1
|
Norager NH, Lilja-Cyron A, Riedel CS, Holst AV, Pedersen SH, Juhler M. Intracranial pressure following surgery of an unruptured intracranial aneurysm-a model for normal intracranial pressure in humans. Fluids Barriers CNS 2024; 21:44. [PMID: 38773608 PMCID: PMC11110356 DOI: 10.1186/s12987-024-00549-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/07/2024] [Indexed: 05/24/2024] Open
Abstract
OBJECTIVE Optimizing the treatment of several neurosurgical and neurological disorders relies on knowledge of the intracranial pressure (ICP). However, exploration of normal ICP and intracranial pressure pulse wave amplitude (PWA) values in healthy individuals poses ethical challenges, and thus the current documentation remains scarce. This study explores ICP and PWA values for healthy adults without intracranial pathology expected to influence ICP. METHODS Adult patients (age > 18 years) undergoing surgery for an unruptured intracranial aneurysm without any other neurological co-morbidities were included. Patients had a telemetric ICP sensor inserted, and ICP was measured in four different positions: supine, lateral recumbent, standing upright, and 45-degree sitting, at day 1, 14, 30, and 90 following the surgery. RESULTS ICP in each position did not change with time after surgery. Median ICP was 6.7 mmHg and median PWA 2.1 mmHg in the supine position, while in the upright standing position median ICP was - 3.4 mmHg and median PWA was 1.9 mmHg. After standardization of the measurements from the transducer site to the external acoustic meatus, the median ICPmidbrain was 8.3 mmHg in the supine position and 1.2 mmHg in the upright standing position. CONCLUSION Our study provides insights into normal ICP dynamics in healthy adults following a uncomplicated surgery for an unruptured aneurysm. These results suggest a slightly wider normal reference range for invasive intracranial pressure than previously suggested, and present the first normal values for PWA in different positions. Further studies are, however, essential to enhance our understanding of normal ICP. Trial registration The study was preregistered at www. CLINICALTRIALS gov (NCT03594136) (11 July 2018).
Collapse
Affiliation(s)
- Nicolas Hernandez Norager
- Clinic of Neurosurgery, Copenhagen University Hospital, Inge Lehmanns Vej 6, 2100, Copenhagen East, Denmark.
| | - Alexander Lilja-Cyron
- Clinic of Neurosurgery, Copenhagen University Hospital, Inge Lehmanns Vej 6, 2100, Copenhagen East, Denmark
| | - Casper Schwartz Riedel
- Clinic of Neurosurgery, Copenhagen University Hospital, Inge Lehmanns Vej 6, 2100, Copenhagen East, Denmark
| | - Anders Vedel Holst
- Clinic of Neurosurgery, Copenhagen University Hospital, Inge Lehmanns Vej 6, 2100, Copenhagen East, Denmark
| | - Sarah Hornshoej Pedersen
- Clinic of Neurosurgery, Copenhagen University Hospital, Inge Lehmanns Vej 6, 2100, Copenhagen East, Denmark
| | - Marianne Juhler
- Clinic of Neurosurgery, Copenhagen University Hospital, Inge Lehmanns Vej 6, 2100, Copenhagen East, Denmark
- Clinic of Neurosurgery, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
2
|
Kazimierska A, Uryga A, Mataczyński C, Czosnyka M, Lang EW, Kasprowicz M. Relationship between the shape of intracranial pressure pulse waveform and computed tomography characteristics in patients after traumatic brain injury. Crit Care 2023; 27:447. [PMID: 37978548 PMCID: PMC10656987 DOI: 10.1186/s13054-023-04731-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Midline shift and mass lesions may occur with traumatic brain injury (TBI) and are associated with higher mortality and morbidity. The shape of intracranial pressure (ICP) pulse waveform reflects the state of cerebrospinal pressure-volume compensation which may be disturbed by brain injury. We aimed to investigate the link between ICP pulse shape and pathological computed tomography (CT) features. METHODS ICP recordings and CT scans from 130 TBI patients from the CENTER-TBI high-resolution sub-study were analyzed retrospectively. Midline shift, lesion volume, Marshall and Rotterdam scores were assessed in the first CT scan after admission and compared with indices derived from the first 24 h of ICP recording: mean ICP, pulse amplitude of ICP (AmpICP) and pulse shape index (PSI). A neural network model was applied to automatically group ICP pulses into four classes ranging from 1 (normal) to 4 (pathological), with PSI calculated as the weighted sum of class numbers. The relationship between each metric and CT measures was assessed using Mann-Whitney U test (groups with midline shift > 5 mm or lesions > 25 cm3 present/absent) and the Spearman correlation coefficient. Performance of ICP-derived metrics in identifying patients with pathological CT findings was assessed using the area under the receiver operating characteristic curve (AUC). RESULTS PSI was significantly higher in patients with mass lesions (with lesions: 2.4 [1.9-3.1] vs. 1.8 [1.1-2.3] in those without; p << 0.001) and those with midline shift (2.5 [1.9-3.4] vs. 1.8 [1.2-2.4]; p < 0.001), whereas mean ICP and AmpICP were comparable. PSI was significantly correlated with the extent of midline shift, total lesion volume and the Marshall and Rotterdam scores. PSI showed AUCs > 0.7 in classification of patients as presenting pathological CT features compared to AUCs ≤ 0.6 for mean ICP and AmpICP. CONCLUSIONS ICP pulse shape reflects the reduction in cerebrospinal compensatory reserve related to space-occupying lesions despite comparable mean ICP and AmpICP levels. Future validation of PSI is necessary to explore its association with volume imbalance in the intracranial space and a potential complementary role to the existing monitoring strategies.
Collapse
Affiliation(s)
- Agnieszka Kazimierska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 27 Wybrzeze Wyspianskiego Street, 50-370, Wroclaw, Poland.
| | - Agnieszka Uryga
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 27 Wybrzeze Wyspianskiego Street, 50-370, Wroclaw, Poland
| | - Cyprian Mataczyński
- Department of Computer Engineering, Faculty of Electronics, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Marek Czosnyka
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Institute of Electronic Systems, Faculty of Electronics and Information Technology, Warsaw University of Technology, Warsaw, Poland
| | - Erhard W Lang
- Neurosurgical Associates, Red Cross Hospital, Kassel, Germany
- Department of Neurosurgery, Faculty of Medicine, Georg-August-Universität, Göttingen, Germany
| | - Magdalena Kasprowicz
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 27 Wybrzeze Wyspianskiego Street, 50-370, Wroclaw, Poland.
| |
Collapse
|
3
|
Pennacchietti V, Schaumann A, Thomale UW. Maneuver protocol for outpatient telemetric intracranial pressure monitoring in hydrocephalus patients. Childs Nerv Syst 2023; 39:185-195. [PMID: 36098768 PMCID: PMC9968677 DOI: 10.1007/s00381-022-05659-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 09/01/2022] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Telemetric intracranial pressure measurement (tICPM) offers new opportunities to acquire objective information in shunted and non-shunted patients. The sensor reservoir (SR) provides tICPM modality at a decent sampling rate as an integrated component of the CSF shunt system. The aim of this study is to perform tICPM during a defined protocol of maneuvers in an outpatient setting as feasibility study including either shunt-dependent patients or candidates for possible shunt therapy. METHODS A total of 17 patients received a SR and were investigated within a protocol of maneuver measurements involving different body postures (90°, 10°, 0°, and - 10°), breathing patterns (hypo- and hyperventilation), and mild venous congestion (Valsalva, Jugular vein compression), while the latter two were performed in lying postures (10° and 0°). The cohort included 11 shunted and 6 non-shunted (stand-alone-SR) patients. All measurements were evaluated using an ICP-analysis software (ICPicture, Miethke, Germany) looking at ICP changes and amplitude (AMP) characteristics. RESULTS The shunted patient group consisted of 11 patients (median age: 15.8 years; range: 4-35.2 years) with either a primary shunt (n=9) and 2 patients received a shunt after stand-alone-SR tICPM. Six patients were enrolled with a stand-alone SR (median age 11.9 years, range 3.6-17.7 years). In the stand-alone SR group, maneuver related ICP and AMP changes were more sensitive compared to shunted patients. Postural maneuvers caused significant ICP changes in all body positions in both groups. The highest ICP values were seen during Valsalva maneuver, provoked by the patients themselves. In the stand-alone group, significant higher ICP values during hyperventilation were observed compared to shunted individuals. In shunted patients, a significant correlation between ICP and AMP was observed only during hyperventilation maneuver, while this correlation was additionally seen in Valsalva and jugular vein compression in stand-alone patients. CONCLUSION SR-related tICPM is helpful to objectify diagnostic evaluation in patients with CSF dynamic disturbances. The defined protocol did result in a wide range of ICP changes with promising potential for effective outpatient tICPM investigation. Since the correlation of ICP and AMP was observed during mild venous congestion maneuvers it appears to be specifically helpful for the evaluation of intracranial compliance. Further investigations of maneuver-related tICPM in a larger population, including variable pathologies, are needed to further establish the protocol in the clinical practice.
Collapse
Affiliation(s)
- Valentina Pennacchietti
- Pediatric Neurosurgery, Charité Universitaetsmedizin Berlin, Campus Virchow Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Andreas Schaumann
- Pediatric Neurosurgery, Charité Universitaetsmedizin Berlin, Campus Virchow Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Ulrich-Wilhelm Thomale
- Pediatric Neurosurgery, Charité Universitaetsmedizin Berlin, Campus Virchow Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany.
| |
Collapse
|
4
|
Trimmel NE, Podgoršak A, Oertel MF, Jucker S, Arras M, Schmid Daners M, Weisskopf M. Venous dynamics in anesthetized sheep govern postural-induced changes in cerebrospinal fluid pressure comparable to those in humans. Physiol Rep 2022; 10:e15525. [PMID: 36541216 PMCID: PMC9768641 DOI: 10.14814/phy2.15525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/01/2022] [Accepted: 11/11/2022] [Indexed: 06/17/2023] Open
Abstract
Sheep are popular large animals in which to model human disorders and to study physiological processes such as cerebrospinal fluid dynamics. However, little is known about vascular compensatory mechanisms affecting cerebrospinal fluid pressures during acute postural changes in sheep. Six female white Alpine sheep were anesthetized to investigate the interactions of the vascular and cerebrospinal fluid system by acquiring measurements of intracranial pressure and central and jugular venous pressure during passive postural changes induced by a tilt table. The cross-sectional area of the common jugular vein and venous blood flow velocity was recorded. Anesthetized sheep showed bi-phasic effects of postural changes on intracranial pressure during tilting. A marked collapse of the jugular vein was observed during head-over-body tilting; this is in accordance with findings in humans. Active regulatory effects of the arterial system on maintaining cerebral perfusion pressure were observed independent of tilting direction. Conclusion: Anesthetized sheep show venous dynamics in response to posture-induced changes in intracranial pressure that are comparable with those in humans.
Collapse
Affiliation(s)
- Nina Eva Trimmel
- Center for Surgical ResearchUniversity Hospital Zurich, University of ZurichZurichSwitzerland
| | - Anthony Podgoršak
- Department of Mechanical and Process Engineering, ETH ZurichZurichSwitzerland
| | - Markus Florian Oertel
- Department of NeurosurgeryUniversity Hospital Zurich, University of ZurichZurichSwitzerland
| | - Simone Jucker
- Center for Surgical ResearchUniversity Hospital Zurich, University of ZurichZurichSwitzerland
| | - Margarete Arras
- Center for Surgical ResearchUniversity Hospital Zurich, University of ZurichZurichSwitzerland
| | | | - Miriam Weisskopf
- Center for Surgical ResearchUniversity Hospital Zurich, University of ZurichZurichSwitzerland
| |
Collapse
|
5
|
Juhler M, Hansen TS, Novrup HVG, MacAulay N, Munch TN. Hydrocephalus Study Design: Testing New Hypotheses in Clinical Studies and Bench-to-Bedside Research. World Neurosurg 2022; 161:424-431. [PMID: 35505563 DOI: 10.1016/j.wneu.2021.12.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 10/18/2022]
Abstract
In this article, we aimed to describe some of the currently most challenging problems in neurosurgical management of hydrocephalus and how these can be reasons for inspiration for and development of research. We chose 4 areas of focus: 2 dedicated to improvement of current treatments (shunt implant surgery and endoscopic hydrocephalus surgery) and 2 dedicated to emerging future treatment principles (molecular mechanisms of cerebrospinal fluid secretion and hydrocephalus genetics).
Collapse
Affiliation(s)
- Marianne Juhler
- Department of Neurosurgery, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark; Department of Neurosurgery, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| | | | - Hans V G Novrup
- Department of Neurosurgery, Aarhus University Hospital, Aarhus, Denmark
| | - Nanna MacAulay
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Tina Nørgaard Munch
- Department of Neurosurgery, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark; Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| |
Collapse
|
6
|
Effect of a temporary lying position on cerebral hemodynamic and cerebral oxygenation parameters in patients with severe brain trauma. Acta Neurochir (Wien) 2021; 163:2595-2602. [PMID: 34236525 DOI: 10.1007/s00701-021-04851-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 04/12/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Temporary transition from the half-seated position (HSP) to the lying position (LyP) is often associated with an increase in intracranial pressure (ICP) during management of patients with severe traumatic brain injury (TBI). This study was designed to assess the impact of the temporary LyP on cerebral perfusion and oxygenation in cases of severe TBI. METHOD Patients with a severe blunt TBI with indication of ICP monitoring were prospectively included. Patients underwent standardized management according to the international guidelines to minimize secondary insults. For each patient, a maneuver to a LyP for 30 min was performed daily during the first 7 days of hospitalization. ICP, cerebral perfusion pressure (CPP), mean velocity (Vm), pulsatility index (PI), regional cerebral oxygen saturation (rScO2), jugular venous oxygen saturation (SvjO2)) were compared in the HSP and the LyP. RESULTS Twenty-four 24 patients were included. The median Glasgow coma scale score was 6 (interquartile range (IQR), 3-8), the median injury severity score was 32 (IQR, 25-48), and the mean age was 39 ± 16 years. On day 1, ICP (+ 6 mmHg (IQR, 4-7 mmHg)) and CPP (+ 10 mmHg (IQR, 5-14 mmHg) were significantly increased in the LyP compared with the HSP. Vm increased significantly in the LyP on the mainly injured side (+ 6 cm/s (IQR, + 0-11 cm/s); P = 0.01) and on the less injured side (+ 4 cm/s (IQR, + 1-8 cm/s); P < 0.01). rScO2 behaved similarly (+ 2 points (IQR, + 2-4 points) and + 3 points (IQR, + 2-5 points), respectively; P < 0.001). Mixed models highlighted the significant association between the position and CPP, Vm, rScO2, with more favorable conditions in the lying position. CONCLUSIONS Within the first week of management, the temporary LyP in cases of severe TBI was associated with a moderate increase in CPP, Vm, and rScO2despite a moderate increase in ICP.
Collapse
|