1
|
Manan AA, Yahya NA, Taib NHM, Idris Z, Manan HA. The Assessment of White Matter Integrity Alteration Pattern in Patients with Brain Tumor Utilizing Diffusion Tensor Imaging: A Systematic Review. Cancers (Basel) 2023; 15:3326. [PMID: 37444435 DOI: 10.3390/cancers15133326] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Alteration in the surrounding brain tissue may occur in the presence of a brain tumor. The present study aims to assess the characteristics and criteria of the pattern of white matter tract microstructure integrity alteration in brain tumor patients. The Scopus, PubMed/Medline, and Web of Science electronic databases were searched for related articles based on the guidelines established by PRISMA. Twenty-five studies were selected on the morphological changes of white matter tract integrity based on the differential classification of white matter tract (WMT) patterns in brain tumor patients through diffusion tensor imaging (DTI). The characterization was based on two criteria: the visualization of the tract-its orientation and position-and the DTI parameters, which were the fractional anisotropy and apparent diffusion coefficient. Individual evaluations revealed no absolute, mutually exclusive type of tumor in relation to morphological WMT microstructure integrity changes. In most cases, different types and grades of tumors have shown displacement or infiltration. Characterizing morphological changes in the integrity of the white matter tract microstructures is vital in the diagnostic and prognostic evaluation of the tumor's progression and could be a potential assessment for the early detection of possible neurological defects that may affect the patient, as well as aiding in surgery decision-making.
Collapse
Affiliation(s)
- Aiman Abdul Manan
- Functional Image Processing Laboratory, Department of Radiology, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur 56000, Malaysia
| | - Noorazrul Azmie Yahya
- Diagnostic Imaging and Radiotherapy Program, Faculty of Health Sciences, School of Diagnostic and Applied Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Nur Hartini Mohd Taib
- Hospital Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia
- Department of Radiology, School of Medical Science, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia
| | - Zamzuri Idris
- Hospital Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia
| | - Hanani Abdul Manan
- Functional Image Processing Laboratory, Department of Radiology, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur 56000, Malaysia
- Department of Radiology and Intervency, Hospital Pakar Kanak-Kanak (Specialist Children Hospital), Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
2
|
Tuleasca C, Peciu-Florianu I, Strachowski O, Derre B, Vannod-Michel Q, Reyns N. How to combine the use of intraoperative magnetic resonance imaging (MRI) and awake craniotomy for microsurgical resection of hemorrhagic cavernous malformation in eloquent area: a case report. J Med Case Rep 2023; 17:160. [PMID: 37041613 PMCID: PMC10091828 DOI: 10.1186/s13256-023-03816-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/08/2023] [Indexed: 04/13/2023] Open
Abstract
BACKGROUND Cavernous malformations are clusters of abnormal and hyalinized capillaries without interfering brain tissue. Here, we present a cavernous malformation operated under awake conditions, due to location, in an eloquent area and using intraoperative magnetic resonance imaging due to patient's movement upon the awake phase. CASE PRESENTATION We present the pre-, per-, and postoperative course of an inferior parietal cavernous malformation, located in eloquent area, in a 27-year-old right-handed Caucasian male, presenting with intralesional hemorrhage and epilepsy. Preoperative diffusion tensor imaging has shown the cavernous malformation at the interface between the arcuate fasciculus and the inferior fronto-occipital fasciculus. We describe the microsurgical approach, combining preoperative diffusion tensor imaging, neuronavigation, awake microsurgical resection, and intraoperative magnetic resonance imaging. CONCLUSION Complete microsurgical en bloc resection has been performed and is feasible even in eloquent locations. Intraoperative magnetic resonance imaging was considered an important adjunct, particularly used in this case as the patient moved during the "awake" phase of the surgery and thus neuronavigation was not accurate anymore. Postoperative course was marked by a unique, generalized seizure without any adverse event. Immediate and 3 months postoperative magnetic resonance imaging confirmed the absence of any residue. Pre- and postoperative neuropsychological exams were unremarkable.
Collapse
Affiliation(s)
- Constantin Tuleasca
- Neurosurgery and Neurooncology Service Lille, Centre Hospitalier Regional Universitaire de Lille, Roger Salengro Hospital, Lille, France.
- Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), Lausanne, Switzerland.
- Department of Clinical Neurosciences, Neurosurgery Service and Gamma Knife Center, Lausanne University Hospital (CHUV), Lausanne, Switzerland.
- Signal Processing Laboratory (LTS 5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Iulia Peciu-Florianu
- Neurosurgery and Neurooncology Service Lille, Centre Hospitalier Regional Universitaire de Lille, Roger Salengro Hospital, Lille, France
| | - Ondine Strachowski
- Neurosurgery and Neurooncology Service Lille, Centre Hospitalier Regional Universitaire de Lille, Roger Salengro Hospital, Lille, France
| | - Benoit Derre
- Neurosurgery and Neurooncology Service Lille, Centre Hospitalier Regional Universitaire de Lille, Roger Salengro Hospital, Lille, France
| | - Quentin Vannod-Michel
- Neuroradiology Service, Centre Hospitalier Regional Universitaire de Lille, Roger Salengro Hospital, Lille, France
| | - Nicolas Reyns
- Neurosurgery and Neurooncology Service Lille, Centre Hospitalier Regional Universitaire de Lille, Roger Salengro Hospital, Lille, France
| |
Collapse
|
3
|
Dmitriev AY, Dashyan VG. [Tractography in functional neuronavigation]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:12-18. [PMID: 37490660 DOI: 10.17116/jnevro202312307112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
The review addresses the combined use of tractography and neuronavigation. Fundamentals of diffusion tensor imaging are given, technical aspects of fiber tracking in general and in depicting separate subcortical tracts are described. Main advantages of the method and possible causes of errors are highlighted. Precision assessment of this technology is given by comparing with results of subcortical neurostimulation. Surgical tactics is described depending on distance between the tumor and subcortical pathways.
Collapse
Affiliation(s)
- A Yu Dmitriev
- Sklifosovsky Research Institute for Emergency, Moscow, Russia
- Yevdokimov Moscow State University of Medicine and Dentistry, Moscow, Russia
| | - V G Dashyan
- Sklifosovsky Research Institute for Emergency, Moscow, Russia
- Yevdokimov Moscow State University of Medicine and Dentistry, Moscow, Russia
| |
Collapse
|
4
|
García-García S, González-Sánchez JJ, Cepeda S, Mosteiro-Cadaval A, Ferres A, Arrese I, Sarabia R. Validation of Presurgical Simulation of White Matter Damage Using Diffusion Tensor Imaging. World Neurosurg 2022; 167:e846-e857. [PMID: 36049727 DOI: 10.1016/j.wneu.2022.08.092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/17/2022] [Accepted: 08/20/2022] [Indexed: 10/31/2022]
Abstract
BACKGROUND The understanding of white matter (WM) was revolutionized by the emergence of tractography based on diffusion tensor imaging (DTI). Currently, DTI simulations are implemented in preoperative planning to optimize surgical approaches. The reliability of these simulations has been questioned and investigated seeking for correlation between neurological performance and anomalies in DTI parameters. However, the ability of preoperative WM simulations to predict a surgical injury has not been thoroughly evaluated. Our objective was to assess the reliability of preoperatively simulated WM injuries for conventional neurosurgical procedures. METHODS WM surgical damage was preoperatively simulated by creating a 3-dimensional volume representing the endoscope or the surgical trajectory. This volume was used as an additional region of interest in the fascicle reconstruction to be subtracted from the original fascicle. Simulated, injured fascicles were compared in terms of the number of fibers and volume to those created from postoperative DTI studies. Reliability was assimilated into the correlation between the simulation and the postoperative reconstruction; evaluated using the intraclass correlation coefficient or Lin's Concordance correlation coefficient (CCC), and represented on Bland-Altman plots. RESULTS The preoperative and postoperative DTI studies of 30 patients undergoing various neurosurgical approaches were processed. The correlation between simulated injuries and postoperative studies was high in terms of fibers (Concordance correlation coefficient = Rho.C = 0.989 [95% confidence interval = 0.979-0.995]) and volume (intraclass correlation coefficient = 0.95 [95% CI = 0.89-0.97]). Bland-Altman plots demonstrated that the great majority of cases fell within the mean ± 2 Standard deviations. CONCLUSIONS Presurgical simulation of WM fascicles based on DTI is consistent with postoperative DTI studies. These findings require further validation by neurophysiological and clinical correlation.
Collapse
Affiliation(s)
| | | | - Santiago Cepeda
- Neurosurgery Department, Hospital Universitario Río Hortega, Valladolid, Spain
| | | | - Abel Ferres
- Neurosurgery Department, Hospital Clìnic, Barcelona, Spain
| | - Ignacio Arrese
- Neurosurgery Department, Hospital Universitario Río Hortega, Valladolid, Spain
| | - Rosario Sarabia
- Neurosurgery Department, Hospital Universitario Río Hortega, Valladolid, Spain
| |
Collapse
|
5
|
Camins À, Naval-Baudin P, Majós C, Sierpowska J, Sanmillan JL, Cos M, Rodriguez-Fornells A, Gabarrós A. Inferior fronto-occipital fascicle displacement in temporoinsular gliomas using diffusion tensor imaging. J Neuroimaging 2022; 32:638-646. [PMID: 35352437 PMCID: PMC9544573 DOI: 10.1111/jon.12992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 11/29/2022] Open
Abstract
Background and Purpose Brain tumors can result in displacement or destruction of important white matter tracts such as the inferior fronto‐occipital fascicle (IFOF). Diffusion tensor imaging (DTI) can assess the extent of this effect and potentially provide neurosurgeons with an accurate map to guide tumor resection; analyze IFOF displacement patterns in temporoinsular gliomas based on tumor grading and topography in the temporal lobe; and assess whether these patterns follow a predictable pattern, to assist in maximal tumor resection while preserving IFOF function. Methods Thirty‐four patients with temporal gliomas and available presurgical MRI were recruited. Twenty‐two had insula infiltration. DTI deterministic region of interest (ROI)‐based tractography was performed using commercial software. Tumor topographic imaging characteristics analyzed were as follows: location in the temporal lobe and extent of extratemporal involvement. Qualitative tractographic data obtained from directional DTI color maps included type of involvement (displaced/edematous‐infiltrated/destroyed) and displacement direction. Quantitative tractographic data of ipsi‐ and contralateral IFOF included whole tract volume, fractional anisotropy, and fractional anisotropy of a 2‐dimensional coronal ROI on the tract at the point of maximum tumor involvement. Results The most common tract involvement pattern was edematous/infiltrative displacement. Displacement patterns depended on main tumor location in the temporal lobe and presence of insular involvement. All tumors showed superior displacement pattern. In lateral tumors, displacement tendency was medial. In medial tumors, displacement tendency was lateral. When we add insular involvement, the tendency was more medial displacement. A qualitative and quantitative assessment supported these results. Conclusions IFOF displacement patterns are reproducible and suitable for temporoinsular gliomas presurgical planning.
Collapse
Affiliation(s)
- Àngels Camins
- Radiology Department, Institut de Diagnostic per la Imatge, Hospital Universitari de Bellvitge (HUB), Barcelona, Spain.,Bellvitge Biomedical Research Institute (IDIBELL), Universitat de Barcelona (UB), Barcelona, 08907, Spain
| | - Pablo Naval-Baudin
- Radiology Department, Institut de Diagnostic per la Imatge, Hospital Universitari de Bellvitge (HUB), Barcelona, Spain
| | - Carles Majós
- Radiology Department, Institut de Diagnostic per la Imatge, Hospital Universitari de Bellvitge (HUB), Barcelona, Spain
| | - Joanna Sierpowska
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands.,Department of Medical Psychology, Donders Centre for Medical Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands.,Cognition and Brain Plasticity Unit, Department of Cognition, Development and Educational Psychology, University of Barcelona, Barcelona, Spain.,Bellvitge Biomedical Research Institute (IDIBELL) & Institut de Neurociencies, Barcelona, Spain
| | - Jose L Sanmillan
- Neurosurgery Department, Hospital Universitari de Bellvitge (HUB), Campus Bellvitge, University of Barcelona - IDIBELL, Barcelona, Spain
| | - Mónica Cos
- Radiology Department, Institut de Diagnostic per la Imatge, Hospital Universitari de Bellvitge (HUB), Barcelona, Spain
| | - Antoni Rodriguez-Fornells
- Cognition and Brain Plasticity Unit, Department of Cognition, Development and Educational Psychology, University of Barcelona, Barcelona, Spain.,Bellvitge Biomedical Research Institute (IDIBELL) & Institut de Neurociencies, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Andreu Gabarrós
- Neurosurgery Department, Hospital Universitari de Bellvitge (HUB), Campus Bellvitge, University of Barcelona - IDIBELL, Barcelona, Spain
| |
Collapse
|
6
|
Clinical application of diffusion tensor imaging and fiber tractography in the management of brainstem cavernous malformations: a systematic review. Neurosurg Rev 2022; 45:2027-2040. [PMID: 35211879 DOI: 10.1007/s10143-022-01759-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/02/2022] [Accepted: 02/18/2022] [Indexed: 10/19/2022]
Abstract
This study aimed to systematically review the literature to determine the clinical utility and perspectives of diffusion tensor imaging (DTI) in the management of patients with brainstem cavernous malformations (BSCMs). PubMed, Embase, and Cochrane were searched for English-language articles published until May 10, 2021. Clinical studies and case series describing DTI-based evaluation of patients with BSCMs were included. Fourteen articles were included. Preoperative DTI enabled to adjust the surgical approach and choose a brainstem safe entry zone in deep-seated BSCMs. Preoperatively lower fractional anisotropy (FA) of the corticospinal tract (CST) correlated with the severity of CST injury and motor deficits. Postoperatively increased FA and decreased apparent diffusion coefficient (ADC) corresponded with the normalization of the perilesional CST, indicating motor improvement. The positive (PPV) and negative predictive value (NPV) of qualitative DTI ranged from 20 to 75% and from 66.6 to 100%, respectively. The presence of preoperative and postoperative motor deficits was associated with a higher preoperative resting motor threshold (RMT) and lower FA. A higher preoperative CST score was indicative of a lower preoperative and follow-up Medical Research Council (MRC) grade. DTI facilitated the determination of a surgical trajectory with minimized risk of WMTs' damage. Preoperative FA and RMT might indicate the severity of preoperative and postoperative motor deficits. Preoperative CST score can reliably reflect patients' preoperative and follow-up motor status. Due to high NPV, normal CST morphology might predict intact neurological outcomes. Contrarily, sparse and relatively low PPV limits the reliable prediction of neurological deficits.
Collapse
|
7
|
Zoli M, Talozzi L, Martinoni M, Manners DN, Badaloni F, Testa C, Asioli S, Mitolo M, Bartiromo F, Rochat MJ, Fabbri VP, Sturiale C, Conti A, Lodi R, Mazzatenta D, Tonon C. From Neurosurgical Planning to Histopathological Brain Tumor Characterization: Potentialities of Arcuate Fasciculus Along-Tract Diffusion Tensor Imaging Tractography Measures. Front Neurol 2021; 12:633209. [PMID: 33716935 PMCID: PMC7952864 DOI: 10.3389/fneur.2021.633209] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/26/2021] [Indexed: 01/09/2023] Open
Abstract
Background: Tractography has been widely adopted to improve brain gliomas' surgical planning and guide their resection. This study aimed to evaluate state-of-the-art of arcuate fasciculus (AF) tractography for surgical planning and explore the role of along-tract analyses in vivo for characterizing tumor histopathology. Methods: High angular resolution diffusion imaging (HARDI) images were acquired for nine patients with tumors located in or near language areas (age: 41 ± 14 years, mean ± standard deviation; five males) and 32 healthy volunteers (age: 39 ± 16 years; 16 males). Phonemic fluency task fMRI was acquired preoperatively for patients. AF tractography was performed using constrained spherical deconvolution diffusivity modeling and probabilistic fiber tracking. Along-tract analyses were performed, dividing the AF into 15 segments along the length of the tract defined using the Laplacian operator. For each AF segment, diffusion tensor imaging (DTI) measures were compared with those obtained in healthy controls (HCs). The hemispheric laterality index (LI) was calculated from language task fMRI activations in the frontal, parietal, and temporal lobe parcellations. Tumors were grouped into low/high grade (LG/HG). Results: Four tumors were LG gliomas (one dysembryoplastic neuroepithelial tumor and three glioma grade II) and five HG gliomas (two grade III and three grade IV). For LG tumors, gross total removal was achieved in all but one case, for HG in two patients. Tractography identified the AF trajectory in all cases. Four along-tract DTI measures potentially discriminated LG and HG tumor patients (false discovery rate < 0.1): the number of abnormal MD and RD segments, median AD, and MD measures. Both a higher number of abnormal AF segments and a higher AD and MD measures were associated with HG tumor patients. Moreover, correlations (unadjusted p < 0.05) were found between the parietal lobe LI and the DTI measures, which discriminated between LG and HG tumor patients. In particular, a more rightward parietal lobe activation (LI < 0) correlated with a higher number of abnormal MD segments (R = −0.732) and RD segments (R = −0.724). Conclusions: AF tractography allows to detect the course of the tract, favoring the safer-as-possible tumor resection. Our preliminary study shows that along-tract DTI metrics can provide useful information for differentiating LG and HG tumors during pre-surgical tumor characterization.
Collapse
Affiliation(s)
- Matteo Zoli
- Pituitary Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Lia Talozzi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Matteo Martinoni
- Neurosurgery Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - David N Manners
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Filippo Badaloni
- Neurosurgery Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Claudia Testa
- Department of Physics and Astronomy, University of Bologna, Bologna, Italy
| | - Sofia Asioli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,Anatomic Pathology Unit, Azienda USL di Bologna, Bologna, Italy
| | - Micaela Mitolo
- Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Fiorina Bartiromo
- Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Magali Jane Rochat
- Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Viscardo Paolo Fabbri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Carmelo Sturiale
- Neurosurgery Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Alfredo Conti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,Neurosurgery Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Raffaele Lodi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Diego Mazzatenta
- Pituitary Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Caterina Tonon
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| |
Collapse
|