intubated and sedated were included. Blood pressure and ICP were actively managed according to the autoregulation index PRx (pressure relativity index to determine and maintain an optimal CPP [CPPopt]). In cases in which ICP was continuously > 20 mm Hg despite all other measures to decrease it, an infusion of 3% HTS was administered. The monitoring data of the first 6 hours after HTS administration were analyzed. The Glasgow Outcome Scale (GOS) score at the 3-month follow-up was used as the primary outcome measure, and patients were dichotomized into favorable (GOS score 4 or 5) and unfavorable (GOS score 1-3) groups. RESULTS The mean dose of HTS was 40 ml 3% NaCl. No significant difference in ICP and PRx was seen between groups at the HTS administration. ICP was lowered significantly in all children, with the effect lasting as long as 6 hours. The lowering of ICP was significantly greater and longer in children with a favorable outcome (p < 0.001); only this group showed significant improvement of autoregulatory capacity (p = 0.048). A newly established HTS response index clearly separated the outcome groups. CONCLUSIONS HTS significantly lowered ICP in all children after sTBI. This effect was significantly greater and longer-lasting in children with a favorable outcome. Moreover, HTS administration restored disturbed autoregulation only in the favorable outcome group. This highlights the role of a "rescuable" autoregulation regarding outcome, which might be a possible indicator of injury severity. The effect of HTS on autoregulation and other possible mechanisms should be further investigated.
Collapse
Affiliation(s)
- Julian Zipfel
- 1Department of Neurosurgery, Division of Pediatric Neurosurgery, University of Tuebingen, Tuebingen
| | - Juliane Engel
- 2Pediatric Intensive Care Unit, University Children's Hospital of Tuebingen, Tuebingen; and
| | | | - Ellen Heimberg
- 2Pediatric Intensive Care Unit, University Children's Hospital of Tuebingen, Tuebingen; and
| | - Martin U Schuhmann
- 1Department of Neurosurgery, Division of Pediatric Neurosurgery, University of Tuebingen, Tuebingen
| | - Felix Neunhoeffer
- 2Pediatric Intensive Care Unit, University Children's Hospital of Tuebingen, Tuebingen; and
| |
Collapse
|
14
|
Impaired Autoregulation Following Resuscitation Correlates with Outcome in Pediatric Patients: A Pilot Study. ACTA NEUROCHIRURGICA. SUPPLEMENT 2021; 131:97-101. [PMID: 33839827 DOI: 10.1007/978-3-030-59436-7_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
In children with a traumatic brain injury, the duration of autoregulation impairment correlates with the neurological outcome. This pilot study explored whether a similar relation exists in nontraumatic hypoxic-ischemic brain injury following resuscitation.We investigated 11 children after resuscitation. Blood pressure and intracranial pressure (ICP) were monitored with ICM+ software and actively managed to maintain optimal cerebral perfusion pressure (CPP), using the pressure reactivity index (PRx). Outcomes were scored according to the Glasgow Outcome Scale.Three children died within 24 h. Three survivors had an unfavorable outcome and five had a favorable outcome. In the first 72 h, ICP and CPP values did not differ between, or predict, children with favorable or unfavorable outcomes. The duration of a PRx value ≥0.2 was significantly greater in children with an unfavorable outcome. A PRx value ≤0 was associated with a favorable outcome in all except one child. Children with an unfavorable outcome had areas of ischemic brain tissue on magnetic resonance imaging.The duration of poor autoregulation within the first 72 h is associated with an unfavorable outcome. Prognostic signs for insult severity are initially poor autoregulation plus inability to restore autoregulation despite active attempts to do so. Limited ischemia, especially in the basal ganglia, cannot be detected by ICP-based monitoring of autoregulation and may still result in an unfavorable outcome despite good global autoregulation.
Collapse
|
15
|
Bonow RH, Young CC, Bass DI, Moore A, Levitt MR. Transcranial Doppler ultrasonography in neurological surgery and neurocritical care. Neurosurg Focus 2020; 47:E2. [PMID: 31786564 DOI: 10.3171/2019.9.focus19611] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 09/04/2019] [Indexed: 11/06/2022]
Abstract
Transcranial Doppler (TCD) ultrasonography is an inexpensive, noninvasive means of measuring blood flow within the arteries of the brain. In this review, the authors outline the technology underlying TCD ultrasonography and describe its uses in patients with neurosurgical diseases. One of the most common uses of TCD ultrasonography is monitoring for vasospasm following subarachnoid hemorrhage. In this setting, elevated blood flow velocities serve as a proxy for vasospasm and can herald the onset of ischemia. TCD ultrasonography is also useful in the evaluation and management of occlusive cerebrovascular disease. Monitoring for microembolic signals enables stratification of stroke risk due to carotid stenosis and can also be used to clarify stroke etiology. TCD ultrasonography can identify patients with exhausted cerebrovascular reserve, and after extracranial-intracranial bypass procedures it can be used to assess adequacy of flow through the graft. Finally, assessment of cerebral autoregulation can be performed using TCD ultrasonography, providing data important to the management of patients with severe traumatic brain injury. As the clinical applications of TCD ultrasonography have expanded over time, so has their importance in the management of neurosurgical patients. Familiarity with this diagnostic tool is crucial for the modern neurological surgeon.
Collapse
Affiliation(s)
| | | | | | | | - Michael R Levitt
- Departments of1Neurological Surgery.,2Radiology.,3Mechanical Engineering, and.,4Stroke and Applied Neuroscience Center, University of Washington, Seattle, Washington
| |
Collapse
|
16
|
Abstract
Telemetric intracranial pressure (ICP) monitoring is a new method of measuring ICP which eliminates some of the shortcomings of previous methods. However, there are limited data on specific characteristics, including the advantages and disadvantages of this method. The main aim of this study was to demonstrate the indications, benefits, and complications of telemetric ICP monitoring. PubMed, MEDLINE, EMBASE, and the Cochrane Central Register of Controlled Trials were searched for relevant studies without language or date restriction in May 2019. Human studies in which telemetric ICP monitoring was the main subject of the study were included. Our initial search resulted in 1650 articles from which 50 studies were included. There were no randomized controlled trials. The majority of the studies were case reports or case series (68%). The most common aim of studies was testing of the device (52%), and monitoring the disease progression or recovery (46%). The most common indications for telemetric ICP monitoring in these studies were testing cerebrospinal fluid shunt function (46%), ICP control after the procedure (36%), and diagnosing intracranial hypertension (22%) and hydrocephalus (12%). In total, 1423 brain disease patients had been monitored in studies. The possibility of long-term ICP monitoring as the main benefit was reported in 38 (76%) studies. The associated complication rate was 7.1%. Despite the increasing application of telemetric monitoring devices, studies to evaluate specific characteristics of this method have been infrequent and inadequate. Future research using a higher level of scientific methods is needed to evaluate advantage and disadvantages.
Collapse
|
17
|
Elsawaf Y, Anetsberger S, Luzzi S, Elbabaa SK. Early Decompressive Craniectomy as Management for Severe Traumatic Brain Injury in the Pediatric Population: A Comprehensive Literature Review. World Neurosurg 2020; 138:9-18. [PMID: 32084616 DOI: 10.1016/j.wneu.2020.02.065] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Severe traumatic brain injuries (TBIs) are a principal cause of neurologic dysfunction and death in the pediatric population. After medical management, the second-tier treatment is decompressive craniectomy in cases of intractable intracranial pressure (ICP) elevation. This literature review offers evidence of early (within 24 hours) and ultraearly (6-12 hours) decompressive craniectomy as an effective form of management for severe TBI in the pediatric population. METHODS We conducted a literature review of articles published from 1996 to 2019 to elucidate neurologic outcomes after early decompressive craniectomy in pediatric patients who suffered a severe TBI. Time to decompressive craniectomy and neurologic outcomes were recorded and reported descriptively. Qualitative data describe clinically important correlations between pre- and postoperative ICP levels and improved postoperative neurologic outcomes. RESULTS Seventy-eight patients were included in this study. The median age of patients at diagnosis was 10 years of age (range, 1 months to 19 years). Median admission Glasgow Coma Scale score was 5 (range, 3-8). Time to decompressive craniectomy ranged from 1 to 24 hours. Median peak preoperative ICP was 40 (range, 3-90; n = 49). Median postoperative ICP was 20 (range, 0-80; n = 33). Median Glasgow Outcome Scale (GOS) score at discharge was 2 (range, 1-5; n = 11). Median GOS score at 3- and 6-month follow-up was 3 (range, 1-5; n = 11). Median GOS score at 7- to 23-month follow-up was 4 (range, 1-5; n = 29). Median GOS score at 24- to 83-month follow-up was 4 (range, 1-5; n = 31). Median modified Rankin Scale score at discharge was 3 (range, 2-4; n = 6). Median modified Rankin Scale score at 6- to 48-month follow-up was 2 (range, 0-3; n = 6). Median Rancho Los Amigos Scale (RLAS) score at discharge was 6 (range, 4-8; n = 5). Median RLAS score at 6-month follow-up was 10 (range, 8-10; n = 5). CONCLUSIONS Early (within 24 hours), with consideration of ultraearly (within 6-12 hours), decompressive craniectomy for severe TBI should be offered to pediatric patients in settings with refractory ICP elevation. Reduction of ICP allows for prompt disruption of pathophysiologic cascades and improved neurologic outcomes.
Collapse
Affiliation(s)
- Yasmeen Elsawaf
- Department of Pediatric Neurosurgery, Arnold Palmer Hospital for Children, Orlando, Florida, USA
| | - Stephanie Anetsberger
- Department of Pediatric Neurosurgery, Arnold Palmer Hospital for Children, Orlando, Florida, USA
| | - Sabino Luzzi
- Neurosurgery Unit, Department of Clinical-Surgical, Diagnostic Pediatric Sciences, University of Pavia, Pavia, Italy; Neurosurgery Unit, Department of Surgical Sciences, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Samer K Elbabaa
- Department of Pediatric Neurosurgery, Arnold Palmer Hospital for Children, Orlando, Florida, USA.
| |
Collapse
|
18
|
Abecasis F, Cardim D, Czosnyka M, Robba C, Agrawal S. Transcranial Doppler as a non-invasive method to estimate cerebral perfusion pressure in children with severe traumatic brain injury. Childs Nerv Syst 2020; 36:125-131. [PMID: 31273494 DOI: 10.1007/s00381-019-04273-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 06/24/2019] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Cerebral perfusion pressure (CPP) is one of the most important parameters in preventing ischemic brain insults. Guidelines have used CPP values to guide treatment of traumatic brain injury (TBI) for many years. We tested the feasibility of a novel non-invasive method for CPP estimation (nCPP) in children with severe TBI. METHODS Retrospective analysis of prospectively monitored pediatric TBI patients with invasive intracranial pressure (ICP) monitoring, arterial blood pressure, and Transcranial Doppler (TCD) studies was performed daily. A novel estimator of CPP (nCPP) was calculated using TCD-spectral accounting method. We analyzed the correlation coefficient and correlation in time domain between CPP and nCPP, prediction ability of nCPP to detect low CPP, and the confidence intervals for CPP prediction (95% CI). RESULTS We retrospectively analyzed 69 TCD recordings from 19 children (median age 15 years, range 3-16 years). There was a good correlation between CPP and nCPP (Spearman correlation coefficient, R = 0.67 (p < 0.0001), and a good mean correlation in time domain (R = 0.55 ± 0.42). The ability of nCPP to predict values of CPP below 70 mmHg was excellent as demonstrated by an area under the curve of 0.908 (95% CI = 0.83-0.98) using a receiver operating curve analysis. Bland-Altman analysis revealed that nCPP overestimated CPP by 19.61 mmHg with a wide 95% CI of ± 40.4 mmHg. CONCLUSIONS nCPP monitoring with TCD appears to be a feasible method for CPP assessment in pediatric TBI. The novel spectral CPP tested in this study has a decent correlation with invasive CPP and can predict low CPP with excellent accuracy at the 70-mmHg threshold.
Collapse
Affiliation(s)
- Francisco Abecasis
- Pediatric Intensive Care Unit, Centro Hospitalar Lisboa Norte, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.
| | - Danilo Cardim
- Department of Anesthesiology, Pharmacology & Therapeutics, University of British Columbia, Vancouver, Canada
| | - Marek Czosnyka
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, Cambridge Biomedical Campus, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
- Institute of Electronic Systems, Warsaw University of Technology, Warsaw, Poland
| | - Chiara Robba
- Anaesthesia and Intensive Care, San Martino Policlinico Hospital, IRSSS for Oncology, Genoa, Italy
| | - Shruti Agrawal
- Pediatric Intensive Care Unit, Cambridge Biomedical Campus, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| |
Collapse
|
19
|
Perioperative Assessment of Cerebral Oxygen Metabolism in Infants With Functionally Univentricular Hearts Undergoing the Bidirectional Cavopulmonary Connection. Pediatr Crit Care Med 2019; 20:923-930. [PMID: 31232848 DOI: 10.1097/pcc.0000000000002016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES The transition from single-ventricle lesions with surgically placed systemic-to-pulmonary artery shunt to the circulation following a bidirectional cavopulmonary connection results in higher pressure in the superior vena cava when compared with the preceding circulation. The aim of this study was to evaluate the impact of this transition on the perioperative cerebral oxygen metabolism. DESIGN Prospective observational cohort study. SETTING Pediatric critical care unit of a tertiary referral center. PATIENTS Sixteen infants after bidirectional cavopulmonary connection. INTERVENTION Cardiac surgery (bidirectional cavopulmonary connection). MEASUREMENTS AND MAIN RESULTS We measured regional cerebral oxygen saturation, amount of hemoglobin, blood flow velocity, and microperfusion immediately before, 12-24 hours, and 36-48 hours following bidirectional cavopulmonary connection. Based on these measurements, we calculated cerebral fractional tissue oxygen extraction and approximated cerebral metabolic rate of oxygen. Mean pressure in the superior vena cava increased significantly (8 vs 17 mm Hg; p < 0.001) following bidirectional cavopulmonary connection. Mean cerebral oxygen saturation increased from 49.0% (27.4-61.0) to 56.9% (39.5-64.0) (p = 0.008), whereas mean cerebral blood flow velocity decreased from 80.0 arbitrary units (61.9-93.0) to 67.3 arbitrary units (59.0-83.3) (p < 0.001). No change was found in the cerebral amount of hemoglobin and in the cerebral microperfusion. Mean cerebral fractional tissue oxygen extraction (0.48 [0.17-0.63] vs 0.30 [0.19-0.56]; p = 0.006) and approximated cerebral metabolic rate of oxygen (5.82 arbitrary units [2.70-8.78] vs 2.27 arbitrary units [1.19-7.35]; p < 0.001) decreased significantly. CONCLUSIONS Establishment of bidirectional cavopulmonary connection is associated with postoperative improvement in cerebral oxygen metabolism. Cerebral amount of hemoglobin did not increase, although creation of the bidirectional cavopulmonary connection results in significant elevation in superior vena cava pressure. Improvement in cerebral oxygen metabolism was due to lower cerebral blood flow velocity and stable microperfusion, which may indicate intact cerebral autoregulation.
Collapse
|
20
|
Pressure reactivity index: journey through the past 20 years. Acta Neurochir (Wien) 2017; 159:2063-2065. [PMID: 28849287 DOI: 10.1007/s00701-017-3310-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 08/17/2017] [Indexed: 10/19/2022]
Abstract
Autoregulation after traumatic brain injury can be monitored continuously using simple signal processing of intracranial pressure and arterial blood pressure. The pressure reactivity index (PRx) showed several benefits when it was applied to continuous brain monitoring. Among them, a positive and strong correlation with the outcome and possibility of calculation of 'optimal cerebral perfusion pressure' have been listed. For this methodology, prospective clinical trials are missing-few of them are planned in the near future.
Collapse
|