1
|
Löser R, Kuchar M, Wodtke R, Neuber C, Belter B, Kopka K, Santhanam L, Pietzsch J. Lysyl Oxidases as Targets for Cancer Therapy and Diagnostic Imaging. ChemMedChem 2023; 18:e202300331. [PMID: 37565736 DOI: 10.1002/cmdc.202300331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/12/2023]
Abstract
The understanding of the contribution of the tumour microenvironment to cancer progression and metastasis, in particular the interplay between tumour cells, fibroblasts and the extracellular matrix has grown tremendously over the last years. Lysyl oxidases are increasingly recognised as key players in this context, in addition to their function as drivers of fibrotic diseases. These insights have considerably stimulated drug discovery efforts towards lysyl oxidases as targets over the last decade. This review article summarises the biochemical and structural properties of theses enzymes. Their involvement in tumour progression and metastasis is highlighted from a biochemical point of view, taking into consideration both the extracellular and intracellular action of lysyl oxidases. More recently reported inhibitor compounds are discussed with an emphasis on their discovery, structure-activity relationships and the results of their biological characterisation. Molecular probes developed for imaging of lysyl oxidase activity are reviewed from the perspective of their detection principles, performance and biomedical applications.
Collapse
Affiliation(s)
- Reik Löser
- Institute of Radiopharmaceutical Cancer Research Helmholtz-Zentrum Dresden Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Mommsenstraße 4, 01069, Dresden, Germany
| | - Manuela Kuchar
- Institute of Radiopharmaceutical Cancer Research Helmholtz-Zentrum Dresden Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Robert Wodtke
- Institute of Radiopharmaceutical Cancer Research Helmholtz-Zentrum Dresden Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Christin Neuber
- Institute of Radiopharmaceutical Cancer Research Helmholtz-Zentrum Dresden Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Birgit Belter
- Institute of Radiopharmaceutical Cancer Research Helmholtz-Zentrum Dresden Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Klaus Kopka
- Institute of Radiopharmaceutical Cancer Research Helmholtz-Zentrum Dresden Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Mommsenstraße 4, 01069, Dresden, Germany
| | - Lakshmi Santhanam
- Departments of Anesthesiology and Critical Care Medicine and Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Jens Pietzsch
- Institute of Radiopharmaceutical Cancer Research Helmholtz-Zentrum Dresden Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Mommsenstraße 4, 01069, Dresden, Germany
| |
Collapse
|
2
|
Meier AA, Moon HJ, Sabuncu S, Singh P, Ronnebaum TA, Ou S, Douglas JT, Jackson TA, Moënne-Loccoz P, Mure M. Insight into the Spatial Arrangement of the Lysine Tyrosylquinone and Cu 2+ in the Active Site of Lysyl Oxidase-like 2. Int J Mol Sci 2022; 23:ijms232213966. [PMID: 36430446 PMCID: PMC9694262 DOI: 10.3390/ijms232213966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/31/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Lysyl oxidase-2 (LOXL2) is a Cu2+ and lysine tyrosylquinone (LTQ)-dependent amine oxidase that catalyzes the oxidative deamination of peptidyl lysine and hydroxylysine residues to promote crosslinking of extracellular matrix proteins. LTQ is post-translationally derived from Lys653 and Tyr689, but its biogenesis mechanism remains still elusive. A 2.4 Å Zn2+-bound precursor structure lacking LTQ (PDB:5ZE3) has become available, where Lys653 and Tyr689 are 16.6 Å apart, thus a substantial conformational rearrangement is expected to take place for LTQ biogenesis. However, we have recently shown that the overall structures of the precursor (no LTQ) and the mature (LTQ-containing) LOXL2s are very similar and disulfide bonds are conserved. In this study, we aim to gain insights into the spatial arrangement of LTQ and the active site Cu2+ in the mature LOXL2 using a recombinant LOXL2 that is inhibited by 2-hydrazinopyridine (2HP). Comparative UV-vis and resonance Raman spectroscopic studies of the 2HP-inhibited LOXL2 and the corresponding model compounds and an EPR study of the latter support that 2HP-modified LTQ serves as a tridentate ligand to the active site Cu2. We propose that LTQ resides within 2.9 Å of the active site of Cu2+ in the mature LOXL2, and both LTQ and Cu2+ are solvent-exposed.
Collapse
Affiliation(s)
- Alex A. Meier
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA
| | - Hee-Jung Moon
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA
| | - Sinan Sabuncu
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Priya Singh
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA
| | - Trey A. Ronnebaum
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA
| | - Siyu Ou
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA
| | - Justin T. Douglas
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA
| | - Timothy A. Jackson
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA
| | - Pierre Moënne-Loccoz
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Minae Mure
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA
- Correspondence:
| |
Collapse
|
3
|
Tsang KM, Knutsen RH, Billington CJ, Lindberg E, Steenbock H, Fu YP, Wardlaw-Pickett A, Liu D, Malide D, Yu ZX, Bleck CKE, Brinckmann J, Kozel BA. Copper-Binding Domain Variation in a Novel Murine Lysyl Oxidase Model Produces Structurally Inferior Aortic Elastic Fibers Whose Failure Is Modified by Age, Sex, and Blood Pressure. Int J Mol Sci 2022; 23:6749. [PMID: 35743192 PMCID: PMC9223555 DOI: 10.3390/ijms23126749] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/08/2022] [Accepted: 06/14/2022] [Indexed: 12/23/2022] Open
Abstract
Lysyl oxidase (LOX) is a copper-binding enzyme that cross-links elastin and collagen. The dominant LOX variation contributes to familial thoracic aortic aneurysm. Previously reported murine Lox mutants had a mild phenotype and did not dilate without drug-induced provocation. Here, we present a new, more severe mutant, Loxb2b370.2Clo (c.G854T; p.Cys285Phe), whose mutation falls just N-terminal to the copper-binding domain. Unlike the other mutants, the C285F Lox protein was stably produced/secreted, and male C57Bl/6J Lox+/C285F mice exhibit increased systolic blood pressure (BP; p < 0.05) and reduced caliber aortas (p < 0.01 at 100mmHg) at 3 months that independently dilate by 6 months (p < 0.0001). Multimodal imaging reveals markedly irregular elastic sheets in the mutant (p = 2.8 × 10−8 for breaks by histology) that become increasingly disrupted with age (p < 0.05) and breeding into a high BP background (p = 6.8 × 10−4). Aortic dilation was amplified in males vs. females (p < 0.0001 at 100mmHg) and ameliorated by castration. The transcriptome of young Lox mutants showed alteration in dexamethasone (p = 9.83 × 10−30) and TGFβ-responsive genes (p = 7.42 × 10−29), and aortas from older C57Bl/6J Lox+/C285F mice showed both enhanced susceptibility to elastase (p < 0.01 by ANOVA) and increased deposition of aggrecan (p < 0.05). These findings suggest that the secreted Lox+/C285F mutants produce dysfunctional elastic fibers that show increased susceptibility to proteolytic damage. Over time, the progressive weakening of the connective tissue, modified by sex and blood pressure, leads to worsening aortic disease.
Collapse
Affiliation(s)
- Kit Man Tsang
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.M.T.); (R.H.K.); (C.J.B.J.); (E.L.); (Y.-P.F.); (A.W.-P.); (D.L.); (D.M.); (Z.-X.Y.); (C.K.E.B.)
| | - Russell H. Knutsen
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.M.T.); (R.H.K.); (C.J.B.J.); (E.L.); (Y.-P.F.); (A.W.-P.); (D.L.); (D.M.); (Z.-X.Y.); (C.K.E.B.)
| | - Charles J. Billington
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.M.T.); (R.H.K.); (C.J.B.J.); (E.L.); (Y.-P.F.); (A.W.-P.); (D.L.); (D.M.); (Z.-X.Y.); (C.K.E.B.)
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Eric Lindberg
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.M.T.); (R.H.K.); (C.J.B.J.); (E.L.); (Y.-P.F.); (A.W.-P.); (D.L.); (D.M.); (Z.-X.Y.); (C.K.E.B.)
| | - Heiko Steenbock
- Institute of Virology and Cell Biology, University of Lübeck, 23562 Lübeck, Germany; (H.S.); (J.B.)
| | - Yi-Ping Fu
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.M.T.); (R.H.K.); (C.J.B.J.); (E.L.); (Y.-P.F.); (A.W.-P.); (D.L.); (D.M.); (Z.-X.Y.); (C.K.E.B.)
| | - Amanda Wardlaw-Pickett
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.M.T.); (R.H.K.); (C.J.B.J.); (E.L.); (Y.-P.F.); (A.W.-P.); (D.L.); (D.M.); (Z.-X.Y.); (C.K.E.B.)
- Johns Hopkins University Applied Physics Lab, Laurel, MD 20724, USA
| | - Delong Liu
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.M.T.); (R.H.K.); (C.J.B.J.); (E.L.); (Y.-P.F.); (A.W.-P.); (D.L.); (D.M.); (Z.-X.Y.); (C.K.E.B.)
| | - Daniela Malide
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.M.T.); (R.H.K.); (C.J.B.J.); (E.L.); (Y.-P.F.); (A.W.-P.); (D.L.); (D.M.); (Z.-X.Y.); (C.K.E.B.)
| | - Zu-Xi Yu
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.M.T.); (R.H.K.); (C.J.B.J.); (E.L.); (Y.-P.F.); (A.W.-P.); (D.L.); (D.M.); (Z.-X.Y.); (C.K.E.B.)
| | - Christopher K. E. Bleck
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.M.T.); (R.H.K.); (C.J.B.J.); (E.L.); (Y.-P.F.); (A.W.-P.); (D.L.); (D.M.); (Z.-X.Y.); (C.K.E.B.)
| | - Jürgen Brinckmann
- Institute of Virology and Cell Biology, University of Lübeck, 23562 Lübeck, Germany; (H.S.); (J.B.)
- Department of Dermatology, University of Lübeck, 23562 Lübeck, Germany
| | - Beth A. Kozel
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.M.T.); (R.H.K.); (C.J.B.J.); (E.L.); (Y.-P.F.); (A.W.-P.); (D.L.); (D.M.); (Z.-X.Y.); (C.K.E.B.)
| |
Collapse
|
4
|
Meier AA, Go EP, Moon HJ, Desaire H, Mure M. Mass Spectrometry-Based Disulfide Mapping of Lysyl Oxidase-like 2. Int J Mol Sci 2022; 23:5879. [PMID: 35682561 PMCID: PMC9180022 DOI: 10.3390/ijms23115879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 01/09/2023] Open
Abstract
Lysyl oxidase-like 2 (LOXL2) catalyzes the oxidative deamination of peptidyl lysines and hydroxylysines to promote extracellular matrix remodeling. Aberrant activity of LOXL2 has been associated with organ fibrosis and tumor metastasis. The lysine tyrosylquinone (LTQ) cofactor is derived from Lys653 and Tyr689 in the amine oxidase domain via post-translational modification. Based on the similarity in hydrodynamic radius and radius of gyration, we recently proposed that the overall structures of the mature LOXL2 (containing LTQ) and the precursor LOXL2 (no LTQ) are very similar. In this study, we conducted a mass spectrometry-based disulfide mapping analysis of recombinant LOXL2 in three forms: a full-length LOXL2 (fl-LOXL2) containing a nearly stoichiometric amount of LTQ, Δ1-2SRCR-LOXL2 (SRCR1 and SRCR2 are truncated) in the precursor form, and Δ1-3SRCR-LOXL2 (SRCR1, SRCR2, SRCR3 are truncated) in a mixture of the precursor and the mature forms. We detected a set of five disulfide bonds that is conserved in both the precursor and the mature recombinant LOXL2s. In addition, we detected a set of four alternative disulfide bonds in low abundance that is not associated with the mature LOXL2. These results suggest that the major set of five disulfide bonds is retained post-LTQ formation.
Collapse
Affiliation(s)
| | | | | | - Heather Desaire
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA; (A.A.M.); (E.P.G.); (H.-J.M.)
| | - Minae Mure
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA; (A.A.M.); (E.P.G.); (H.-J.M.)
| |
Collapse
|
5
|
Bozkurt E, Bagcier F. Keratoconus: a potential risk factor for osteoarthritis. Int Ophthalmol 2020; 40:2545-2552. [PMID: 32474713 DOI: 10.1007/s10792-020-01434-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 05/16/2020] [Indexed: 11/30/2022]
Abstract
PURPOSE This study was undertaken to compare the distal femoral cartilage thickness in patients with keratoconus (KC) with that of age- and sex-matched healthy controls, in order to identify a potential risk factor for early osteoarthritis in patients with KC and to allow initiation of early rehabilitation. METHODS Thirty-six KC patients between 18 and 35 years of age and 36 healthy controls were included in this study. Keratometry readings (K1, K2), central corneal thickness (CCT), anterior chamber depth (ACD), iridocorneal angle (ICA), and corneal volumes (CV) were measured using a Sirius imaging system (Costruzioni Strumenti Oftalmici, Italy). Also, the distal femoral cartilage thickness (DFCT) was assessed bilaterally using ultrasound by the same physiatrist. Lateral femoral condyle (LFC), intercondylar area (ICA), medial femoral condyle (MFC), and body mass index (BMI) values were recorded. RESULTS Patient and control groups were comparable in terms of age, gender, and BMI. On the other hand, patients with KC had a significant reduction in right LFC, MFC thickness and left ICA, MFC as compared to controls (p < 0.05). In the corneal topographic evaluation of the groups, it was observed that K1, K2, CCT, and ACD values differed significantly. CONCLUSIONS Detection of thinner DFCT in KC patients suggests that these patients may be future candidates of osteoarthritis.
Collapse
Affiliation(s)
- Erdinç Bozkurt
- Department of Ophthalmology, Medical Faculty, Kafkas University Faculty of Medicine, 36100, Kars, Turkey.
| | - Fatih Bagcier
- Department of Physical Medicine and Rehabilitation, Kars State Hospital, Kars, Turkey
| |
Collapse
|
6
|
Lysyl oxidases: from enzyme activity to extracellular matrix cross-links. Essays Biochem 2019; 63:349-364. [DOI: 10.1042/ebc20180050] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/23/2019] [Accepted: 08/27/2019] [Indexed: 12/13/2022]
Abstract
AbstractThe lysyl oxidase family comprises five members in mammals, lysyl oxidase (LOX) and four lysyl oxidase like proteins (LOXL1-4). They are copper amine oxidases with a highly conserved catalytic domain, a lysine tyrosylquinone cofactor, and a conserved copper-binding site. They catalyze the first step of the covalent cross-linking of the extracellular matrix (ECM) proteins collagens and elastin, which contribute to ECM stiffness and mechanical properties. The role of LOX and LOXL2 in fibrosis, tumorigenesis, and metastasis, including changes in their expression level and their regulation of cell signaling pathways, have been extensively reviewed, and both enzymes have been identified as therapeutic targets. We review here the molecular features and three-dimensional structure/models of LOX and LOXLs, their role in ECM cross-linking, and the regulation of their cross-linking activity by ECM proteins, proteoglycans, and by inhibitors. We also make an overview of the major ECM cross-links, because they are the ultimate molecular readouts of LOX/LOXL activity in tissues. The recent 3D model of LOX, which recapitulates its known structural and biochemical features, will be useful to decipher the molecular mechanisms of LOX interaction with its various substrates, and to design substrate-specific inhibitors, which are potential antifibrotic and antitumor drugs.
Collapse
|
7
|
Vallet S, Guéroult M, Belloy N, Dauchez M, Ricard-Blum S. A Three-Dimensional Model of Human Lysyl Oxidase, a Cross-Linking Enzyme. ACS OMEGA 2019; 4:8495-8505. [PMID: 31459939 PMCID: PMC6647939 DOI: 10.1021/acsomega.9b00317] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 05/03/2019] [Indexed: 06/10/2023]
Abstract
Lysyl oxidase (LOX) is a cross-linking enzyme identified 50 years ago, but its 3D structure is still unknown. We have thus built a 3D model of human LOX by homology modeling using the X-ray structure of human lysyl oxidase-like 2 as a template. This model is the first one to recapitulate all known biochemical features of LOX, namely, the coordination of the copper ion and the formation of the lysine tyrosylquinone cofactor and the disulfide bridges. Furthermore, this model is stable during a 1 μs molecular dynamics simulation. The catalytic site is located in a groove surrounded by two loops. The distance between these loops fluctuated during the simulations, which suggests that the groove forms a hinge with a variable opening, which is able to accommodate the various sizes of LOX substrates. This 3D model is a pre-requisite to perform docking experiments with LOX substrates and other partners to identify binding sites and to design new LOX inhibitors specific for therapeutic purpose.
Collapse
Affiliation(s)
- Sylvain
D. Vallet
- Univ
Lyon, University Claude Bernard Lyon 1, CNRS, INSA Lyon, CPE, Institute
of Molecular and Supramolecular Chemistry and Biochemistry, UMR 5246, F-69622 Villeurbanne
Cedex, France
| | - Marc Guéroult
- UMR 7369 URCA/CNRS
Matrice Extracellulaire et Dynamique Cellulaire
(MEDyC) and Plateau de Modélisation Moléculaire Multi-échelle, Université de Reims Champagne-Ardenne, 51687 Reims Cedex
2, France
| | - Nicolas Belloy
- UMR 7369 URCA/CNRS
Matrice Extracellulaire et Dynamique Cellulaire
(MEDyC) and Plateau de Modélisation Moléculaire Multi-échelle, Université de Reims Champagne-Ardenne, 51687 Reims Cedex
2, France
| | - Manuel Dauchez
- UMR 7369 URCA/CNRS
Matrice Extracellulaire et Dynamique Cellulaire
(MEDyC) and Plateau de Modélisation Moléculaire Multi-échelle, Université de Reims Champagne-Ardenne, 51687 Reims Cedex
2, France
| | - Sylvie Ricard-Blum
- Univ
Lyon, University Claude Bernard Lyon 1, CNRS, INSA Lyon, CPE, Institute
of Molecular and Supramolecular Chemistry and Biochemistry, UMR 5246, F-69622 Villeurbanne
Cedex, France
| |
Collapse
|
8
|
Renner S, Schüler H, Alawi M, Kolbe V, Rybczynski M, Woitschach R, Sheikhzadeh S, Stark VC, Olfe J, Roser E, Seggewies FS, Mahlmann A, Hempel M, Hartmann MJ, Hillebrand M, Wieczorek D, Volk AE, Kloth K, Koch-Hogrebe M, Abou Jamra R, Mitter D, Altmüller J, Wey-Fabrizius A, Petersen C, Rau I, Borck G, Kubisch C, Mir TS, von Kodolitsch Y, Kutsche K, Rosenberger G. Next-generation sequencing of 32 genes associated with hereditary aortopathies and related disorders of connective tissue in a cohort of 199 patients. Genet Med 2019; 21:1832-1841. [PMID: 30675029 DOI: 10.1038/s41436-019-0435-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/03/2019] [Indexed: 01/16/2023] Open
Abstract
PURPOSE Heritable factors play an important etiologic role in connective tissue disorders (CTD) with vascular involvement, and a genetic diagnosis is getting increasingly important for gene-tailored, personalized patient management. METHODS We analyzed 32 disease-associated genes by using targeted next-generation sequencing and exome sequencing in a clinically relevant cohort of 199 individuals. We classified and refined sequence variants according to their likelihood for pathogenicity. RESULTS We identified 1 pathogenic variant (PV; in FBN1 or SMAD3) in 15 patients (7.5%) and ≥1 likely pathogenic variant (LPV; in COL3A1, FBN1, FBN2, LOX, MYH11, SMAD3, TGFBR1, or TGFBR2) in 19 individuals (9.6%), together resulting in 17.1% diagnostic yield. Thirteen PV/LPV were novel. Of PV/LPV-negative patients 47 (23.6%) showed ≥1 variant of uncertain significance (VUS). Twenty-five patients had concomitant variants. In-depth evaluation of reported/calculated variant classes resulted in reclassification of 19.8% of variants. CONCLUSION Variant classification and refinement are essential for shaping mutational spectra of disease genes, thereby improving clinical sensitivity. Obligate stringent multigene analysis is a powerful tool for identifying genetic causes of clinically related CTDs. Nonetheless, the relatively high rate of PV/LPV/VUS-negative patients underscores the existence of yet unknown disease loci and/or oligogenic/polygenic inheritance.
Collapse
Affiliation(s)
- Sina Renner
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Helke Schüler
- Centre of Cardiology and Cardiovascular Surgery, University Heart Center, Hamburg, Germany
| | - Malik Alawi
- Bioinformatics Core, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Verena Kolbe
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Meike Rybczynski
- Centre of Cardiology and Cardiovascular Surgery, University Heart Center, Hamburg, Germany
| | - Rixa Woitschach
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sara Sheikhzadeh
- Centre of Cardiology and Cardiovascular Surgery, University Heart Center, Hamburg, Germany
| | - Veronika C Stark
- Pediatric Cardiology Clinic, University Heart Center, Hamburg, Germany
| | - Jakob Olfe
- Pediatric Cardiology Clinic, University Heart Center, Hamburg, Germany
| | - Elke Roser
- Klinik für Herz- und Gefäßkrankheiten, Klinikum Stuttgart-Katharinenhospital, Stuttgart, Germany
| | | | - Adrian Mahlmann
- University Centre for Vascular Medicine and Department of Medicine III-Section Angiology, University Hospital Carl Gustav Carus, Technische Universität, Dresden, Germany
| | - Maja Hempel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Mathias Hillebrand
- Centre of Cardiology and Cardiovascular Surgery, University Heart Center, Hamburg, Germany
| | - Dagmar Wieczorek
- Institute of Human Genetics, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Alexander Erich Volk
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katja Kloth
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Rami Abou Jamra
- Institute of Human Genetics, University of Leipzig Hospitals and Clinics, Leipzig, Germany
| | - Diana Mitter
- Institute of Human Genetics, University of Leipzig Hospitals and Clinics, Leipzig, Germany
| | - Janine Altmüller
- Cologne Center for Genomics, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | | | - Christine Petersen
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Isabella Rau
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guntram Borck
- Institute of Human Genetics, University of Ulm, Ulm, Germany
| | - Christian Kubisch
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas S Mir
- Pediatric Cardiology Clinic, University Heart Center, Hamburg, Germany
| | - Yskert von Kodolitsch
- Centre of Cardiology and Cardiovascular Surgery, University Heart Center, Hamburg, Germany
| | - Kerstin Kutsche
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Georg Rosenberger
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
9
|
Johnston KA, Lopez KM. Lysyl oxidase in cancer inhibition and metastasis. Cancer Lett 2018; 417:174-181. [DOI: 10.1016/j.canlet.2018.01.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/20/2017] [Accepted: 01/02/2018] [Indexed: 11/16/2022]
|
10
|
Burke AA, Severson ES, Mool S, Solares Bucaro MJ, Greenaway FT, Jakobsche CE. Comparing hydrazine-derived reactive groups as inhibitors of quinone-dependent amine oxidases. J Enzyme Inhib Med Chem 2017; 32:496-503. [PMID: 28110559 PMCID: PMC6009937 DOI: 10.1080/14756366.2016.1265518] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Lysyl oxidase has emerged as an important enzyme in cancer metastasis. Its activity has been reported to become upregulated in several types of cancer, and blocking its activity has been shown to limit the metastatic potential of various cancers. The small-molecules phenylhydrazine and β-aminopropionitrile are known to inhibit lysyl oxidase; however, issues of stability, toxicity, and poorly defined mechanisms limit their potential use in medical applications. The experiments presented herein evaluate three other families of hydrazine-derived compounds – hydrazides, alkyl hydrazines, and semicarbazides – as irreversible inhibitors of lysyl oxidase including determining the kinetic parameters and comparing the inhibition selectivities for lysyl oxidase against the topaquinone-containing diamine oxidase from lentil seedlings. The results suggest that the hydrazide group may be a useful core functionality that can be developed into potent and selective inhibitors of lysyl oxidase and eventually find application in cancer metastasis research.
Collapse
Affiliation(s)
- Ashley A Burke
- a Carlson School of Chemistry and Biochemistry, Clark University , Worcester , MA , USA
| | - Elizabeth S Severson
- a Carlson School of Chemistry and Biochemistry, Clark University , Worcester , MA , USA
| | - Shreya Mool
- a Carlson School of Chemistry and Biochemistry, Clark University , Worcester , MA , USA
| | | | - Frederick T Greenaway
- a Carlson School of Chemistry and Biochemistry, Clark University , Worcester , MA , USA
| | - Charles E Jakobsche
- a Carlson School of Chemistry and Biochemistry, Clark University , Worcester , MA , USA
| |
Collapse
|
11
|
Dudakova L, Jirsova K. The impairment of lysyl oxidase in keratoconus and in keratoconus-associated disorders. J Neural Transm (Vienna) 2013; 120:977-82. [PMID: 23653221 DOI: 10.1007/s00702-013-0993-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 02/05/2013] [Indexed: 01/01/2023]
Abstract
Keratoconus (KC) is an eye disease characterized by the progressive thinning and protrusion of the cornea, which results in the loss of visual acuity. This disorder remains poorly understood, although recent studies indicate the involvement of genetic and environmental factors. Recently, we have found that the distribution of the cross-linking enzyme lysyl oxidase (LOX) is markedly decreased in about 63 % of keratoconic specimens. Similarly, LOX activity is significantly reduced by 38 % compared to control tissue. Nearly 70 systemic disorders have been reported in association with KC, most of them affecting the extracellular matrix. In this review we attempted to ascertain whether any KC-associated diseases exhibit signs that may reflect LOX impairment. We hypothesized that very similar changes in the extracellular matrix, particularly at the level of collagen metabolism, including LOX impairment in mitral leaflets, may reflect an association between KC and mitral valve prolapse. Moreover, this putative association is supported by the high frequency of Down syndrome in both diseases. Among other disorders that have been found to coincide with KC, we did not find any in which the LOX enzyme may be directly or indirectly impaired. On the other hand, in cases where KC is present along with other connective tissue disorders (Marfan syndrome, Ehlers-Danlos syndrome and others), KC may not arise as a localized manifestation, but rather may be induced as the result of a more complex connective tissue disorder.
Collapse
Affiliation(s)
- Lubica Dudakova
- Laboratory of Biology and Pathology of Eye, First Faculty of Medicine, Institute of Inherited Metabolic Disorders, Charles University and General University Hospital, Prague, Czech Republic
| | | |
Collapse
|
12
|
Lopez KM, Greenaway FT. Identification of the copper-binding ligands of lysyl oxidase. J Neural Transm (Vienna) 2010; 118:1101-9. [DOI: 10.1007/s00702-010-0559-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Accepted: 12/08/2010] [Indexed: 11/24/2022]
|