1
|
Potential protective effects of autophagy activated in MPP+ treated astrocytes. Exp Ther Med 2016; 12:2803-2810. [PMID: 27882077 PMCID: PMC5103691 DOI: 10.3892/etm.2016.3736] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 10/21/2015] [Indexed: 12/11/2022] Open
Abstract
Astrocytes, which have various important functions, have previously been associated with Parkinsons disease (PD), particularly in 1-methyl-4-phenylpyridinium (MPP+) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) models of PD. MPP+ is the toxic metabolite of MPTP and is generated by the enzymatic activity of monoamine oxidase B, which is predominantly located in astrocytes. MPP+ acts as a mitochondrial complex I inhibitor. Autophagy is an evolutionarily conserved self-digestion pathway in eukaryotic cells, which occurs in response to various types of stress, including starvation and oxidative stress. Lithium treatment has previously been shown to induce autophagy in astrocytes by inhibiting the enzyme inositol monophosphatase, which may aid in the treatment of neurodegenerative diseases, including Huntington's disease, in which the toxic protein is an autophagy substrate. Therefore, using western blotting and MTT assay, the present study aimed to investigate the protective effects of lithium-induced autophagy against astrocyte injury caused by MPP+ treatment, as well as the potential underlying mechanisms. The results of the present study suggested that lithium was able to induce autophagy in astrocytes treated with MPP+, and this likely occurred via activation of the phosphoinositide 3-kinase/AKT pathway.
Collapse
|
2
|
Breen MS, White CH, Shekhtman T, Lin K, Looney D, Woelk CH, Kelsoe JR. Lithium-responsive genes and gene networks in bipolar disorder patient-derived lymphoblastoid cell lines. THE PHARMACOGENOMICS JOURNAL 2016; 16:446-53. [PMID: 27401222 DOI: 10.1038/tpj.2016.50] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 04/21/2016] [Accepted: 05/18/2016] [Indexed: 12/25/2022]
Abstract
Lithium (Li) is the mainstay mood stabilizer for the treatment of bipolar disorder (BD), although its mode of action is not yet fully understood nor is it effective in every patient. We sought to elucidate the mechanism of action of Li and to identify surrogate outcome markers that can be used to better understand its therapeutic effects in BD patients classified as good (responders) and poor responders (nonresponders) to Li treatment. To accomplish these goals, RNA-sequencing gene expression profiles of lymphoblastoid cell lines (LCLs) were compared between BD Li responders and nonresponders with healthy controls before and after treatment. Several Li-responsive gene coexpression networks were discovered indicating widespread effects of Li on diverse cellular signaling systems including apoptosis and defense response pathways, protein processing and response to endoplasmic reticulum stress. Individual gene markers were also identified, differing in response to Li between BD responders and nonresponders, involved in processes of cell cycle and nucleotide excision repair that may explain part of the heterogeneity in clinical response to treatment. Results further indicated a Li gene expression signature similar to that observed with clonidine treatment, an α2-adrenoceptor agonist. These findings provide a detailed mechanism of Li in LCLs and highlight putative surrogate outcome markers that may permit for advanced treatment decisions to be made and for facilitating recovery in BD patients.
Collapse
Affiliation(s)
- M S Breen
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - C H White
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - T Shekhtman
- Veterans Administration, San Diego Healthcare System, San Diego, CA, USA.,Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - K Lin
- Department of Affective Disorder, Guangzhou Brain Hospital, Guangzhou Medical University, Guangzhou, China.,Laboratory of Cognition and Emotion, Guangzhou Brain Hospital, Guangzhou Medical University, Guangzhou, China
| | - D Looney
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA.,Veterans Administration, San Diego Healthcare System, San Diego, CA, USA
| | - C H Woelk
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - J R Kelsoe
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA.,Veterans Administration, San Diego Healthcare System, San Diego, CA, USA.,Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
3
|
Morphometric post-mortem studies in bipolar disorder: possible association with oxidative stress and apoptosis. Int J Neuropsychopharmacol 2011; 14:1075-89. [PMID: 21205433 DOI: 10.1017/s146114571000146x] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Despite extensive research in the last decades, the pathophysiology of bipolar disorder (BD) remains unclear. Access to post-mortem brain tissue of subjects who had BD offers an opportunity to investigate neurobiology and this approach has led to some progress, particularly, due to the availability of more sophisticated molecular and cellular biological methodologies and well characterized brain collections over the past decade. Here we review the findings of morphometric post-mortem studies in BD and interpret them in the context of a potential physiopathological mechanism involving oxidative stress and apoptosis. A review of the literature was conducted to identify post-mortem studies that investigated cellular changes such as number, density and size of neurons and glia, in brains of subjects with BD. We found decreased density of neurons and glia and decreased size of neurons in frontal and subcortical areas of the brain. Based on recent studies that found evidence of increased apoptosis and oxidative stress in BD, we hypothesize that the cell abnormalities described are due to an increase in the apoptotic process that can be triggered, through its intrinsic pathway, by the existence of an exacerbated production of reactive oxygen species and oxidative damage in the disease.
Collapse
|
4
|
Junyent F, Alvira D, Yeste-Velasco M, de la Torre AV, Beas-Zarate C, Sureda FX, Folch J, Pallàs M, Camins A, Verdaguer E. Prosurvival role of JAK/STAT and Akt signaling pathways in MPP+-induced apoptosis in neurons. Neurochem Int 2010; 57:774-82. [PMID: 20817061 DOI: 10.1016/j.neuint.2010.08.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 08/09/2010] [Accepted: 08/14/2010] [Indexed: 12/23/2022]
Abstract
In the present study the role of JAK/STAT and Akt in apoptosis was evaluated in cerebellar granule cells after treatment with the mitochondrial toxin MPP(+). Firstly, we evaluated the role of the prosurvival Akt pathway in MPP(+)-induced apoptosis and found that MPP(+) rapidly reduced the phosphorylation of Akt at Ser473. Since PTEN is an upstream regulator of Akt, its inhibition with bpV(pic) (1-30 μM) should activate Akt, however, it did not attenuate CGC cell death mediated by MPP(+) but protected CGC from apoptosis mediated by S/K deprivation. We also demonstrated that after the treatment with the complex I inhibitor, the expression levels of STAT1 increased and the levels of STAT3 decreased at the time points tested (0.5-8h). Meanwhile, pharmacological inhibition of the JAK/STAT pathway with AG490 (10-40 μM) was neuroprotective, probably due to its antioxidant properties, the Jak2-inhibitor-II potentiated MPP(+) neurotoxicity. Collectively, our data indicate that the treatment of CGC with the neurotoxin MPP(+) decreased two prosurvival pathways: STAT3 and Akt. Meanwhile Akt activation, using a PTEN inhibitor, did not play a prominent role in neuroprotection; loss of STAT3 could be a signal pathway involved in neuroprotection against the Parkinsonian neurotoxin MPP(+).
Collapse
Affiliation(s)
- Felix Junyent
- Institut de Biomedicina (IBUB), Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Quiroz JA, Machado-Vieira R, Zarate CA, Manji HK. Novel insights into lithium's mechanism of action: neurotrophic and neuroprotective effects. Neuropsychobiology 2010; 62:50-60. [PMID: 20453535 PMCID: PMC2889681 DOI: 10.1159/000314310] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The monovalent cation lithium partially exerts its effects by activating neurotrophic and neuroprotective cellular cascades. Here, we discuss the effects of lithium on oxidative stress, programmed cell death (apoptosis), inflammation, glial dysfunction, neurotrophic factor functioning, excitotoxicity, and mitochondrial stability. In particular, we review evidence demonstrating the action of lithium on cyclic adenosine monophosphate (cAMP)-mediated signal transduction, cAMP response element binding activation, increased expression of brain-derived neurotrophic factor, the phosphatidylinositide cascade, protein kinase C inhibition, glycogen synthase kinase 3 inhibition, and B-cell lymphoma 2 expression. Notably, we also review data from clinical studies demonstrating neurotrophic effects of lithium. We expect that a better understanding of the clinically relevant pathophysiological targets of lithium will lead to improved treatments for those who suffer from mood as well as neurodegenerative disorders.
Collapse
Affiliation(s)
- Jorge A. Quiroz
- Hoffman-La Roche Inc., Pharma Development and Exploratory Neuroscience, Nutley, N.J
| | - Rodrigo Machado-Vieira
- Experimental Therapeutics, Mood and Anxiety Disorders Research Program, NIMH-NIH, Bethesda, Md
| | - Carlos A. Zarate
- Experimental Therapeutics, Mood and Anxiety Disorders Research Program, NIMH-NIH, Bethesda, Md
| | - Husseini K. Manji
- Johnson & Johnson Pharmaceutical Research and Development, L.L.C., Titusville, N.J., USA,*Husseini K. Manji, MD, FRCPC, Johnson & Johnson Pharmaceuticals Group, 1125 Trenton-Harbourton Road, E32000, Titusville, NJ 08560 (USA), Tel. +1 609 730 2968, Fax +1 609 730 2940, E-Mail
| |
Collapse
|
6
|
Camins A, Verdaguer E, Junyent F, Yeste-Velasco M, Pelegrí C, Vilaplana J, Pallás M. Potential mechanisms involved in the prevention of neurodegenerative diseases by lithium. CNS Neurosci Ther 2010; 15:333-44. [PMID: 19889130 DOI: 10.1111/j.1755-5949.2009.00086.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Lithium is a monovalent cation that was introduced in 1949 by John Cade for the treatment of bipolar disorder. Clinical reports and subsequent studies confirmed this application and the beneficial effects of this compound. However, over the last 15 years, various authors have also demonstrated the neuroprotective effects of lithium against several neurotoxic paradigms. Thus, experimental studies in neuronal cell cultures and animal models of Alzheimer disease and others pathologies have provided strong evidence for the potential benefits of lithium. The main mechanism underlying its neuroprotective effects is thought to be inhibition of glycogen synthase kinase-3 (GSK-3), although other biochemical pathways in the brain could also be affected. In this review, the main mechanisms of lithium action are summarized, including the modulation of glutamate receptors, effects on arachidonic acid metabolism, its role with respect to AKT, and other potential mechanisms. In addition, its effects on neuroprotective proteins such as Bcl-2 and p53 are also discussed. Although the cellular and molecular biological effects of lithium may constitute an effective therapeutic strategy for Alzheimer disease, further clinical and experimental studies with this drug and specific GSK-3 inhibitors are necessary to confirm the use of lithium in therapeutic approaches to neurodegenerative diseases.
Collapse
Affiliation(s)
- Antoni Camins
- Unitat de Farmacologia i Farmacognòsia Facultat de Farmàcia, Centros de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Institut de Biomedicina (IBUB). Universitat de Barcelona, Barcelona, Spain.
| | | | | | | | | | | | | |
Collapse
|
7
|
Terracciano C, Nogalska A, Engel WK, Askanas V. In AbetaPP-overexpressing cultured human muscle fibers proteasome inhibition enhances phosphorylation of AbetaPP751 and GSK3beta activation: effects mitigated by lithium and apparently relevant to sporadic inclusion-body myositis. J Neurochem 2009; 112:389-96. [PMID: 19878439 DOI: 10.1111/j.1471-4159.2009.06461.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Muscle fiber degeneration in sporadic inclusion-body myositis (s-IBM) is characterized by accumulation of multiprotein aggregates, including aggregated amyloid-beta (Abeta)-precursor protein 751 (AbetaPP751), Abeta, phosphorylated tau, and other 'Alzheimer-characteristic' proteins. Proteasome inhibition is an important component of the s-IBM pathogenesis. In brains of Alzheimer's disease (AD) patients and AD transgenic-mouse models, phosphorylation of neuronal AbetaPP695 (p-AbetaPP) on Thr668 (equivalent to T724 of AbetaPP751) is considered detrimental because it increases generation of cytotoxic Abeta and induces tau phosphorylation. Activated glycogen synthase kinase3beta (GSK3beta) is involved in phosphorylation of both AbetaPP and tau. Lithium, an inhibitor of GSK3beta, was reported to reduce levels of both the total AbetaPP and p-AbetaPP in AD animal models. In relation to s-IBM, we now show for the first time that (1) In AbetaPP-overexpressing cultured human muscle fibers (human muscle culture IBM model: (a) proteasome inhibition significantly increases GSK3beta activity and AbetaPP phosphorylation, (b) treatment with lithium decreases (i) phosphorylated-AbetaPP, (ii) total amount of AbetaPP, (iii) Abeta oligomers, and (iv) GSK3beta activity; and (c) lithium improves proteasome function. (2) In biopsied s-IBM muscle fibers, GSK3beta is significantly activated and AbetaPP is phosphorylated on Thr724. Accordingly, treatment with lithium, or other GSK3beta inhibitors, might benefit s-IBM patients.
Collapse
Affiliation(s)
- Chiara Terracciano
- Department of Neurology, USC Neuromuscular Center, University of Southern California Keck, School of Medicine, Good Samaritan Hospital, Los Angeles, California 90017, USA
| | | | | | | |
Collapse
|
8
|
Machado-Vieira R, Manji HK, Zarate CA. The role of lithium in the treatment of bipolar disorder: convergent evidence for neurotrophic effects as a unifying hypothesis. Bipolar Disord 2009; 11 Suppl 2:92-109. [PMID: 19538689 PMCID: PMC2800957 DOI: 10.1111/j.1399-5618.2009.00714.x] [Citation(s) in RCA: 216] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lithium has been and continues to be the mainstay of bipolar disorder (BD) pharmacotherapy for acute mood episodes, switch prevention, prophylactic treatment, and suicide prevention. Lithium is also the definitive proof-of-concept agent in BD, although it has recently been studied in other psychoses as well as diverse neurodegenerative disorders. Its neurotrophic effects can be viewed as a unifying model to explain several integrated aspects of the pathophysiology of mood disorders and putative therapeutics for those disorders. Enhancing neuroprotection (which directly involves neurotrophic effects) is a therapeutic strategy intended to slow or halt the progression of neuronal loss, thus producing long-term benefits by favorably influencing outcome and preventing either the onset of disease or clinical decline. The present article: (i) reviews what has been learned regarding lithium's neurotrophic effects since Cade's original studies with this compound; (ii) presents human data supporting the presence of cellular atrophy and death in BD as well as neurotrophic effects associated with lithium in human studies; (iii) describes key direct targets of lithium involved in these neurotrophic effects, including neurotrophins, glycogen synthase kinase 3 (GSK-3), and mitochondrial/endoplasmic reticulum key proteins; and (iv) discusses lithium's neurotrophic effects in models of apoptosis and excitotoxicity as well as its potential neurotrophic effects in models of neurological disorders. Taken together, the evidence reviewed here suggests that lithium's neurotrophic effects in BD are an example of an old molecule acting as a new proof-of-concept agent. Continued work to decipher lithium's molecular actions will likely lead to the development of not only improved therapeutics for BD, but to neurotrophic enhancers that could prove useful in the treatment of many other illnesses.
Collapse
Affiliation(s)
- Rodrigo Machado-Vieira
- Experimental Therapeutics, Mood and Anxiety Disorders Research Program, NIMH-NIH, Department of Health and Human Services, Bethesda, MD
| | - Husseini K Manji
- Johnson and Johnson Pharmaceutical Research and Development, Titusville, NJ, USA
| | - Carlos A Zarate
- Experimental Therapeutics, Mood and Anxiety Disorders Research Program, NIMH-NIH, Department of Health and Human Services, Bethesda, MD
| |
Collapse
|
9
|
Mitochondrially mediated plasticity in the pathophysiology and treatment of bipolar disorder. Neuropsychopharmacology 2008; 33:2551-65. [PMID: 18235426 DOI: 10.1038/sj.npp.1301671] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bipolar disorder (BPD) has traditionally been conceptualized as a neurochemical disorder, but there is mounting evidence for impairments of cellular plasticity and resilience. Here, we review and synthesize the evidence that critical aspects of mitochondrial function may play an integral role in the pathophysiology and treatment of BPD. Retrospective database searches were performed, including MEDLINE, abstract booklets, and conference proceedings. Articles were also obtained from references therein and personal communications, including original scientific work, reviews, and meta-analyses of the literature. Material regarding the potential role of mitochondrial function included genetic studies, microarray studies, studies of intracellular calcium regulation, neuroimaging studies, postmortem brain studies, and preclinical and clinical studies of cellular plasticity and resilience. We review these data and discuss their implications not only in the context of changing existing conceptualizations regarding the pathophysiology of BPD, but also for the strategic development of improved therapeutics. We have focused on specific aspects of mitochondrial dysfunction that may have major relevance for the pathophysiology and treatment of BPD. Notably, we discuss calcium dysregulation, oxidative phosphorylation abnormalities, and abnormalities in cellular resilience and synaptic plasticity. Accumulating evidence from microarray studies, biochemical studies, neuroimaging, and postmortem brain studies all support the role of mitochondrial dysfunction in the pathophysiology of BPD. We propose that although BPD is not a classic mitochondrial disease, subtle deficits in mitochondrial function likely play an important role in various facets of BPD, and that enhancing mitochondrial function may represent a critical component for the optimal long-term treatment of the disorder.
Collapse
|
10
|
Pizarro JG, Yeste‐Velasco M, Rimbau V, Casadesús G, Smith MA, Pallàs M, Folch J, Camins A. Neuroprotective effects of SB‐415286 on hydrogen peroxide‐induced cell death in B65 rat neuroblastoma cells and neurons. Int J Dev Neurosci 2008; 26:269-76. [DOI: 10.1016/j.ijdevneu.2008.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 02/01/2008] [Accepted: 02/01/2008] [Indexed: 01/05/2023] Open
Affiliation(s)
- Javier G. Pizarro
- Unitat de Farmacologia i Farmacognòsia i Institut de Biomedicina (IBUB), Facultat de FarmàciaUniversitat de Barcelona, Nucli Universitari de Pedralbes08028BarcelonaSpain
- Centros de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)Instituto de Salud Carlos IIIMadridSpain
| | - Marc Yeste‐Velasco
- Unitat de Farmacologia i Farmacognòsia i Institut de Biomedicina (IBUB), Facultat de FarmàciaUniversitat de Barcelona, Nucli Universitari de Pedralbes08028BarcelonaSpain
- Centros de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)Instituto de Salud Carlos IIIMadridSpain
| | - Victor Rimbau
- Unitat de Farmacologia i Farmacognòsia i Institut de Biomedicina (IBUB), Facultat de FarmàciaUniversitat de Barcelona, Nucli Universitari de Pedralbes08028BarcelonaSpain
- Centros de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)Instituto de Salud Carlos IIIMadridSpain
| | - Gemma Casadesús
- Department of NeurosciencesCase Western Reserve University School of MedicineClevelandOH44106USA
| | - Mark A. Smith
- Department of PathologyCase Western Reserve University School of MedicineClevelandOH44106USA
| | - Mercè Pallàs
- Unitat de Farmacologia i Farmacognòsia i Institut de Biomedicina (IBUB), Facultat de FarmàciaUniversitat de Barcelona, Nucli Universitari de Pedralbes08028BarcelonaSpain
- Centros de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)Instituto de Salud Carlos IIIMadridSpain
| | - Jaume Folch
- Unitat de Bioquimica, Facultat de Medicina i Ciències de la SalutUniversitat Rovira i VirgiliC./St. Llorenç 2143201ReusTarragonaSpain
- Centros de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)Instituto de Salud Carlos IIIMadridSpain
| | - Antoni Camins
- Unitat de Farmacologia i Farmacognòsia i Institut de Biomedicina (IBUB), Facultat de FarmàciaUniversitat de Barcelona, Nucli Universitari de Pedralbes08028BarcelonaSpain
- Centros de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)Instituto de Salud Carlos IIIMadridSpain
| |
Collapse
|