1
|
Xu S, Zhang J, Che J, Sha Z, Zhang M, Zhang Z, Xiang T, Zhong W, Wu L, Lv G, Cai B, Xu L, Xu C, Chen Z. Lysyl oxidase nanozyme-loaded hydrogel for sustained release and promotion of diabetic bone defect regeneration. J Control Release 2025; 379:927-943. [PMID: 39864630 DOI: 10.1016/j.jconrel.2025.01.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 01/21/2025] [Accepted: 01/23/2025] [Indexed: 01/28/2025]
Abstract
The process of regenerating bone injuries in diabetic presents significant challenges because lysine oxidase (LOX), a key catalytic enzyme for collagen cross-linking, is inhibited in hyperglycemia. The supplementation of LOX is constrained by inadequate sources and diminished enzymatic activity, necessitating the development of effective alternatives for enhancing bone regeneration in diabetes. Herein, we reported a lysyl oxidase nanozyme (LON), derived from the catalytic domain of LOX. LON formed a stable coordination structure with the active center Cu2+ through histidine imidazolyl nitrogen and quinone oxygen, which is consistent with the conformation of the LOX. Our findings suggested that LON demonstrated the capacity to substitute LOX in promoting collagen synthesis and biomineralization. To enable sustained LON delivery, it was incorporated into a GelMA hydrogel (GH), forming a sustained-release reservoir known as LON-GelMA hydrogel (LONGH). Mechanism of LONGH promoting bone healing to accelerate the crosslinking and maturation stage of collagen were also explored, and the 23 genes closely associated with collagen regeneration and osteogenesis were found to be upregulated. The present investigation outcomes reveal that the engineered LONGH hydrogel presents a novel, simple, and commercially viable approach for bone regeneration, offering significant potential for clinical applications.
Collapse
Affiliation(s)
- Shan Xu
- College of pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, China; Department of Pharmacy, Affiliated Hospital of Jiangnan University, Wuxi 214125, China
| | - Jian Zhang
- College of pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Jun Che
- College of pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Zhengzhou Sha
- College of pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Mingtao Zhang
- College of pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Zhiyan Zhang
- College of pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Tangyong Xiang
- College of pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Weixi Zhong
- College of pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Li Wu
- College of pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Gaohong Lv
- College of pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Baochang Cai
- College of pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Liu Xu
- College of pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, China.
| | - Cheng Xu
- Pharmacy department, Kunshan Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou 215300, China.
| | - Zhipeng Chen
- College of pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, China.
| |
Collapse
|
2
|
Zhu Z. Serum LOXL2 is Elevated and an Independent Biomarker in Patients with Coronary Artery Disease. Int J Gen Med 2024; 17:4071-4080. [PMID: 39295855 PMCID: PMC11409929 DOI: 10.2147/ijgm.s478044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/28/2024] [Indexed: 09/21/2024] Open
Abstract
Background Arterial stiffness is associated with accelerated progression of atherosclerosis and plaque rupture. Lysyl oxidase-like 2 (LOXL2) plays a vital role in inflammatory responses, matrix deposition and arterial stiffness. This study assessed the correlation between the serum LOXL2 concentration and disease severity, inflammation, and endothelial dysfunction of coronary artery disease (CAD). Methods The study included 143 CAD patients and 150 non-CAD patients who underwent coronary angiography. Medical records, demographic and clinical baseline parameters were collected. Serum LOXL2 levels were measured using an ELISA kit. Results CAD patients had higher serum LOXL2 levels than non-CAD patients, and LOXL2 levels were associated with severity of coronary lesions. Serum LOXL2 level was positively correlated with low-density lipoprotein cholesterol (LDL-C) (r=0.161, P=0.054), systolic blood pressure (SBP) (r=0.175, P=0.036), high-sensitivity C-reactive protein (hs-CRP) (r=0.177, P=0.035), intima-media thickness (IMT) (r=0.190, P=0.023), and brachial-ankle pulse wave velocity (baPWV) (r=0.203, P=0.015), while negatively associated with high-density lipoprotein cholesterol (HDL-C) (r=-0.191, P=0.023) and flow-mediated dilation (FMD) (r=-0.183, P=0.028) in CAD patients. Multivariate logistic regression showed that LOXL2 is independently correlated with LDL-C (OR=3.380; 95% CI=1.258-9.082; P=0.016), hs-CRP (OR=10.988; 95% CI=1.962-61.532; P=0.006), TC (OR=2.229; 95% CI=1.005-4.944; P=0.049), IMT (OR=72.719; 95% CI=2.313-2286.008; P=0.015), and baPWV (OR=1.002; 95% CI=1.001-1.004; P=0.005) in CAD patients. The receiver operating characteristic (ROC) curve showed that the best cut-off for CAD as serum LOXL2 is 275.35 pg/mL, with sensitivity and specificity of 77.6% and 84%, respectively. Conclusion Our data demonstrated that LOXL2 could be a potential biomarker and independent risk factor for CAD patients.
Collapse
Affiliation(s)
- Zhongsheng Zhu
- Department of Cardiology, Guangming Traditional Chinese Medicine Hospital of Pudong New Area, Shanghai, 201321, People's Republic of China
- Department of Cardiology, Shanghai Pudong Hospital Affiliated to Fudan University, Shanghai, 201300, People's Republic of China
| |
Collapse
|
3
|
Löser R, Kuchar M, Wodtke R, Neuber C, Belter B, Kopka K, Santhanam L, Pietzsch J. Lysyl Oxidases as Targets for Cancer Therapy and Diagnostic Imaging. ChemMedChem 2023; 18:e202300331. [PMID: 37565736 DOI: 10.1002/cmdc.202300331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/12/2023]
Abstract
The understanding of the contribution of the tumour microenvironment to cancer progression and metastasis, in particular the interplay between tumour cells, fibroblasts and the extracellular matrix has grown tremendously over the last years. Lysyl oxidases are increasingly recognised as key players in this context, in addition to their function as drivers of fibrotic diseases. These insights have considerably stimulated drug discovery efforts towards lysyl oxidases as targets over the last decade. This review article summarises the biochemical and structural properties of theses enzymes. Their involvement in tumour progression and metastasis is highlighted from a biochemical point of view, taking into consideration both the extracellular and intracellular action of lysyl oxidases. More recently reported inhibitor compounds are discussed with an emphasis on their discovery, structure-activity relationships and the results of their biological characterisation. Molecular probes developed for imaging of lysyl oxidase activity are reviewed from the perspective of their detection principles, performance and biomedical applications.
Collapse
Affiliation(s)
- Reik Löser
- Institute of Radiopharmaceutical Cancer Research Helmholtz-Zentrum Dresden Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Mommsenstraße 4, 01069, Dresden, Germany
| | - Manuela Kuchar
- Institute of Radiopharmaceutical Cancer Research Helmholtz-Zentrum Dresden Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Robert Wodtke
- Institute of Radiopharmaceutical Cancer Research Helmholtz-Zentrum Dresden Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Christin Neuber
- Institute of Radiopharmaceutical Cancer Research Helmholtz-Zentrum Dresden Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Birgit Belter
- Institute of Radiopharmaceutical Cancer Research Helmholtz-Zentrum Dresden Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Klaus Kopka
- Institute of Radiopharmaceutical Cancer Research Helmholtz-Zentrum Dresden Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Mommsenstraße 4, 01069, Dresden, Germany
| | - Lakshmi Santhanam
- Departments of Anesthesiology and Critical Care Medicine and Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Jens Pietzsch
- Institute of Radiopharmaceutical Cancer Research Helmholtz-Zentrum Dresden Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Mommsenstraße 4, 01069, Dresden, Germany
| |
Collapse
|
4
|
Tsang KM, Knutsen RH, Billington CJ, Lindberg E, Steenbock H, Fu YP, Wardlaw-Pickett A, Liu D, Malide D, Yu ZX, Bleck CKE, Brinckmann J, Kozel BA. Copper-Binding Domain Variation in a Novel Murine Lysyl Oxidase Model Produces Structurally Inferior Aortic Elastic Fibers Whose Failure Is Modified by Age, Sex, and Blood Pressure. Int J Mol Sci 2022; 23:6749. [PMID: 35743192 PMCID: PMC9223555 DOI: 10.3390/ijms23126749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/08/2022] [Accepted: 06/14/2022] [Indexed: 12/23/2022] Open
Abstract
Lysyl oxidase (LOX) is a copper-binding enzyme that cross-links elastin and collagen. The dominant LOX variation contributes to familial thoracic aortic aneurysm. Previously reported murine Lox mutants had a mild phenotype and did not dilate without drug-induced provocation. Here, we present a new, more severe mutant, Loxb2b370.2Clo (c.G854T; p.Cys285Phe), whose mutation falls just N-terminal to the copper-binding domain. Unlike the other mutants, the C285F Lox protein was stably produced/secreted, and male C57Bl/6J Lox+/C285F mice exhibit increased systolic blood pressure (BP; p < 0.05) and reduced caliber aortas (p < 0.01 at 100mmHg) at 3 months that independently dilate by 6 months (p < 0.0001). Multimodal imaging reveals markedly irregular elastic sheets in the mutant (p = 2.8 × 10−8 for breaks by histology) that become increasingly disrupted with age (p < 0.05) and breeding into a high BP background (p = 6.8 × 10−4). Aortic dilation was amplified in males vs. females (p < 0.0001 at 100mmHg) and ameliorated by castration. The transcriptome of young Lox mutants showed alteration in dexamethasone (p = 9.83 × 10−30) and TGFβ-responsive genes (p = 7.42 × 10−29), and aortas from older C57Bl/6J Lox+/C285F mice showed both enhanced susceptibility to elastase (p < 0.01 by ANOVA) and increased deposition of aggrecan (p < 0.05). These findings suggest that the secreted Lox+/C285F mutants produce dysfunctional elastic fibers that show increased susceptibility to proteolytic damage. Over time, the progressive weakening of the connective tissue, modified by sex and blood pressure, leads to worsening aortic disease.
Collapse
Affiliation(s)
- Kit Man Tsang
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.M.T.); (R.H.K.); (C.J.B.J.); (E.L.); (Y.-P.F.); (A.W.-P.); (D.L.); (D.M.); (Z.-X.Y.); (C.K.E.B.)
| | - Russell H. Knutsen
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.M.T.); (R.H.K.); (C.J.B.J.); (E.L.); (Y.-P.F.); (A.W.-P.); (D.L.); (D.M.); (Z.-X.Y.); (C.K.E.B.)
| | - Charles J. Billington
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.M.T.); (R.H.K.); (C.J.B.J.); (E.L.); (Y.-P.F.); (A.W.-P.); (D.L.); (D.M.); (Z.-X.Y.); (C.K.E.B.)
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Eric Lindberg
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.M.T.); (R.H.K.); (C.J.B.J.); (E.L.); (Y.-P.F.); (A.W.-P.); (D.L.); (D.M.); (Z.-X.Y.); (C.K.E.B.)
| | - Heiko Steenbock
- Institute of Virology and Cell Biology, University of Lübeck, 23562 Lübeck, Germany; (H.S.); (J.B.)
| | - Yi-Ping Fu
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.M.T.); (R.H.K.); (C.J.B.J.); (E.L.); (Y.-P.F.); (A.W.-P.); (D.L.); (D.M.); (Z.-X.Y.); (C.K.E.B.)
| | - Amanda Wardlaw-Pickett
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.M.T.); (R.H.K.); (C.J.B.J.); (E.L.); (Y.-P.F.); (A.W.-P.); (D.L.); (D.M.); (Z.-X.Y.); (C.K.E.B.)
- Johns Hopkins University Applied Physics Lab, Laurel, MD 20724, USA
| | - Delong Liu
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.M.T.); (R.H.K.); (C.J.B.J.); (E.L.); (Y.-P.F.); (A.W.-P.); (D.L.); (D.M.); (Z.-X.Y.); (C.K.E.B.)
| | - Daniela Malide
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.M.T.); (R.H.K.); (C.J.B.J.); (E.L.); (Y.-P.F.); (A.W.-P.); (D.L.); (D.M.); (Z.-X.Y.); (C.K.E.B.)
| | - Zu-Xi Yu
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.M.T.); (R.H.K.); (C.J.B.J.); (E.L.); (Y.-P.F.); (A.W.-P.); (D.L.); (D.M.); (Z.-X.Y.); (C.K.E.B.)
| | - Christopher K. E. Bleck
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.M.T.); (R.H.K.); (C.J.B.J.); (E.L.); (Y.-P.F.); (A.W.-P.); (D.L.); (D.M.); (Z.-X.Y.); (C.K.E.B.)
| | - Jürgen Brinckmann
- Institute of Virology and Cell Biology, University of Lübeck, 23562 Lübeck, Germany; (H.S.); (J.B.)
- Department of Dermatology, University of Lübeck, 23562 Lübeck, Germany
| | - Beth A. Kozel
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.M.T.); (R.H.K.); (C.J.B.J.); (E.L.); (Y.-P.F.); (A.W.-P.); (D.L.); (D.M.); (Z.-X.Y.); (C.K.E.B.)
| |
Collapse
|
5
|
Cleverley R, Webb D, Middlemiss S, Duke P, Clare A, Okano K, Harwood C, Aldred N. In Vitro Oxidative Crosslinking of Recombinant Barnacle Cyprid Cement Gland Proteins. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:928-942. [PMID: 34714445 PMCID: PMC8639568 DOI: 10.1007/s10126-021-10076-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
Barnacle adhesion is a focus for fouling-control technologies as well as the development of bioinspired adhesives, although the mechanisms remain very poorly understood. The barnacle cypris larva is responsible for surface colonisation. Cyprids release cement from paired glands that contain proteins, carbohydrates and lipids, although further compositional details are scant. Several genes coding for cement gland-specific proteins were identified, but only one of these showed database homology. This was a lysyl oxidase-like protein (lcp_LOX). LOX-like enzymes have been previously identified in the proteome of adult barnacle cement secretory tissue. We attempted to produce recombinant LOX in E. coli, in order to identify its role in cyprid cement polymerisation. We also produced two other cement gland proteins (lcp3_36k_3B8 and lcp2_57k_2F5). lcp2_57k_2F5 contained 56 lysine residues and constituted a plausible substrate for LOX. While significant quantities of soluble lcp3_36k_3B8 and lcp2_57k_2F5 were produced in E. coli, production of stably soluble lcp_LOX failed. A commercially sourced human LOX catalysed the crosslinking of lcp2_57k_2F5 into putative dimers and trimers, and this reaction was inhibited by lcp3_36k_3B8. Inhibition of the lcp_LOX:lcp2_57k_2F5 reaction by lcp3_36k_3B8 appeared to be substrate specific, with no inhibitory effect on the oxidation of cadaverine by LOX. The results demonstrate a possible curing mechanism for barnacle cyprid cement and, thus, provide a basis for a more complete understanding of larval adhesion for targeted control of marine biofouling and adhesives for niche applications.
Collapse
Affiliation(s)
- Robert Cleverley
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4AX, UK
| | - David Webb
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4AX, UK
| | - Stuart Middlemiss
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4AX, UK
| | - Phillip Duke
- Defence Science and Technology Laboratory, Dstl Porton Down, Salisbury, SP4 0JQ, UK
| | - Anthony Clare
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Keiju Okano
- Department of Biotechnology, Akita Prefectural University, Akita, Japan
| | - Colin Harwood
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4AX, UK
| | - Nick Aldred
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK.
| |
Collapse
|
6
|
Chen T, Jiang N, Zhang S, Chen Q, Guo Z. BAPN-induced rodent model of aortic dissecting aneurysm and related complications. J Thorac Dis 2021; 13:3643-3651. [PMID: 34277056 PMCID: PMC8264692 DOI: 10.21037/jtd-21-605] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 06/04/2021] [Indexed: 12/12/2022]
Abstract
Background The aim of this study was to investigate the effects of beta-aminopropionitrile (BAPN) on the arterial walls of rodents, and to analyze the gross or pathological changes of arterial and other tissues of rodents treated with BAPN at different concentrations or doses. Methods Eighteen SPF SD rats (4–5-week old) were divided into three groups: SD-0.2 (Group A), SD-0.4 (Group B), and SD-0.6 (Group C). The groups A, B and C were given 0.2%, 0.4%, and 0.6% BAPN solution, respectively, as drinking water for seven weeks. Forty SPF C57BL/6 mice (3-week old) were randomly divided into four groups: C57-0.2 (Group D), C57-0.4 (Group E), C57-0.6 (Group F) and the control group and given 0.2%, 0.4%, or 0.6% BAPN or distilled water as drinking water, respectively, for seven weeks. All experimental animals were free to drink water. The aortas were dissected and visually examined. At the same time, hematoxylin and eosin (HE) staining was performed in aorta tissue. The vascular diameter and area of the middle membrane were measured with IPP (Image-Pro Plus 6.0). Results BAPN treatment significantly affected the water intake and weight gain of rats and mice. BAPN also caused thickening of the membrane in the aortas of rats and mice, and irregularity in the arrangement of elastic fibers. These pathological changes are similar to the pathological changes observed in human aneurysms. The incidence of dissecting aneurysm in C57 mice was higher than that of Sprague Dawley (SD) rats. Conclusions BAPN at a concentration of 0.4% was feasible to produce an animal model of dissecting aneurysm. In SD rats, the rate of pathological changes and other complications, such as intestinal rupture and scoliosis, was higher than the rates of dissecting aneurysm.
Collapse
Affiliation(s)
- Tongyun Chen
- Department of Cardiac Surgery, Tianjin Chest Hospital, Tianjin, China
| | - Nan Jiang
- Department of Cardiac Surgery, Tianjin Chest Hospital, Tianjin, China
| | - Shaopeng Zhang
- Department of Cardiac Surgery, Tianjin Chest Hospital, Tianjin, China
| | - Qingliang Chen
- Department of Cardiac Surgery, Tianjin Chest Hospital, Tianjin, China
| | - Zhigang Guo
- Department of Cardiac Surgery, Tianjin Chest Hospital, Tianjin, China
| |
Collapse
|
7
|
Dong G, Lin LR, Xu LY, Li EM. Reaction mechanism of lysyl oxidase-like 2 (LOXL2) studied by computational methods. J Inorg Biochem 2020; 211:111204. [PMID: 32801097 DOI: 10.1016/j.jinorgbio.2020.111204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 02/05/2023]
Abstract
Lysyl oxidase-like 2 (LOXL2) is a copper-dependent amine oxidase that catalyzes the oxidative deamination of the ε-amino group of lysines/hydroxylysines on substrate proteins (collagen and elastin) to form aldehyde groups. The generated aldehyde groups are of significance in crosslinking with the adjacent aldehyde or ε-amino group on proteins in extracellular matrix. In this paper, we have studied the reaction mechanism of LOXL2 by means of quantum mechanics (QM) and combined QM and molecular mechanics (QM/MM) methods. This study is divided into two parts, i.e. the biosynthesis of lysine tyrosylquinone (LTQ) cofactor and oxidative deamination of ε-amino group of lysine by LTQ. For the former part, the reaction is driven by a large exothermicity of about 284 kJ/mol. Dopaquinone radical (DPQr) is suggested to be an intermediate state in this reaction. In addition, His652 residue is predicted to serve as proton acceptor. The rate-determining step for the biosynthesis of LTQ is found to be hydrogen-atom abstraction from the benzene ring on substrate by Cu2+-hydroxide, which is a proton-coupled electron transfer (PCET) process with an energy barrier of 84 kJ/mol. For the latter part, the reaction is exothermic by about 145 kJ/mol, and the copper ion is proposed to play a role of redox catalyst in the last step to generate the product of aldehyde. However, the copper ion might not be indispensable for the latter part, which is consistent with the previous study.
Collapse
Affiliation(s)
- Geng Dong
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, PR China; Medical Informatics Research Center, Shantou University Medical College, Shantou 515041, PR China.
| | - Li-Rui Lin
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, PR China; Medical Informatics Research Center, Shantou University Medical College, Shantou 515041, PR China
| | - Li-Yan Xu
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou 515041, PR China; Cancer Research Center, Shantou University Medical College, Shantou 515041, PR China
| | - En-Min Li
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, PR China; Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou 515041, PR China.
| |
Collapse
|
8
|
Zou H, Wen B, Li RL, Zhan XH, Jiao JW, Liao LD, Wu BL, Xie WM, Xu LY, Li EM. Lysyl oxidase-like 2 promotes esophageal squamous cell carcinoma cell migration independent of catalytic activity. Int J Biochem Cell Biol 2020; 125:105795. [PMID: 32580015 DOI: 10.1016/j.biocel.2020.105795] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 02/05/2023]
Abstract
Lysyl oxidase-like 2 (LOXL2) is a member of the lysyl oxidase (LOX) family that contributes to tumor cell metastasis. Our previous data identified two splice variants of LOXL2 (i.e., LOXL2 Δ72 and Δ13) in esophageal squamous cell carcinoma (ESCC) cells that increased cell invasiveness and migration but had lower LOX activities than wild-type LOXL2 (LOXL2 WT). We generated a series of LOXL2 deletion mutants with different deleted biochemical domains and examined the relationship between the cell migration abilities and catalytic activities, as well as subcellular locations, of these deletion mutants compared with LOXL2 WT in ESCC cells to explore the mechanism of LOXL2-driven ESCC cell migration. Our results indicated that the deletion mutants of LOXL2 had impaired deamination enzymatic activity; LOXL2 ΔSRCR4, which lacks the fourth scavenger receptor cysteine-rich (SRCR) domain, had lower enzymatic activity; and LOXL2 Y689F had no catalytic activity compared with LOXL2 WT. However these two mutants stimulated greater cellular migration than LOXL2 WT. Furthermore, the degree of cell migration promoted by LOXL2 ΔLO (in which the LOX-like domain was deleted) was higher than that of LOXL2 WT, and LOXL2 ΔSRCR3, which does not have the third SRCR domain, had lower LOX activity and cellular migration ability than LOXL2 WT. These results suggested that LOXL2 promotes ESCC cell migration independent of catalytic activity.
Collapse
Affiliation(s)
- Haiying Zou
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, No. 22 Xinling Road, Shantou, 515041, China; The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Bing Wen
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, No. 22 Xinling Road, Shantou, 515041, China; The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Run-Liu Li
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, No. 22 Xinling Road, Shantou, 515041, China; The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Xiu-Hui Zhan
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, No. 22 Xinling Road, Shantou, 515041, China; The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Ji-Wei Jiao
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, No. 22 Xinling Road, Shantou, 515041, China; The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Lian-Di Liao
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, Guangdong, China; Institute of Oncologic Pathology, Shantou University Medical College, No. 22 Xinling Road, Shantou, 515041, Guangdong, China
| | - Bing-Li Wu
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, No. 22 Xinling Road, Shantou, 515041, China; The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Wen-Ming Xie
- Medical Bioinformatics Center, Shantou University Medical College, No. 22 Xinling Road, Shantou, 515041, Guangdong, China
| | - Li-Yan Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, Guangdong, China; Institute of Oncologic Pathology, Shantou University Medical College, No. 22 Xinling Road, Shantou, 515041, Guangdong, China.
| | - En-Min Li
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, No. 22 Xinling Road, Shantou, 515041, China; The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, Guangdong, China.
| |
Collapse
|
9
|
Maddock RMA, Pollard GJ, Moreau NG, Perry JJ, Race PR. Enzyme-catalysed polymer cross-linking: Biocatalytic tools for chemical biology, materials science and beyond. Biopolymers 2020; 111:e23390. [PMID: 32640085 DOI: 10.1002/bip.23390] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/13/2020] [Accepted: 06/15/2020] [Indexed: 12/11/2022]
Abstract
Intermolecular cross-linking is one of the most important techniques that can be used to fundamentally alter the material properties of a polymer. The introduction of covalent bonds between individual polymer chains creates 3D macromolecular assemblies with enhanced mechanical properties and greater chemical or thermal tolerances. In contrast to many chemical cross-linking reactions, which are the basis of thermoset plastics, enzyme catalysed processes offer a complimentary paradigm for the assembly of cross-linked polymer networks through their predictability and high levels of control. Additionally, enzyme catalysed reactions offer an inherently 'greener' and more biocompatible approach to covalent bond formation, which could include the use of aqueous solvents, ambient temperatures, and heavy metal-free reagents. Here, we review recent progress in the development of biocatalytic methods for polymer cross-linking, with a specific focus on the most promising candidate enzyme classes and their underlying catalytic mechanisms. We also provide exemplars of the use of enzyme catalysed cross-linking reactions in industrially relevant applications, noting the limitations of these approaches and outlining strategies to mitigate reported deficiencies.
Collapse
Affiliation(s)
- Rosie M A Maddock
- School of Biochemistry, University of Bristol, University Walk, Bristol, UK.,BrisSynBio Synthetic Biology Research Centre, Life Sciences Building, Tyndall Avenue University of Bristol, Bristol, UK
| | - Gregory J Pollard
- School of Biochemistry, University of Bristol, University Walk, Bristol, UK
| | - Nicolette G Moreau
- School of Biochemistry, University of Bristol, University Walk, Bristol, UK
| | - Justin J Perry
- Department of Applied Sciences, Northumbria University, Ellison Building, Newcastle upon Tyne, UK
| | - Paul R Race
- School of Biochemistry, University of Bristol, University Walk, Bristol, UK.,BrisSynBio Synthetic Biology Research Centre, Life Sciences Building, Tyndall Avenue University of Bristol, Bristol, UK
| |
Collapse
|
10
|
Targeting the lysyl oxidases in tumour desmoplasia. Biochem Soc Trans 2019; 47:1661-1678. [DOI: 10.1042/bst20190098] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 02/08/2023]
Abstract
The extracellular matrix (ECM) is a fundamental component of tissue microenvironments and its dysregulation has been implicated in a number of diseases, in particular cancer. Tumour desmoplasia (fibrosis) accompanies the progression of many solid cancers, and is also often induced as a result of many frontline chemotherapies. This has recently led to an increased interest in targeting the underlying processes. The major structural components of the ECM contributing to desmoplasia are the fibrillar collagens, whose key assembly mechanism is the enzymatic stabilisation of procollagen monomers by the lysyl oxidases. The lysyl oxidase family of copper-dependent amine oxidase enzymes are required for covalent cross-linking of collagen (as well as elastin) molecules into the mature ECM. This key step in the assembly of collagens is of particular interest in the cancer field since it is essential to the tumour desmoplastic response. LOX family members are dysregulated in many cancers and consequently the development of small molecule inhibitors targeting their enzymatic activity has been initiated by many groups. Development of specific small molecule inhibitors however has been hindered by the lack of crystal structures of the active sites, and therefore alternate indirect approaches to target LOX have also been explored. In this review, we introduce the importance of, and assembly steps of the ECM in the tumour desmoplastic response focussing on the role of the lysyl oxidases. We also discuss recent progress in targeting this family of enzymes as a potential therapeutic approach.
Collapse
|
11
|
Lysyl oxidases: from enzyme activity to extracellular matrix cross-links. Essays Biochem 2019; 63:349-364. [DOI: 10.1042/ebc20180050] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/23/2019] [Accepted: 08/27/2019] [Indexed: 12/13/2022]
Abstract
AbstractThe lysyl oxidase family comprises five members in mammals, lysyl oxidase (LOX) and four lysyl oxidase like proteins (LOXL1-4). They are copper amine oxidases with a highly conserved catalytic domain, a lysine tyrosylquinone cofactor, and a conserved copper-binding site. They catalyze the first step of the covalent cross-linking of the extracellular matrix (ECM) proteins collagens and elastin, which contribute to ECM stiffness and mechanical properties. The role of LOX and LOXL2 in fibrosis, tumorigenesis, and metastasis, including changes in their expression level and their regulation of cell signaling pathways, have been extensively reviewed, and both enzymes have been identified as therapeutic targets. We review here the molecular features and three-dimensional structure/models of LOX and LOXLs, their role in ECM cross-linking, and the regulation of their cross-linking activity by ECM proteins, proteoglycans, and by inhibitors. We also make an overview of the major ECM cross-links, because they are the ultimate molecular readouts of LOX/LOXL activity in tissues. The recent 3D model of LOX, which recapitulates its known structural and biochemical features, will be useful to decipher the molecular mechanisms of LOX interaction with its various substrates, and to design substrate-specific inhibitors, which are potential antifibrotic and antitumor drugs.
Collapse
|
12
|
Vallet S, Guéroult M, Belloy N, Dauchez M, Ricard-Blum S. A Three-Dimensional Model of Human Lysyl Oxidase, a Cross-Linking Enzyme. ACS OMEGA 2019; 4:8495-8505. [PMID: 31459939 PMCID: PMC6647939 DOI: 10.1021/acsomega.9b00317] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 05/03/2019] [Indexed: 06/10/2023]
Abstract
Lysyl oxidase (LOX) is a cross-linking enzyme identified 50 years ago, but its 3D structure is still unknown. We have thus built a 3D model of human LOX by homology modeling using the X-ray structure of human lysyl oxidase-like 2 as a template. This model is the first one to recapitulate all known biochemical features of LOX, namely, the coordination of the copper ion and the formation of the lysine tyrosylquinone cofactor and the disulfide bridges. Furthermore, this model is stable during a 1 μs molecular dynamics simulation. The catalytic site is located in a groove surrounded by two loops. The distance between these loops fluctuated during the simulations, which suggests that the groove forms a hinge with a variable opening, which is able to accommodate the various sizes of LOX substrates. This 3D model is a pre-requisite to perform docking experiments with LOX substrates and other partners to identify binding sites and to design new LOX inhibitors specific for therapeutic purpose.
Collapse
Affiliation(s)
- Sylvain
D. Vallet
- Univ
Lyon, University Claude Bernard Lyon 1, CNRS, INSA Lyon, CPE, Institute
of Molecular and Supramolecular Chemistry and Biochemistry, UMR 5246, F-69622 Villeurbanne
Cedex, France
| | - Marc Guéroult
- UMR 7369 URCA/CNRS
Matrice Extracellulaire et Dynamique Cellulaire
(MEDyC) and Plateau de Modélisation Moléculaire Multi-échelle, Université de Reims Champagne-Ardenne, 51687 Reims Cedex
2, France
| | - Nicolas Belloy
- UMR 7369 URCA/CNRS
Matrice Extracellulaire et Dynamique Cellulaire
(MEDyC) and Plateau de Modélisation Moléculaire Multi-échelle, Université de Reims Champagne-Ardenne, 51687 Reims Cedex
2, France
| | - Manuel Dauchez
- UMR 7369 URCA/CNRS
Matrice Extracellulaire et Dynamique Cellulaire
(MEDyC) and Plateau de Modélisation Moléculaire Multi-échelle, Université de Reims Champagne-Ardenne, 51687 Reims Cedex
2, France
| | - Sylvie Ricard-Blum
- Univ
Lyon, University Claude Bernard Lyon 1, CNRS, INSA Lyon, CPE, Institute
of Molecular and Supramolecular Chemistry and Biochemistry, UMR 5246, F-69622 Villeurbanne
Cedex, France
| |
Collapse
|
13
|
Du XG, Zhu MJ. Clinical relevance of lysyl oxidase-like 2 and functional mechanisms in glioma. Onco Targets Ther 2018; 11:2699-2708. [PMID: 29785119 PMCID: PMC5953268 DOI: 10.2147/ott.s164056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Introduction Glioma is the most frequent malignancy of the adult central nervous system with high recurrence risk and poor prognosis. Understanding the biological molecular mechanisms involved in glioma progression is critical for studying oncogenic mechanisms and improving prognosis. Lysyl oxidase-like 2 (LOXL2) is a kind of lysyl oxidase catalyzing the formation of peptidyl-lysine residues and promoting intramolecular cross-linking, especially for proteins in extracellular matrix. Our study explored the expression pattern of LOXL2 in glioma for the first time and found that its high expression was associated with larger tumor size and advanced tumor grade (P<0.05). Moreover, univariate and multivariate analyses revealed LOXL2 as a novel independent prognostic factor for the overall survival of glioma patients. Methods To evaluate the detailed functional roles of LOXL2, we tested its oncobiology characteristics in U87-MG cells with overexpression and knockdown experiments. Results Cellular results demonstrated that LOXL2 overexpression enhanced cell proliferation and invasion, while LOXL2-siRNA attenuated cell viability. Furthermore, our data identified the participation of E-cadherin, Snail1, Src, and FAK proteins downstream of LOXL2. Notably, by using immunoprecipitation and mass spectrometry strategies, we initially verified the interaction between LOXL2 and HDAC2, indicating the existence of a protein complex containing LOXL2/Snail1/HDAC2. Additionally, the expression of HDAC2 protein was highly correlated with that of LOXL2 in clinical glioma tissues (P=0.02), further implying the synergic oncogenic roles of these 2 proteins. Conclusion LOXL2 is a promising prognostic biomarker and may be further evaluated as a potential drug target for patients with glioma.
Collapse
Affiliation(s)
- Xiao-Guang Du
- Department of Neurology, Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong, People's Republic of China.,Department of Neurology, Weifang People's Hospital, Weifang, Shandong, People's Republic of China
| | - Mei-Jia Zhu
- Department of Neurology, Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong, People's Republic of China
| |
Collapse
|
14
|
Johnston KA, Lopez KM. Lysyl oxidase in cancer inhibition and metastasis. Cancer Lett 2018; 417:174-181. [DOI: 10.1016/j.canlet.2018.01.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/20/2017] [Accepted: 01/02/2018] [Indexed: 11/16/2022]
|
15
|
Increased serum lysyl oxidase-like 2 levels correlate with the degree of left atrial fibrosis in patients with atrial fibrillation. Biosci Rep 2017; 37:BSR20171332. [PMID: 29089463 PMCID: PMC5696452 DOI: 10.1042/bsr20171332] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 10/22/2017] [Accepted: 10/26/2017] [Indexed: 01/09/2023] Open
Abstract
Atrial fibrillation (AF) progression is generally accompanied by increased atrial fibrosis and atrial structural remodeling. Lysyl oxidase-like 2 (LOXL2) is known to play an important role in many fibrotic conditions, including cardiac fibrosis. The present study aimed to explore the relationship between serum LOXL2 levels and AF. Fifty-four AF patients and 32 control subjects were enrolled in the study. High-density three-dimensional electroanatomic mapping was performed, and mean bipolar voltage was assessed in AF patients. LOXL2 levels were measured by enzyme-linked immunosorbent assay. All patients underwent echocardiography to assess left atrium size and left ventricle function. Serum LOXL2 levels were significantly elevated in AF patients compared with the control group (526.81 ± 316.82 vs 240.94 ± 92.51 pg/ml, P<0.01). In addition, serum LOXL2 level was significantly correlated with the size of the left atrium (LAD) (r2 = 0.38, P<0.01). Furthermore, the serum LOXL2 levels were significantly higher in AF patients with LAD ≥ 40 mm compared with those with LAD < 40 mm (664.34 ± 346.50 vs 354.90 ± 156.23 pg/ml, P<0.01). And the Spearman's correlation analysis further revealed that the mean bipolar left atrial voltage was inversely correlated with the LOXL2 (r2 = -0.49, P<0.01) in AF patients. Multivariate regression analysis further demonstrated that serum LOXL2 [odds ratio (OR) 1.013, 95% confidence interval (CI) 1.002-1.024, P<0.05] and LAD (OR 1.704, 95% CI 1.131-2.568, P<0.01) were independent predictors of AF. In conclusion, serum LOXL2 levels were significantly elevated and were correlated with the degree of left atrial fibrosis in AF patients.
Collapse
|
16
|
Identification of Histidine 303 as the Catalytic Base of Lysyl Oxidase via Site-Directed Mutagenesis. Protein J 2017; 37:47-57. [DOI: 10.1007/s10930-017-9749-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Rao G, Bansal S, Law WX, O’Dowd B, Dikanov SA, Oldfield E. Pulsed Electron Paramagnetic Resonance Insights into the Ligand Environment of Copper in Drosophila Lysyl Oxidase. Biochemistry 2017; 56:3770-3779. [DOI: 10.1021/acs.biochem.7b00308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Guodong Rao
- Department of Chemistry and ‡Department of Veterinary Clinical Medicine, University of Illinois, Urbana, Illinois 61801, United States
| | - Sandhya Bansal
- Department of Chemistry and ‡Department of Veterinary Clinical Medicine, University of Illinois, Urbana, Illinois 61801, United States
| | - Wen Xuan Law
- Department of Chemistry and ‡Department of Veterinary Clinical Medicine, University of Illinois, Urbana, Illinois 61801, United States
| | - Bing O’Dowd
- Department of Chemistry and ‡Department of Veterinary Clinical Medicine, University of Illinois, Urbana, Illinois 61801, United States
| | - Sergei A. Dikanov
- Department of Chemistry and ‡Department of Veterinary Clinical Medicine, University of Illinois, Urbana, Illinois 61801, United States
| | - Eric Oldfield
- Department of Chemistry and ‡Department of Veterinary Clinical Medicine, University of Illinois, Urbana, Illinois 61801, United States
| |
Collapse
|
18
|
Burke AA, Severson ES, Mool S, Solares Bucaro MJ, Greenaway FT, Jakobsche CE. Comparing hydrazine-derived reactive groups as inhibitors of quinone-dependent amine oxidases. J Enzyme Inhib Med Chem 2017; 32:496-503. [PMID: 28110559 PMCID: PMC6009937 DOI: 10.1080/14756366.2016.1265518] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Lysyl oxidase has emerged as an important enzyme in cancer metastasis. Its activity has been reported to become upregulated in several types of cancer, and blocking its activity has been shown to limit the metastatic potential of various cancers. The small-molecules phenylhydrazine and β-aminopropionitrile are known to inhibit lysyl oxidase; however, issues of stability, toxicity, and poorly defined mechanisms limit their potential use in medical applications. The experiments presented herein evaluate three other families of hydrazine-derived compounds – hydrazides, alkyl hydrazines, and semicarbazides – as irreversible inhibitors of lysyl oxidase including determining the kinetic parameters and comparing the inhibition selectivities for lysyl oxidase against the topaquinone-containing diamine oxidase from lentil seedlings. The results suggest that the hydrazide group may be a useful core functionality that can be developed into potent and selective inhibitors of lysyl oxidase and eventually find application in cancer metastasis research.
Collapse
Affiliation(s)
- Ashley A Burke
- a Carlson School of Chemistry and Biochemistry, Clark University , Worcester , MA , USA
| | - Elizabeth S Severson
- a Carlson School of Chemistry and Biochemistry, Clark University , Worcester , MA , USA
| | - Shreya Mool
- a Carlson School of Chemistry and Biochemistry, Clark University , Worcester , MA , USA
| | | | - Frederick T Greenaway
- a Carlson School of Chemistry and Biochemistry, Clark University , Worcester , MA , USA
| | - Charles E Jakobsche
- a Carlson School of Chemistry and Biochemistry, Clark University , Worcester , MA , USA
| |
Collapse
|
19
|
Lysyl Oxidase 3 Is a Dual-Specificity Enzyme Involved in STAT3 Deacetylation and Deacetylimination Modulation. Mol Cell 2017; 65:296-309. [DOI: 10.1016/j.molcel.2016.12.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 09/26/2016] [Accepted: 12/01/2016] [Indexed: 01/05/2023]
|
20
|
Loss of function mutation in LOX causes thoracic aortic aneurysm and dissection in humans. Proc Natl Acad Sci U S A 2016; 113:8759-64. [PMID: 27432961 DOI: 10.1073/pnas.1601442113] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Thoracic aortic aneurysms and dissections (TAAD) represent a substantial cause of morbidity and mortality worldwide. Many individuals presenting with an inherited form of TAAD do not have causal mutations in the set of genes known to underlie disease. Using whole-genome sequencing in two first cousins with TAAD, we identified a missense mutation in the lysyl oxidase (LOX) gene (c.893T > G encoding p.Met298Arg) that cosegregated with disease in the family. Using clustered regularly interspaced short palindromic repeats (CRISPR)/clustered regularly interspaced short palindromic repeats-associated protein-9 nuclease (Cas9) genome engineering tools, we introduced the human mutation into the homologous position in the mouse genome, creating mice that were heterozygous and homozygous for the human allele. Mutant mice that were heterozygous for the human allele displayed disorganized ultrastructural properties of the aortic wall characterized by fragmented elastic lamellae, whereas mice homozygous for the human allele died shortly after parturition from ascending aortic aneurysm and spontaneous hemorrhage. These data suggest that a missense mutation in LOX is associated with aortic disease in humans, likely through insufficient cross-linking of elastin and collagen in the aortic wall. Mutation carriers may be predisposed to vascular diseases because of weakened vessel walls under stress conditions. LOX sequencing for clinical TAAD may identify additional mutation carriers in the future. Additional studies using our mouse model of LOX-associated TAAD have the potential to clarify the mechanism of disease and identify novel therapeutics specific to this genetic cause.
Collapse
|
21
|
Trackman PC. Lysyl Oxidase Isoforms and Potential Therapeutic Opportunities for Fibrosis and Cancer. Expert Opin Ther Targets 2016; 20:935-45. [PMID: 26848785 DOI: 10.1517/14728222.2016.1151003] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION The lysyl oxidase family of enzymes is classically known as being required for connective tissue maturation by oxidizing lysine residues in elastin and lysine and hydroxylysine residues in collagen precursors. The resulting aldehydes then participate in cross-link formation, which is required for normal connective tissue integrity. These enzymes have biological functions that extend beyond this fundamental biosynthetic role, with contributions to angiogenesis, cell proliferation, and cell differentiation. Dysregulation of lysyl oxidases occurs in multiple pathologies including fibrosis, primary and metastatic cancers, and complications of diabetes in a variety of tissues. AREAS COVERED This review summarizes the major findings of novel roles for lysyl oxidases in pathologies, and highlights some of the potential therapeutic approaches that are in development and which stem from these new findings. EXPERT OPINION Fundamental questions remain regarding the mechanisms of novel biological functions of this family of proteins, and regarding functions that are independent of their catalytic enzyme activity. However, progress is underway in the development of isoform-specific pharmacologic inhibitors, potential therapeutic antibodies and gaining an increased understanding of both tumor suppressor and metastasis promotion activities. Ultimately, this is likely to lead to novel therapeutic agents.
Collapse
Affiliation(s)
- Philip C Trackman
- a Department of Molecular and Cell Biology , Boston University, Henry M. Goldman School of Dental Medicine , Boston , MA , USA
| |
Collapse
|
22
|
Overexpression of Soluble Recombinant Human Lysyl Oxidase by Using Solubility Tags: Effects on Activity and Solubility. Enzyme Res 2016; 2016:5098985. [PMID: 26942005 PMCID: PMC4753049 DOI: 10.1155/2016/5098985] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/30/2015] [Accepted: 01/03/2016] [Indexed: 11/30/2022] Open
Abstract
Lysyl oxidase is an important extracellular matrix enzyme that has not been fully characterized due to its low solubility. In order to circumvent the low solubility of this enzyme, three solubility tags (Nus-A, Thioredoxin (Trx), and Glutathione-S-Transferase (GST)) were engineered on the N-terminus of mature lysyl oxidase. Total enzyme yields were determined to be 1.5 mg for the Nus-A tagged enzyme (0.75 mg/L of media), 7.84 mg for the Trx tagged enzyme (3.92 mg/L of media), and 9.33 mg for the GST tagged enzyme (4.67 mg/L of media). Enzymatic activity was calculated to be 0.11 U/mg for the Nus-A tagged enzyme and 0.032 U/mg for the Trx tagged enzyme, and no enzymatic activity was detected for the GST tagged enzyme. All three solubility-tagged forms of the enzyme incorporated copper; however, the GST tagged enzyme appears to bind adventitious copper with greater affinity than the other two forms. The catalytic cofactor, lysyl tyrosyl quinone (LTQ), was determined to be 92% for the Nus-A and Trx tagged lysyl oxidase using the previously reported extinction coefficient of 15.4 mM−1 cm−1. No LTQ was detected for the GST tagged lysyl oxidase. Given these data, it appears that Nus-A is the most suitable tag for obtaining soluble and active recombinant lysyl oxidase from E. coli culture.
Collapse
|
23
|
Wu L, Zhu Y. The function and mechanisms of action of LOXL2 in cancer (Review). Int J Mol Med 2015; 36:1200-4. [PMID: 26329904 DOI: 10.3892/ijmm.2015.2337] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 08/26/2015] [Indexed: 11/06/2022] Open
Abstract
The lysyl oxidase (LOX) family is comprised of five members, and some members have recently emerged as important regulators of tumor progression. Among these, at present, LOX‑like (LOXL)2 is the prototypical LOX and the most comprehensively studied member. A growing body of evidence has implicated LOXL2 in the promotion of cancer cell invasion, metastasis and angiogenesis, as well as in the malignant transformation of solid tumors. Moreover, a high expression of LOXL2 is associated with a poor prognosis. These data have piqued the interest of a number of researchers and research groups, who have identified LOXL2 as a strong target candidate in the development of inhibitors for use as functional and efficacious tumor therapeutics. In the present study, we summarize the recent progress made regarding LOXL2, mainly focusing on its function and mechanisms of action in tumor progression and metastasis. In this review, we note that LOXL2 promotes tumor progression possibly by activating multiple signal pathways through a variety of mechanisms, both biochemical and biomechanical. The data presented herein may open new avenues for the therapeutic utility of LOXL2.
Collapse
Affiliation(s)
- Linghong Wu
- Department of Infectious Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Ying Zhu
- Department of Infectious Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| |
Collapse
|
24
|
Grau-Bové X, Ruiz-Trillo I, Rodriguez-Pascual F. Origin and evolution of lysyl oxidases. Sci Rep 2015; 5:10568. [PMID: 26024311 PMCID: PMC4448552 DOI: 10.1038/srep10568] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 04/15/2015] [Indexed: 12/31/2022] Open
Abstract
Lysyl oxidases (LOX) are copper-dependent enzymes that oxidize primary amine substrates to reactive aldehydes. The best-studied role of LOX enzymes is the remodeling of the extracellular matrix (ECM) in animals by cross-linking collagens and elastin, although intracellular functions have been reported as well. Five different LOX enzymes have been identified in mammals, LOX and LOX-like (LOXL) 1 to 4, showing a highly conserved catalytic carboxy terminal domain and more divergence in the rest of the sequence. Here we have surveyed a wide selection of genomes in order to infer the evolutionary history of LOX. We identified LOX proteins not only in animals, but also in many other eukaryotes, as well as in bacteria and archaea - which reveals a pre-metazoan origin for this gene family. LOX genes expanded during metazoan evolution resulting in two superfamilies, LOXL2/L3/L4 and LOX/L1/L5. Considering the current knowledge on the function of mammalian LOX isoforms in ECM remodeling, we propose that LOXL2/L3/L4 members might have preferentially been involved in making cross-linked collagen IV-based basement membrane, whereas the diversification of LOX/L1/L5 forms contributed to chordate/vertebrate-specific ECM innovations, such as elastin and fibronectin. Our work provides a novel view on the evolution of this family of enzymes.
Collapse
Affiliation(s)
- Xavier Grau-Bové
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
- Departament de Genètica, Universitat de Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Fernando Rodriguez-Pascual
- Centro de Biología Molecular “Severo Ochoa” Consejo Superior de Investigaciones Científicas (C.S.I.C.) / Universidad Autónoma de Madrid (Madrid), Madrid, Spain
| |
Collapse
|
25
|
Kim BR, Dong SM, Seo SH, Lee JH, Lee JM, Lee SH, Rho SB. Lysyl oxidase-like 2 (LOXL2) controls tumor-associated cell proliferation through the interaction with MARCKSL1. Cell Signal 2014; 26:1765-73. [DOI: 10.1016/j.cellsig.2014.05.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 05/15/2014] [Indexed: 01/25/2023]
|
26
|
Moon HJ, Finney J, Ronnebaum T, Mure M. Human lysyl oxidase-like 2. Bioorg Chem 2014; 57:231-241. [PMID: 25146937 DOI: 10.1016/j.bioorg.2014.07.003] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 07/10/2014] [Accepted: 07/14/2014] [Indexed: 12/31/2022]
Abstract
Lysyl oxidase like-2 (LOXL2) belongs to the lysyl oxidase (LOX) family, which comprises Cu(2+)- and lysine tyrosylquinone (LTQ)-dependent amine oxidases. LOXL2 is proposed to function similarly to LOX in the extracellular matrix (ECM) by promoting crosslinking of collagen and elastin. LOXL2 has also been proposed to regulate extracellular and intracellular cell signaling pathways. Dysregulation of LOXL2 has been linked to many diseases, including cancer, pro-oncogenic angiogenesis, fibrosis and heart diseases. In this review, we will give an overview of the current understandings and hypotheses regarding the molecular functions of LOXL2.
Collapse
Affiliation(s)
- Hee-Jung Moon
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA
| | - Joel Finney
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA
| | - Trey Ronnebaum
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA
| | - Minae Mure
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA.
| |
Collapse
|
27
|
Bhuvanasundar R, John A, Sulochana KN, Coral K, Deepa PR, Umashankar V. A molecular model of human Lysyl Oxidase (LOX) with optimal copper orientation in the catalytic cavity for induced fit docking studies with potential modulators. Bioinformation 2014; 10:406-12. [PMID: 25187679 PMCID: PMC4135287 DOI: 10.6026/97320630010406] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 06/27/2014] [Accepted: 06/27/2014] [Indexed: 11/23/2022] Open
Abstract
Lysyl oxidase (LOX) is a copper dependent amine oxidase which catalyses the cross linking of collagen and elastin towards the maturation of extracellular matrix. The expression and activity of LOX is known to vary under pathological conditions such as tumorigenesis, hyperhomocysteinemia, copper deficiency diseases, pseudoexfoliation syndrome and proliferative diabetic retinopathy. Despite the implication of LOX in many diseases, there is inadequate information about its structure. Therefore, we describe a molecular model of Human Lysyl Oxidase (LOX) with optimal copper orientation in the catalytic cavity for induced fit docking studies with potential modulators. The predicted model was found to be highly plausible as per the stereochemistry checks. Further, Molecular Dynamics (MD) studies also inferred the stability of the predicted structure. We performed Induced Fit Docking (IFD) of LOX modulators to the predicted structure and also validated the molecular interactions in implicit solvent model by calculating Molecular Mechanics Generalized Born Surface Area (MMGBSA). The IFD results strongly reveal that aspartic acid residues in the catalytic cavity as the key players in establishing interactions with small molecules. The insights from this study will aid in better exploration of the structure-function relationship of LOX.
Collapse
Affiliation(s)
- Renganathan Bhuvanasundar
- R.S. Mehta Jain Department of Biochemistry and Cell Biology, Vision Research Foundation, Sankara Nethralaya, Chennai, India
- Dept. of Biological Sciences, Birla Institute of Technology and Science, Pilani (Rajasthan), India
| | - Arun John
- Centre for Bioinformatics, Vision Research Foundation, Sankara Nethralaya Chennai, India
- Dept. of Biological Sciences, Birla Institute of Technology and Science, Pilani (Rajasthan), India
| | | | - Karunakaran Coral
- R.S. Mehta Jain Department of Biochemistry and Cell Biology, Vision Research Foundation, Sankara Nethralaya, Chennai, India
| | - Perinkulam Ravi Deepa
- Dept. of Biological Sciences, Birla Institute of Technology and Science, Pilani (Rajasthan), India
| | - Vetrivel Umashankar
- Centre for Bioinformatics, Vision Research Foundation, Sankara Nethralaya Chennai, India
| |
Collapse
|
28
|
Mohankumar A, Renganathan B, Karunakaran C, Chidambaram S, Konerirajapuram Natarajan S. Peptides derived from the copper-binding region of lysyl oxidase exhibit antiangiogeneic properties by inhibiting enzyme activity: an in vitro study. J Pept Sci 2014; 20:837-49. [PMID: 25044713 DOI: 10.1002/psc.2675] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 06/08/2014] [Accepted: 06/14/2014] [Indexed: 12/23/2022]
Abstract
Despite the rigorous research on abnormal angiogenesis, there is a persistent need for the development of new and efficient therapies against angiogenesis-related diseases. The role of Lysyl oxidase (LOX) in angiogenesis and cancer has been established in prior studies. Copper is known to induce the synthesis of LOX, and hence regulates its activity. Hypoxia-induced metastasis is dependent on LOX expression and activity. It has been believed that the inhibition of LOX would be a therapeutic strategy to inhibit angiogenesis. To explore this, we designed peptides (M peptides) from the copper-binding region of LOX and hypothesized them to modulate LOX. The peptides were characterized, and their copper-binding ability was confirmed by mass spectrometry. The M peptides were found to reduce the levels of intracellular copper when the cells were co-treated with copper. The peptides showed promising effect on aortic LOX, recombinant human LOX and LOX produced by human umbilical vein endothelial cells (HUVECs). The study also explores the effect of these peptides on copper and hypoxia-stimulated angiogenic response in HUVECs. It was found that the M peptides inhibited copper/hypoxia-induced LOX activity and inhibited stimulated HUVEC tube formation and migration. This clearly indicated the potential of M peptides in inhibiting angiogenesis, highlighting their role in the formulation of drugs for the same.
Collapse
Affiliation(s)
- Arun Mohankumar
- R.S. Mehta Jain Department of Biochemistry and Cell Biology, Vision Research Foundation, Medical Research Foundation, Chennai, Tamil Nadu, India
| | | | | | | | | |
Collapse
|
29
|
Cuevas EP, Moreno-Bueno G, Canesin G, Santos V, Portillo F, Cano A. LOXL2 catalytically inactive mutants mediate epithelial-to-mesenchymal transition. Biol Open 2014; 3:129-37. [PMID: 24414204 PMCID: PMC3925316 DOI: 10.1242/bio.20146841] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Lysyl-oxidase-like 2 (LOXL2) is a member of the lysyl oxidase family that catalyzes the cross-linking of collagens or elastins in the extracellular matrix, thus regulating the tensile strength of tissues. However, many reports have suggested different intracellular roles for LOXL2, including the ability to regulate gene transcription and tumor progression. We previously reported that LOXL2 mediates epithelial-to-mesenchymal transition (EMT) by Snail1-dependent and independent mechanisms, related to E-cadherin silencing and downregulation of epidermal differentiation and cell polarity components, respectively. Whether or not the catalytic activity of LOXL2 is required to induce/sustain EMT is actually unknown. Here we show that LOXL2 catalytic inactive mutants collaborate with Snail1 in E-cadherin gene repression to trigger EMT and, in addition, promote FAK/Src pathway activation to support EMT. These findings reveal a non-conventional role of LOXL2 on regulating epithelial cell plasticity.
Collapse
Affiliation(s)
- Eva P Cuevas
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), IdiPAZ, 28029 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
30
|
Cano A, Santamaría PG, Moreno-Bueno G. LOXL2 in epithelial cell plasticity and tumor progression. Future Oncol 2012; 8:1095-108. [PMID: 23030485 DOI: 10.2217/fon.12.105] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Several members of the lysyl oxidase family have recently emerged as important regulators of tumor progression. Among them, LOXL2 has been shown to be involved in tumor progression and metastasis of several tumor types, including breast carcinomas. Secreted LOXL2 participates in the remodeling of the extracellular matrix of the tumor microenvironment, in a similar fashion to prototypical lysyl oxidase. In addition, new intracellular functions of LOXL2 have been described, such as its involvement in the regulation of the epithelial-to-mesenchymal transition, epithelial cell polarity and differentiation mediated by transcriptional repression mechanisms. Importantly, intracellular (perinuclear) expression of LOXL2 is associated with poor prognosis and distant metastasis of specific tumor types, such as larynx squamous cell carcinoma and basal breast carcinomas. These recent findings open new avenues for the therapeutic utility of LOXL2.
Collapse
Affiliation(s)
- Amparo Cano
- Departamento de Bioquímica, UAM, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, IdiPAZ, Arzobispo Morcillo, 2, 28029 Madrid, Spain.
| | | | | |
Collapse
|
31
|
Identification of the disulfide bonds of lysyl oxidase. J Neural Transm (Vienna) 2010; 118:1111-4. [DOI: 10.1007/s00702-010-0560-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 12/08/2010] [Indexed: 11/26/2022]
|