1
|
Mosteiro A, Codes M, Tafuto R, Manfrellotti R, Torales J, Enseñat J, Di Somma A, Prats-Galino A. Transorbital approach to the cavernous sinus: an anatomical study of the related cranial nerves. Front Neuroanat 2024; 18:1367533. [PMID: 38693948 PMCID: PMC11061526 DOI: 10.3389/fnana.2024.1367533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/06/2024] [Indexed: 05/03/2024] Open
Abstract
Background The cavernous sinus (CS) is a demanding surgical territory, given its deep location and the involvement of multiple neurovascular structures. Subjected to recurrent discussion on the optimal surgical access, the endoscopic transorbital approach has been recently proposed as a feasible route for selected lesions in the lateral CS. Still, for this technique to safely evolve and consolidate, a comprehensive anatomical description of involved cranial nerves, dural ligaments, and arterial relations is needed. Objective Detailed anatomical description of the CS, the course of III, IV, VI, and V cranial nerves, and C3-C7 segments of the carotid artery, all described from the ventrolateral endoscopic transorbital perspective. Methods Five embalmed human cadaveric heads (10 sides) were dissected. An endoscopic transorbital approach with lateral orbital rim removal, anterior clinoidectomy, and petrosectomy was performed. The course of the upper cranial nerves was followed from their apparent origin in the brainstem, through the middle fossa or cavernous sinus, and up to their entrance to the orbit. Neuronavigation was used to follow the course of the nerves and to measure their length of surgical exposure. Results The transorbital approach allowed us to visualize the lateral wall of the CS, with cranial nerves III, IV, V1-3, and VI. Anterior clinoidectomy and opening of the frontal dura and the oculomotor triangle revealed the complete course of the III nerve, an average of 37 (±2) mm in length. Opening the trigeminal pore and cutting the tentorium permitted to follow the IV nerve from its course around the cerebral peduncle up to the orbit, an average of 54 (±4) mm. Opening the infratrochlear triangle revealed the VI nerve intracavernously and under Gruber's ligament, and the extended petrosectomy allowed us to see its cisternal portion (27 ± 6 mm). The trigeminal root was completely visible and so were its three branches (46 ± 2, 34 ± 3, and 31 ± 1 mm, respectively). Conclusion Comprehensive anatomic knowledge and extensive surgical expertise are required when addressing the CS. The transorbital corridor exposes most of the cisternal and the complete cavernous course of involved cranial nerves. This anatomical article helps understanding relations of neural, vascular, and dural structures involved in the CS approach, essential to culminating the learning process of transorbital surgery.
Collapse
Affiliation(s)
- Alejandra Mosteiro
- Laboratory of Surgical Neuroanatomy (LSNA), Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain
- Department of Neurological Surgery, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Marta Codes
- Laboratory of Surgical Neuroanatomy (LSNA), Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain
- Department of Neurological Surgery, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Roberto Tafuto
- Laboratory of Surgical Neuroanatomy (LSNA), Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain
- Division of Neurosurgery, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Università Degli Studi di Napoli “Federico II”, Naples, Italy
| | - Roberto Manfrellotti
- Laboratory of Surgical Neuroanatomy (LSNA), Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain
- Division of Neurosurgery, Azienda Socio Sanitaria Territoriale - Monza, Ospedale San Gerardo, Monza, Italy
| | - Jorge Torales
- Department of Neurological Surgery, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Joaquim Enseñat
- Laboratory of Surgical Neuroanatomy (LSNA), Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain
- Department of Neurological Surgery, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Alberto Di Somma
- Laboratory of Surgical Neuroanatomy (LSNA), Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain
- Department of Neurological Surgery, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Alberto Prats-Galino
- Laboratory of Surgical Neuroanatomy (LSNA), Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
2
|
Locatelli D, Veiceschi P, Arosio AD, Agosti E, Peris-Celda M, Castelnuovo P. 360 Degrees Endoscopic Access to and Through the Orbit. Adv Tech Stand Neurosurg 2024; 50:231-275. [PMID: 38592533 DOI: 10.1007/978-3-031-53578-9_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
The treatment of pathologies located within and surrounding the orbit poses considerable surgical challenges, due to the intricate presence of critical neurovascular structures in such deep, confined spaces. Historically, transcranial and craniofacial approaches have been widely employed to deal with orbital pathologies. However, recent decades have witnessed the emergence of minimally invasive techniques aimed at reducing morbidity. Among these techniques are the endoscopic endonasal approach and the subsequently developed endoscopic transorbital approach (ETOA), encompassing both endonasal and transpalpebral approaches. These innovative methods not only facilitate the management of intraorbital lesions but also offer access to deep-seated lesions within the anterior, middle, and posterior cranial fossa via specific transorbital and endonasal corridors. Contemporary research indicates that ETOAs have demonstrated exceptional outcomes in terms of morbidity rates, cosmetic results, and complication rates. This study aims to provide a comprehensive description of endoscopic-assisted techniques that enable a 360° access to the orbit and its surrounding regions. The investigation will delve into indications, advantages, and limitations associated with different approaches, while also drawing comparisons between endoscopic approaches and traditional microsurgical transcranial approaches.
Collapse
Affiliation(s)
- Davide Locatelli
- Division of Neurosurgery, Department of Biotechnology and Life Sciences, "Ospedale di Circolo e Fondazione Macchi", University of Insubria, Varese, Italy
- Head and Neck and Forensic Dissection Research Center (HNS&FDRc), Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- Research Center for Pituitary Adenoma and Sellar Pathology, University of Insubria, Varese, Italy
| | - Pierlorenzo Veiceschi
- Division of Neurosurgery, Department of Biotechnology and Life Sciences, "Ospedale di Circolo e Fondazione Macchi", University of Insubria, Varese, Italy
| | - Alberto Daniele Arosio
- Division of Otorhinolaryngology, Department of Biotechnology and Life Sciences, "Ospedale di Circolo e Fondazione Macchi", University of Insubria, Varese, Italy
| | - Edoardo Agosti
- Division of Neurosurgery, Department of Biotechnology and Life Sciences, "Ospedale di Circolo e Fondazione Macchi", University of Insubria, Varese, Italy
- Unit of Neurosurgery, Spedali Civili Hospital, Brescia, Italy
| | - Maria Peris-Celda
- Rhoton Neurosurgery and Otolaryngology Surgical Anatomy Program, Mayo Clinic, Rochester, MN, USA
- Department of Neurological Surgery, Mayo Clinic, Rochester, MN, USA
| | - Paolo Castelnuovo
- Head and Neck and Forensic Dissection Research Center (HNS&FDRc), Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- Research Center for Pituitary Adenoma and Sellar Pathology, University of Insubria, Varese, Italy
- Division of Otorhinolaryngology, Department of Biotechnology and Life Sciences, "Ospedale di Circolo e Fondazione Macchi", University of Insubria, Varese, Italy
| |
Collapse
|
3
|
Serioli S, Nizzola M, Plou P, De Bonis A, Meyer J, Leonel LCPC, Tooley AA, Wagner LH, Bradley EA, Van Gompel JJ, Benini ME, Dallan I, Peris-Celda M. Surgical Anatomy of the Microscopic and Endoscopic Transorbital Approach to the Middle Fossa and Cavernous Sinus: Anatomo-Radiological Study with Clinical Applications. Cancers (Basel) 2023; 15:4435. [PMID: 37760405 PMCID: PMC10527149 DOI: 10.3390/cancers15184435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND The transorbital approaches (TOAs) have acquired growing notoriety, thanks to their ability to offer alternative corridors to the skull base. However, the limited access and the unfamiliarity with this surgical perspective make recognition of key landmarks difficult, especially for less experienced surgeons. The study wants to offer a detailed description of the anatomy to comprehend the potential and limitations of TOAs. METHODS Measurements of the orbit region and the surrounding areas were performed on two hundred high-resolution CT scans and thirty-nine dry skulls. Five specimens were dissected to illustrate the TOA, and one was used to perform the extradural clinoidectomy. Three clinical cases highlighted the surgical applications. RESULTS A step-by-step description of the key steps of the TOA was proposed and a comparison with the transcranial anterior clinoidectomy was discussed. The mean work distance was 6.1 ± 0.4 cm, and the lateral working angle increased 20 ± 5.4° after removing the lateral orbital rim. CONCLUSIONS TOAs are indicated in selected cases when tumor involves the lateral portion of the cavernous sinus or the middle skull base, obtaining a direct decompression of the optic nerve and avoiding excessive manipulation of the neurovascular structures. Comprehension of surgical anatomy of the orbit and its surrounding structures is essential to safely perform these approaches.
Collapse
Affiliation(s)
- Simona Serioli
- Division of Neurosurgery, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25123 Brescia, Italy;
- Rhoton Neurosurgery and Otolaryngology Surgical Anatomy Program, Mayo Clinic, Rochester, MN 55905, USA; (M.N.); (P.P.); (A.D.B.); (J.M.); (L.C.P.C.L.)
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA;
| | - Mariagrazia Nizzola
- Rhoton Neurosurgery and Otolaryngology Surgical Anatomy Program, Mayo Clinic, Rochester, MN 55905, USA; (M.N.); (P.P.); (A.D.B.); (J.M.); (L.C.P.C.L.)
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Neurosurgery and Gamma Knife Radiosurgery, I.R.C.C.S. San Raffaele Scientific Institute, Vita-Salute University, 20132 Milan, Italy
| | - Pedro Plou
- Rhoton Neurosurgery and Otolaryngology Surgical Anatomy Program, Mayo Clinic, Rochester, MN 55905, USA; (M.N.); (P.P.); (A.D.B.); (J.M.); (L.C.P.C.L.)
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA;
- Neurosurgery Department, Hospital Italiano de Buenos Aires, Buenos Aires C1199, Argentina
| | - Alessandro De Bonis
- Rhoton Neurosurgery and Otolaryngology Surgical Anatomy Program, Mayo Clinic, Rochester, MN 55905, USA; (M.N.); (P.P.); (A.D.B.); (J.M.); (L.C.P.C.L.)
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Neurosurgery and Gamma Knife Radiosurgery, I.R.C.C.S. San Raffaele Scientific Institute, Vita-Salute University, 20132 Milan, Italy
| | - Jenna Meyer
- Rhoton Neurosurgery and Otolaryngology Surgical Anatomy Program, Mayo Clinic, Rochester, MN 55905, USA; (M.N.); (P.P.); (A.D.B.); (J.M.); (L.C.P.C.L.)
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Neurologic Surgery, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Luciano C. P. C. Leonel
- Rhoton Neurosurgery and Otolaryngology Surgical Anatomy Program, Mayo Clinic, Rochester, MN 55905, USA; (M.N.); (P.P.); (A.D.B.); (J.M.); (L.C.P.C.L.)
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA;
| | - Andrea A. Tooley
- Department of Ophthalmology, Mayo Clinic, Rochester, MN 55905, USA; (A.A.T.); (L.H.W.); (E.A.B.)
| | - Lilly H. Wagner
- Department of Ophthalmology, Mayo Clinic, Rochester, MN 55905, USA; (A.A.T.); (L.H.W.); (E.A.B.)
| | - Elizabeth A. Bradley
- Department of Ophthalmology, Mayo Clinic, Rochester, MN 55905, USA; (A.A.T.); (L.H.W.); (E.A.B.)
| | - Jamie J. Van Gompel
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Otolaryngology/Head and Neck Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Maria Elena Benini
- Department of Neurosurgery—Head and Neck Surgery, Azienda Ospedaliero-Universitaria Pisana, 56126 Pisa, Italy;
| | - Iacopo Dallan
- Department of Otolaryngology—Head and Neck Surgery, Azienda Ospedaliero-Universitaria Pisana, 56126 Pisa, Italy;
| | - Maria Peris-Celda
- Rhoton Neurosurgery and Otolaryngology Surgical Anatomy Program, Mayo Clinic, Rochester, MN 55905, USA; (M.N.); (P.P.); (A.D.B.); (J.M.); (L.C.P.C.L.)
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Otolaryngology/Head and Neck Surgery, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
4
|
Di Somma A, De Rosa A, Ferrés A, Mosteiro A, Guizzardi G, Fassi JM, Topczewski TE, Reyes L, Roldán P, Torné R, Alobid I, Enseñat J. Endoscopic Transorbital Approach for the Management of Spheno-Orbital Meningiomas: Literature Review and Preliminary Experience. World Neurosurg 2023; 176:43-59. [PMID: 37024084 DOI: 10.1016/j.wneu.2023.03.126] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023]
Abstract
OBJECTIVE The endoscopic transorbital approach (ETOA) is a minimally invasive approach that could be particularly appropriate for management of spheno-orbital meningiomas. The aim of this study was to perform a systematic review of the literature on the management of spheno-orbital meningiomas via the minimally invasive ETOA, searching for clinical scenarios in which this approach could be best indicated. A secondary aim was to describe 4 illustrative cases. METHODS A systematic review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Data including patient demographics, tumor features, and surgical and postoperative outcomes were collected. Cases from our initial experience with ETOA were included in the data. RESULTS Data of 58 patients from 9 selected records and from our surgical series were collected. Subtotal, near-total, and gross total resection rates were 44.8%, 10.3%, and 32.7%, respectively. Symptom improvement after surgery was 100% for proptosis, 93% for visual impairment, and 87% for ophthalmoplegia. The most common postoperative complications were transient ophthalmoplegia and maxillary nerve hypoesthesia. Cerebrospinal fluid leak was reported in 2 patients. CONCLUSIONS Our findings support the use of the ETOA for management of spheno-orbital meningiomas, particularly in at least 3 clinical scenarios: 1) when predominant hyperostotic bone is present; 2) when a globular tumor not showing excessive medial or inferior infiltration is being treated; 3) as part of a multistage treatment for diffuse lesions.
Collapse
Affiliation(s)
- Alberto Di Somma
- Institut Clínic de Neurociències, Department of Neurological Surgery, Hospital Clínic de Barcelona, Universidad de Barcelona, Barcelona, Spain
| | - Andrea De Rosa
- Division of Neurosurgery, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Università degli Studi di Napoli "Federico II", Naples, Italy.
| | - Abel Ferrés
- Institut Clínic de Neurociències, Department of Neurological Surgery, Hospital Clínic de Barcelona, Universidad de Barcelona, Barcelona, Spain
| | - Alejandra Mosteiro
- Institut Clínic de Neurociències, Department of Neurological Surgery, Hospital Clínic de Barcelona, Universidad de Barcelona, Barcelona, Spain
| | - Giulia Guizzardi
- Institut Clínic de Neurociències, Department of Neurological Surgery, Hospital Clínic de Barcelona, Universidad de Barcelona, Barcelona, Spain
| | - Jessica Matas Fassi
- Department of Ophthalmology, Hospital Clínic de Barcelona, Universidad de Barcelona, Barcelona, Spain
| | - Thomaz E Topczewski
- Institut Clínic de Neurociències, Department of Neurological Surgery, Hospital Clínic de Barcelona, Universidad de Barcelona, Barcelona, Spain
| | - Luis Reyes
- Institut Clínic de Neurociències, Department of Neurological Surgery, Hospital Clínic de Barcelona, Universidad de Barcelona, Barcelona, Spain
| | - Pedro Roldán
- Institut Clínic de Neurociències, Department of Neurological Surgery, Hospital Clínic de Barcelona, Universidad de Barcelona, Barcelona, Spain
| | - Ramon Torné
- Institut Clínic de Neurociències, Department of Neurological Surgery, Hospital Clínic de Barcelona, Universidad de Barcelona, Barcelona, Spain
| | - Isam Alobid
- Skull Base Unit, ENT Department, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Centro de Investigación Biomédica en Red Enfermedades Respiratorias, Universidad de Barcelona, Barcelona, Spain
| | - Joaquim Enseñat
- Institut Clínic de Neurociències, Department of Neurological Surgery, Hospital Clínic de Barcelona, Universidad de Barcelona, Barcelona, Spain
| |
Collapse
|
5
|
Câmara B, Fava A, Matano F, Okano A, Ronconi D, Silva Costa B, Gadelha Figueiredo E, Chassoux F, Devaux B, Froelich S. Transuncal Selective Amygdalohippocampectomy by an Inferolateral Preseptal Endoscopic Approach Through Inferior Eyelid Conjunctival Incision: An Anatomic Study. Oper Neurosurg (Hagerstown) 2023; 25:199-208. [PMID: 37133253 DOI: 10.1227/ons.0000000000000728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/23/2023] [Indexed: 05/04/2023] Open
Abstract
BACKGROUND Transorbital endoscopic approaches have been described for pathologies of anterior and middle fossae. Standard lateral orbitotomy gives access to mesial temporal lobe, but the axis of work is partially obscured by the temporal pole and working corridor is limited. OBJECTIVE To evaluate the usefulness of an inferolateral orbitotomy to provide a more direct corridor to perform a transuncal selective amygdalohippocampectomy. METHODS Three adult cadaveric specimens were used for a total of 6 dissections. A step-by-step description and illustration of the transuncal corridor for a selective amygdalohippocampectomy were performed using the inferolateral orbitotomy through an inferior eyelid conjunctival incision. The anatomic landmarks were demonstrated in detail. Orbitotomies and angles of work were measured from computed tomography scans, and the area of resection was illustrated by postdissection MRI. RESULTS Inferior eyelid conjunctival incision was made for exposure of the inferior orbital rim. Inferolateral transorbital approach was performed to access the transuncal corridor. Endoscopic selective amygdalohippocampectomy was performed through the entorhinal cortex without damage to the temporal neocortex or Meyer's loop. The mean horizontal diameter of the osteotomy was 14.4 mm, and the vertical one was 13.6 mm. The mean angles of work were 65° and 35.5° in the axial and sagittal planes, respectively. Complete amygdalohippocampectomy was achieved in all 6 dissections. CONCLUSION Transuncal selective amygdalohippocampectomy was feasible in cadaveric specimens using the inferolateral transorbital endoscopic approach avoiding damage to the temporal neocortex and Meyer's loop. The inferior eyelid conjunctival incision may result in an excellent cosmetic outcome.
Collapse
Affiliation(s)
- Breno Câmara
- Service de Neurochirurgie-Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris, Université Paris Cité, Paris, France
- Laboratoire de neurochirurgie expérimentale, Service de Neurochirurgie-Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Arianna Fava
- Service de Neurochirurgie-Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris, Université Paris Cité, Paris, France
- Laboratoire de neurochirurgie expérimentale, Service de Neurochirurgie-Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Fumihiro Matano
- Service de Neurochirurgie-Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris, Université Paris Cité, Paris, France
- Laboratoire de neurochirurgie expérimentale, Service de Neurochirurgie-Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Atsushi Okano
- Service de Neurochirurgie-Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris, Université Paris Cité, Paris, France
- Laboratoire de neurochirurgie expérimentale, Service de Neurochirurgie-Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Daniel Ronconi
- Service de Neurochirurgie-Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris, Université Paris Cité, Paris, France
- Laboratoire de neurochirurgie expérimentale, Service de Neurochirurgie-Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Bruno Silva Costa
- Hospital Santa Casa de Misericórdia de Belo Horizonte, Belo Horizonte, Minas Gerais, Brazil
| | | | - Francine Chassoux
- Service de Neurochirurgie-Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris, Université Paris Cité, Paris, France
| | - Bertrand Devaux
- Service de Neurochirurgie-Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris, Université Paris Cité, Paris, France
| | - Sébastien Froelich
- Service de Neurochirurgie-Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris, Université Paris Cité, Paris, France
| |
Collapse
|
6
|
Carnevale JA, Ramirez-Loera C, Goldberg JL, Godfrey KJ, Schwartz TH. Transorbital Endoscopic Approach for Middle Fossa Floor/Lateral Cavernous Sinus Meningioma: 2-Dimensional Operative Video. Oper Neurosurg (Hagerstown) 2023; 24:e201-e202. [PMID: 36701497 DOI: 10.1227/ons.0000000000000496] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/06/2022] [Indexed: 01/27/2023] Open
Affiliation(s)
- Joseph A Carnevale
- Department of Neurological Surgery, Weill Cornell Medicine, New York Presbyterian Hospital, New York, New York, USA
| | - Cristopher Ramirez-Loera
- Department of Neurological Surgery, Weill Cornell Medicine, New York Presbyterian Hospital, New York, New York, USA
| | - Jacob L Goldberg
- Department of Neurological Surgery, Weill Cornell Medicine, New York Presbyterian Hospital, New York, New York, USA
| | - Kyle J Godfrey
- Department of Ophthalmology, Weill Cornell Medicine, New York Presbyterian Hospital, New York, New York, USA
| | - Theodore H Schwartz
- Department of Neurological Surgery, Weill Cornell Medicine, New York Presbyterian Hospital, New York, New York, USA
- Department of Otolaryngology and Neuroscience, Weill Cornell Medicine, New York Presbyterian Hospital, New York, New York, USA
| |
Collapse
|
7
|
García-Pérez D, Abarca J, González-López P, Nieto J, Lagares A, Paredes I. A Frontal Route to Middle and Posterior Cranial Fossa: Quantitative Study for the Lateral Transorbital Endoscopic Approach and Comparison with the Subtemporal Approach. World Neurosurg 2022; 167:e236-e250. [PMID: 35944860 DOI: 10.1016/j.wneu.2022.07.129] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 10/31/2022]
Abstract
BACKGROUND Skull base lesions within the middle cranial fossa (MCF) remain challenging. Recent reports suggest that transorbital endoscopic approaches (TOEAs) might be particularly suitable to access the MCF and expose the lateral wall of the cavernous sinus and the Meckel's cave. METHODS The present study was developed to compare the nuances of the subtemporal approach (STA) with those of the lateral TOEA (LTOEA) to the MCF and posterior cranial fossa (PCF) in cadaveric specimens. After orbital craniectomy, interdural opening of the cavernous sinus lateral wall (CSlw), exposure of the Gasserian ganglion, and extradural elevation of the temporal lobe was performed. Next, anterior endoscopic petrosectomy was performed and the PCF was accessed. We quantitatively analyzed and compared the angles of attack and distances between LTOEA and STA to different structures at the CSlw, petrous apex (PA), and PCF. RESULTS Cadaveric dissection through the LTOEA completely exposed the CSlw and PA. LTOA exhibited larger distances than the STA to all targets. Importantly, these differences were greater at the PA and its surrounding key anatomic landmarks. The horizontal and vertical angles of attack allowed by the LTOA were smaller both for the CSlw and PA. However, these differences were not significant for the vertical angle of attack at the CSlw. CONCLUSIONS LTOEA provides a direct ventral route to the medial aspect of MCF, PA, and PCF. Although TOEAs are versatile approaches, the unfamiliar surgical anatomy and limited instrument maneuverability demand extensive cadaveric dissection before moving to the clinical setting.
Collapse
Affiliation(s)
- Daniel García-Pérez
- Department of Neurosurgery, University Hospital 12 de Octubre, Madrid, Spain.
| | - Javier Abarca
- Department of Neurosurgery, University General Hospital of Alicante, Alicante, Spain
| | - Pablo González-López
- Department of Neurosurgery, University General Hospital of Alicante, Alicante, Spain
| | - Juan Nieto
- Department of Neurosurgery, University General Hospital of Alicante, Alicante, Spain
| | - Alfonso Lagares
- Department of Neurosurgery, University Hospital 12 de Octubre, Madrid, Spain
| | - Igor Paredes
- Department of Neurosurgery, University Hospital 12 de Octubre, Madrid, Spain
| |
Collapse
|
8
|
De Rosa A, Di Somma A, Mosteiro A, Ferrés A, Reyes LA, Roldan P, Torné R, Torales J, Solari D, Cavallo LM, Enseñat J, Prats-Galino A. Superior eyelid endoscopic transorbital approach to the tentorial area: A qualitative and quantitative anatomic study. Front Surg 2022; 9:1007447. [PMID: 36338650 PMCID: PMC9634414 DOI: 10.3389/fsurg.2022.1007447] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/21/2022] [Indexed: 11/12/2022] Open
Abstract
Objective Superior eyelid endoscopic transorbital approach (SETOA) is nowadays gaining progressive application in neurosurgical scenarios. Both anatomic and clinical reports have demonstrated the possibility of taking advantage of the orbital corridor as a minimally invasive route to reach anterior and middle cranial fossae and manage selected surgical lesions developing in these areas. The aim of this paper is to further shed light on other anatomic regions of the skull base as seen from a transorbital perspective, namely, the posterior cranial fossa and tentorial area, describing technical feasibility and steps in reaching this area through an extradural-transtentorial approach and providing quantitative evaluations of the "working area" obtained through this route. Material and methods Four cadaveric heads (eight sides) were dissected at the Laboratory of Surgical Neuroanatomy (LSNA) of the University of Barcelona, Spain. A stepwise dissection of the transorbital approach to the tentorial area was described. Qualitative anatomical descriptions and quantitative analyses of working were evaluated by using pre- and postdissections CT and MRI scans, and three-dimensional reconstructions were made using Amira software. Results With the endoscopic transorbital approach, posterior cranial fossa dura was reached by an extradural middle cranial fossa approach and drilling of the petrous apex. After clipping the superior petrosal sinus, the tentorium was divided and cut. An endoscope was then introduced in the posterior cranial fossa at the level of the tentorial incisura. Qualitative analysis provided a description of the tentorial and petrosal surfaces of the cerebellum, middle tentorial incisura, cerebellopontine fissures, and, after arachnoid dissection, by a 30° endoscopic visualization, the posterior aspect of the cerebellomesencephalic fissure. Quantitative analysis of the "working area" obtained after bone removal was also provided. Conclusions This anatomic qualitative and quantitative study sheds light on the anatomy of the posterior cranial fossa contents, such as the tentorial area and incisura, as seen through a transorbital perspective. The first aim of the article is to enrich the anatomical knowledge as seen through this relatively new corridor and to provide quantitative details and insights into the technical feasibility of reaching these regions in a surgical scenario.
Collapse
Affiliation(s)
- Andrea De Rosa
- Division of Neurosurgery, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Università degli Studi di Napoli “Federico II”, Naples, Italy
| | - Alberto Di Somma
- Department of Neurosurgery, Hospital Clinic, Barcelona, Spain,Correspondence: Alberto Di Somma
| | | | - Abel Ferrés
- Department of Neurosurgery, Hospital Clinic, Barcelona, Spain
| | | | - Pedro Roldan
- Department of Neurosurgery, Hospital Clinic, Barcelona, Spain
| | - Ramon Torné
- Department of Neurosurgery, Hospital Clinic, Barcelona, Spain
| | - Jorge Torales
- Department of Neurosurgery, Hospital Clinic, Barcelona, Spain
| | - Domenico Solari
- Division of Neurosurgery, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Università degli Studi di Napoli “Federico II”, Naples, Italy
| | - Luigi Maria Cavallo
- Division of Neurosurgery, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Università degli Studi di Napoli “Federico II”, Naples, Italy
| | - Joaquim Enseñat
- Department of Neurosurgery, Hospital Clinic, Barcelona, Spain
| | - Alberto Prats-Galino
- Laboratory of Surgical Neuroanatomy, Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain,Research Group of Clinical Neurophysiology, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
9
|
Jung IH, Yoo J, Choi S, Lim SH, Ko J, Roh TH, Hong JB, Kim EH. Endoscopic transorbital approach to the cavernous sinus: Cadaveric anatomy study and clinical application (‡SevEN-009). Front Oncol 2022; 12:962598. [PMID: 36091168 PMCID: PMC9459324 DOI: 10.3389/fonc.2022.962598] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Objective Cavernous sinus (CS) invasion is frequently encountered in the management of skull base tumors. Surgical treatment of tumors in the CS is technically demanding, and selection of an optimal surgical approach is critical for maximal tumor removal and patient safety. We aimed to evaluate the feasibility of an endoscopic transorbital approach (ETOA) to the CS based on a cadaveric study. Methods Five cadaveric heads were used for dissection under the ETOA in the comparison with the endoscopic endonasal approach (EEA) and the microscopic transcranial approach (TCA). The CS was exposed, accessed, and explored, first using the ETOA, followed by the EEA and TCA. A dedicated endoscopic system aided by neuronavigation guidance was used for the procedures. During the ETOA, neurovascular structures inside the CS were approached through different surgical triangles. Results After completing the ETOA with interdural dissection, the lateral wall of the CS was fully exposed. The lateral and posterior compartments of the CS, of which accessibility is greatly limited under the EEA, were effectively approached and explored under the ETOA. The anteromedial triangle was the largest window via which most of the lateral compartment was freely approached. The internal carotid artery and abducens nerve were also observed through the anteromedial triangle and just behind V1. During the ETOA, the approaching view through the supratrochlear and infratrochlear triangles was more directed towards the posterior compartment. After validation of the feasibility and safety based on the cadaveric study, ETOA was successfully performed in a patient with a pituitary adenoma with extensive CS invasion. Conclusions Based on the cadaveric study, we demonstrated that the lateral CS wall was reliably accessed under the ETOA. The lateral and posterior compartments of the CS were effectively explored via surgical triangles under the ETOA. ETOA provides a unique and valuable surgical route to the CS with a promising synergy when used with EEA and TCA. Our experience with a clinical case convinces us of the efficacy of the ETOA during surgical management of skull base tumors with CS-invasion.
Collapse
Affiliation(s)
- In-Ho Jung
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, South Korea
- Department of Neurosurgery, Dankook University College of Medicine, Cheonan, South Korea
| | - Jihwan Yoo
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, South Korea
- Brain Tumor Center, Gangnam Severance Hospital, Seoul, South Korea
| | - Seonah Choi
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, South Korea
| | - Seung Hoon Lim
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, South Korea
- Department of Neurosurgery, College of Medicine, Kyung Hee University, Seoul, South Korea
| | - JaeSang Ko
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, South Korea
- Endoscopic Skull Base Center, Severance Hospital, Seoul, South Korea
| | - Tae Hoon Roh
- Department of Neurosurgery, Ajou University Hospital, Ajou University School of Medicine, Suwon, South Korea
| | - Je Beom Hong
- Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Eui Hyun Kim
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, South Korea
- Endoscopic Skull Base Center, Severance Hospital, Seoul, South Korea
- *Correspondence: Eui Hyun Kim,
| |
Collapse
|
10
|
Lee WJ, Kim YH, Hong SD, Rho TH, Kim YH, Dho YS, Hong CK, Kong DS. Development of 3-dimensional printed simulation surgical training models for endoscopic endonasal and transorbital surgery. Front Oncol 2022; 12:966051. [PMID: 35992880 PMCID: PMC9389537 DOI: 10.3389/fonc.2022.966051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundEndoscopic skull base surgery (ESBS) is complex, requiring methodical and unremitting surgical training. Herein, we describe the development and evaluation of a novel three-dimensional (3D) printed simulation model for ESBS. We further validate the efficacy of this model as educational support in neurosurgical training.MethodsA patient-specific 3D printed simulation model using living human imaging data was established and evaluated in a task-based hands-on dissection program. Endoscopic endonasal and transorbital procedures were simulated on the model by neurosurgeons and otorhinolaryngology surgeons of varying experience. All procedures were recorded using a high-definition camera coupled with digital video recorder system. The participants were asked to complete a post-procedure questionnaire to validate the efficacy of the model.ResultsFourteen experts and 22 trainees participated in simulations, and the 32 participants completed the post-procedure survey. The anatomical realism was scored as 4.0/5.0. The participants rated the model as helpful in hand-eye coordination training (4.7/5.0) and improving surgical skills (4.6/5.0) for ESBS. All participants believed that the model was useful as educational support for trainees (4.7 [ ± 0.5]). However, the color (3.6/5.0) and soft tissue feedback parameters (2.8/5) scored low.ConclusionThis study shows that high-resolution 3D printed skull base models for ESBS can be generated with high anatomical accuracy and acceptable haptic feedback. The simulation program of ESBS using this model may be supplemental or provide an alternative training platform to cadaveric dissection.
Collapse
Affiliation(s)
- Won-Jae Lee
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Yong Hwy Kim
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University School of Medicine, Seoul, South Korea
| | - Sang-Duk Hong
- Department of Otorhinolaryngology—Head & Neck Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Tae-Hoon Rho
- Department of Neurosurgery, Ajou University Hospital, Ajou University School of Medicine, Suwon, South Korea
| | - Young Hoon Kim
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Yun-Sik Dho
- Department of Neurosurgery, Chungbuk National University Hospital, Chungbuk National University College of Medicine, Cheongju, South Korea
| | - Chang-Ki Hong
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Doo-Sik Kong
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
- *Correspondence: Doo-Sik Kong, /
| |
Collapse
|
11
|
Park HH, Roh TH, Choi S, Yoo J, Kim WH, Jung IH, Yun IS, Hong CK. Endoscopic Transorbital Approach to Mesial Temporal Lobe for Intra-Axial Lesions: Cadaveric Study and Case Series (SevEN-008). Oper Neurosurg (Hagerstown) 2021; 21:E506-E515. [PMID: 34528091 DOI: 10.1093/ons/opab319] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 07/18/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Endoscopic transorbital approach (ETOA) has been proposed as a minimally invasive technique for the treatment of skull base lesions located around mesial temporal lobe (MTL), mostly extra-axial pathology. OBJECTIVE To explore the feasibility of ETOA in accessing intraparenchymal MTL with cadaveric specimens and describe our initial clinical experience of ETOA for intra-axial lesions in MTL. METHODS Anatomic dissections were performed in 4 adult cadaveric heads using a 0° endoscope. First, a stepwise anatomical investigation of ETOA to intraparenchymal MTL was explored. Then, ETOA was applied clinically for 7 patients with intra-axial lesions in MTL, predominantly high-grade gliomas (HGGs) and low-grade gliomas (LGGs). RESULTS The extradural stage of ETOA entailed a superior eyelid incision followed by orbital retraction, drilling of orbital roof, greater and lesser wing of sphenoid bone, and cutting of the meningo-orbital band. For the intradural stage, the brain tissue medial to the occipito-temporal gyrus was aspirated until the temporal horn was opened. The structures of MTL could be aspirated selectively in a subpial manner without injury to the neurovascular structures of the ambient and sylvian cisterns, and the lateral neocortex. After cadaveric validation, ETOA was successfully performed for 4 patients with HGGs and 3 patients with LGGs. Gross total resection was achieved in 6 patients (85.7%) without significant surgical morbidities including visual field deficits. CONCLUSION ETOA provides a logical line of access for intra-axial lesions in MTL. The safe and natural surgical trajectory of ETOA can spare brain retraction, neurovascular injury, and disruption of the lateral neocortex.
Collapse
Affiliation(s)
- Hun Ho Park
- Department of Neurosurgery , Gangnam Severance Hospital, Yonsei University Health System, Seoul, Republic of Korea
| | - Tae Hoon Roh
- Department of Neurosurgery, Ajou University Hospital, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Seonah Choi
- Department of Neurosurgery , Gangnam Severance Hospital, Yonsei University Health System, Seoul, Republic of Korea
| | - Jihwan Yoo
- Department of Neurosurgery , Gangnam Severance Hospital, Yonsei University Health System, Seoul, Republic of Korea
| | - Woo Hyun Kim
- Department of Neurosurgery , Gangnam Severance Hospital, Yonsei University Health System, Seoul, Republic of Korea
| | - In-Ho Jung
- Department of Neurosurgery , Gangnam Severance Hospital, Yonsei University Health System, Seoul, Republic of Korea
| | - In-Sik Yun
- Department of Plastic surgery, Gangnam Severance Hospital, Yonsei University Health System, Seoul, Republic of Korea
| | - Chang-Ki Hong
- Department of Neurosurgery , Gangnam Severance Hospital, Yonsei University Health System, Seoul, Republic of Korea.,Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
12
|
Kong DS, Kim YH, Hong CK. Optimal indications and limitations of endoscopic transorbital superior eyelid surgery for spheno-orbital meningiomas. J Neurosurg 2021; 134:1472-1479. [PMID: 32502989 DOI: 10.3171/2020.3.jns20297] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/30/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Spheno-orbital meningiomas (SOMs) are complicated tumors that involve multiple structures at initial presentation, such as the orbit, temporalis muscle, sphenoidal bone, cavernous sinus, and temporal or infratemporal fossa. The infiltrative growth and complexity of this type of meningioma make total resection impossible. In this study, the authors evaluated the surgical outcome of the endoscopic transorbital approach (eTOA) for SOM. In addition, they identified optimal indications for the use of eTOA and analyzed the feasibility of this approach as a minimally invasive surgery for SOMs of varying types and locations at presentation. METHODS Between September 2016 and December 2019, the authors performed eTOA in 41 patients with SOM with or without orbital involvement at 3 independent tertiary institutions. The authors evaluated the surgical outcomes of eTOA for SOM and investigated several factors that affect the outcome, such as tumor volume, tumor location, and the presence of lateral orbitotomy. Gross-total resection (GTR) was defined as complete resection of the tumor or intended subtotal resection except the cavernous sinus. This study was undertaken as a multicenter project (006) of the Korean Society of Endoscopic Neurosurgery (KOSEN-006). RESULTS There were 41 patients (5 men and 36 women) with a median age of 52.0 years (range 24-73 years). Twenty-one patients had tumors that involved the orbital structure, while 14 patients had tumors that presented at the sphenoidal bone along with other structures, such as the cavernous sinus, temporal fossa, and infratemporal fossa. Fifteen patients had the globulous type of tumor and 26 patients had the en plaque type. Overall, GTR was achieved in 21 of 41 patients (51.2%), and complications included CSF leaks in 2 patients and wound complications in 2 patients. Multiple logistic regression analysis showed that the en plaque type of tumor, absence of lateral orbital rim osteotomy, involvement of the temporal floor or infratemporal fossa, and involvement of the orbit and medial one-third of the greater sphenoidal wing were closely associated with lower GTR rates (p < 0.05). Multivariate analysis revealed that the en plaque type of tumor and the absence of lateral orbital rim osteotomy were significant predictors for lower GTR rate. CONCLUSIONS The en plaque type of SOM remains a challenge despite advances in technique such as minimally invasive surgery. Overall, clinical outcome of eTOA for SOM was comparable to the transcranial surgery. To achieve GTR, eTOA is recommended, with additional lateral orbital rim osteotomy for globulous-type tumors, without involving the floor of the temporal and infratemporal fossa.
Collapse
Affiliation(s)
- Doo-Sik Kong
- 1Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine
| | - Yong Hwy Kim
- 2Department of Neurosurgery, Seoul National University College of Medicine; and
| | - Chang-Ki Hong
- 3Department of Neurosurgery, Gangnam Severance Hospital, Yonsei University Health System, Seoul, Republic of Korea
| |
Collapse
|
13
|
Transorbital endoscopic approaches to the skull base: a systematic literature review and anatomical description. Neurosurg Rev 2021; 44:2857-2878. [PMID: 33479806 PMCID: PMC8490260 DOI: 10.1007/s10143-020-01470-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/09/2020] [Accepted: 12/29/2020] [Indexed: 12/25/2022]
Abstract
Transorbital endoscopic approaches are increasing in popularity as they provide corridors to reach various areas of the ventral skull base through the orbit. They can be used either alone or in combination with different approaches when dealing with the pathologies of the skull base. The objective of the current study is to evaluate the surgical anatomy of transorbital endoscopic approaches by cadaver dissections as well as providing objective clinical data on their actual employment and morbidity through a systematic review of the current literature. Four cadaveric specimens were dissected, and step-by-step dissection of each endoscopic transorbital approach was performed to identify the main anatomic landmarks and corridors. A systematic review with pooled analysis of the current literature from January 2000 to April 2020 was performed and the related studies were analyzed. Main anatomical landmarks are presented based on the anatomical study and systematic review of the literature. With emphasis on the specific transorbital approach used, indications, surgical technique, and complications are reviewed through the systematic review of 42 studies (19 in vivo and 23 anatomical dissections) including 193 patients. In conclusion, transorbital endoscopic approaches are promising and appear as feasible techniques for the surgical treatment of skull base lesions. Surgical anatomy of transorbital endoscopic approaches can be mastered through knowledge of a number of anatomical landmarks. Based on data available in the literature, transorbital endoscopic approaches represent an important complementary that should be included in the armamentarium of a skull base team.
Collapse
|
14
|
Lin BJ, Ju DT, Hsu TH, Chen YA, Chung TT, Liu WH, Hueng DY, Chen YH, Hsia CC, Ma HI, Liu MY, Tang CT. Quantitative comparison of endoscopically assisted endonasal, sublabial and transorbital transmaxillary approaches to the anterolateral skull base. Clin Otolaryngol 2020; 46:123-130. [PMID: 32348006 DOI: 10.1111/coa.13559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/14/2020] [Accepted: 04/18/2020] [Indexed: 11/30/2022]
Abstract
OBJECTIVES The aim of this anatomical study is to make quantitative comparison among three endoscopic approaches, encompassing contralateral endonasal transseptal transmaxillary transpterygoid approach (contralateral EEA), endoscopic sublabial transmaxillary transalisphenoid (Caldwell-Luc) approach and endoscopic transorbital transmaxillary approach through inferior orbital fissure (ETOA), to the anterolateral skull base for assisting preoperative planning. DESIGN & PARTICIPANTS Anatomical dissections were performed in four adult cadaveric heads bilaterally using three endoscopic transmaxillary approaches described above. SETTING Skull Base Laboratory at the National Defense Medical Center. MAIN OUTCOME MEASURES The area of exposure, angles of attack and depth of surgical corridor of each approach were measured and obtained for statistical comparison. RESULTS The ETOA had significantly larger exposure over middle cranial fossa (731.40 ± 80.08 mm2 ) than contralateral EEA (266.60 ± 46.74 mm2 ) and Caldwell-Luc approach (468.40 ± 59.67 mm2 ). In comparison with contralateral EEA and Caldwell-Luc approach, the ETOA offered significantly greater angles of attack and shorter depth of surgical corridor (P < .05 for all comparisons). CONCLUSIONS The ETOA is the superior choice for target lesion occupying multiple compartments with its epicentre located in the middle cranial fossa or superior portion of infratemporal fossa.
Collapse
Affiliation(s)
- Bon-Jour Lin
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Department of Surgery, Nantou Hospital, Nantou, Taiwan
| | - Da-Tong Ju
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Tzu-Hsien Hsu
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Department of Surgery, Taichung Armed Forces General Hospital, Taichung, Taiwan
| | - Yi-An Chen
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Department of Surgery, Taichung Armed Forces General Hospital, Taichung, Taiwan
| | - Tzu-Tsao Chung
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Wei-Hsiu Liu
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Dueng-Yuan Hueng
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yuan-Hao Chen
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chung-Ching Hsia
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Hsin-I Ma
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ming-Ying Liu
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chi-Tun Tang
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
15
|
Lim J, Roh TH, Kim W, Kim JS, Hong JB, Sung KS, Moon JH, Kim EH, Hong CK. Biportal endoscopic transorbital approach: a quantitative anatomical study and clinical application. Acta Neurochir (Wien) 2020; 162:2119-2128. [PMID: 32440923 DOI: 10.1007/s00701-020-04339-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/07/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND We devised a biportal endoscopic transorbital approach (BiETOA) to gain surgical freedom by making a port for the endoscope and investigated the benefits and limitations of BiETOA. METHODS A cylindrical port was designed and 3-D printed using biocompatible material. The port was inserted through a keyhole between the superolateral side of the orbital rim and the temporal muscle. An endoscope was inserted through the port, and other instruments were inserted through the conventional transorbital route. BiETOA was used to dissect eight cadaveric heads, and the angle of attack and surgical freedom were assessed. RESULTS The mean maximal angle of attack was significantly different in BiETOA and endoscopic transorbital approach (ETOA) (P < 0.01) but not in BiETOA and ETOA lateral orbital rim (LOR) osteotomy (P = 0.207, P = 0.21). The mean surgical freedom was significantly different in BiETOA and ETOA (P < 0.01) and in BiETOA and ETOA LOR osteotomy (P < 0.01). In the clinical cases, tumors were removed successfully without any complications. CONCLUSIONS BiETOA provided increased surgical freedom and better visibility of deep target lesion and resulted in good surgical and cosmetic outcomes.
Collapse
Affiliation(s)
- Jaejoon Lim
- Department of Neurosurgery, Bundang CHA Medical Center, CHA University College of Medicine, Seongnam, Republic of Korea
| | - Tae Hoon Roh
- Department of Neurosurgery, Ajou Univeristy Hospital, Ajou University College of Medicine, Suwon, Republic of Korea
| | - Woohyun Kim
- Department of Neurosurgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ju-Seong Kim
- Department of Neurosurgery, Ewha Womans University Seoul Hospital, Ewha Womans University College of Medicine, Seoul, Republic of Korea
| | - Je Beom Hong
- Department of Neurosurgery, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Kyoung Su Sung
- Department of Neurosurgery, Dong-A University Hospital, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Ju Hyung Moon
- Department of Neurosurgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eui Hyun Kim
- Department of Neurosurgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chang-Ki Hong
- Department of Neurosurgery, Brain Tumor Center, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
16
|
Kryukov AI, Garov EV, Zelenkova VN, Zelikovich EI, Kurilenkov GV, Tsarapkin GY, Mishchenko VV, Tomilov FA, Martirosyan TG, Romanova KG. [Artificial temporal bone]. Vestn Otorinolaringol 2020; 85:95-99. [PMID: 32628392 DOI: 10.17116/otorino20208503195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This article presents assembly technology and the main stages of dissection on artificial temporal bone. This sample of artificial temporal bone is a domestic product. The use of this material makes it possible to develop basic dissection skills, such as anthromastoidotomy, posterior tympanotomy, and facial nerve decompression. Artificial temporal bone can be used as a teaching tool for students, residents and postgraduate students who train otosurgical skills in the form of basic stages of dissection work on complex structures of the temporal bone.
Collapse
Affiliation(s)
- A I Kryukov
- Sverzhevsky Research Clinical Institute of Otorhinolaryngology of the Moscow Healthcare Department, Moscow, Russia
| | - E V Garov
- Sverzhevsky Research Clinical Institute of Otorhinolaryngology of the Moscow Healthcare Department, Moscow, Russia
| | - V N Zelenkova
- Sverzhevsky Research Clinical Institute of Otorhinolaryngology of the Moscow Healthcare Department, Moscow, Russia
| | - E I Zelikovich
- Sverzhevsky Research Clinical Institute of Otorhinolaryngology of the Moscow Healthcare Department, Moscow, Russia
| | - G V Kurilenkov
- Sverzhevsky Research Clinical Institute of Otorhinolaryngology of the Moscow Healthcare Department, Moscow, Russia
| | - G Yu Tsarapkin
- Sverzhevsky Research Clinical Institute of Otorhinolaryngology of the Moscow Healthcare Department, Moscow, Russia
| | - V V Mishchenko
- Sverzhevsky Research Clinical Institute of Otorhinolaryngology of the Moscow Healthcare Department, Moscow, Russia
| | - F A Tomilov
- Sverzhevsky Research Clinical Institute of Otorhinolaryngology of the Moscow Healthcare Department, Moscow, Russia
| | - T G Martirosyan
- Sverzhevsky Research Clinical Institute of Otorhinolaryngology of the Moscow Healthcare Department, Moscow, Russia
| | - K G Romanova
- Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|