1
|
Fang K, Cheng W, Yu B. Effects of Electroacupuncture at Varied Frequencies on Analgesia and Mechanisms in Sciatic Nerve Cuffing-Induced Neuropathic Pain Mice. J Mol Neurosci 2024; 74:98. [PMID: 39414746 PMCID: PMC11485069 DOI: 10.1007/s12031-024-02276-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/03/2024] [Indexed: 10/18/2024]
Abstract
Addressing the intricate challenge of chronic neuropathic pain has significant implications for the physical and psychological well-being of patients, given its enduring nature. In contrast to opioids, electroacupuncture (EA) may potentially provide a safer and more efficacious therapeutic alternative. Our objective is to investigate the distinct analgesic effects and potential mechanisms of EA at frequencies of 2 Hz, 100 Hz, and 18 kHz in order to establish more precise frequency selection criteria for clinical interventions. Analgesic efficacy was evaluated through the measurement of mice's mechanical and thermal pain thresholds. Spinal cord inflammatory cytokines and neuropeptides were quantified via Quantitative Real-time PCR (qRT-PCR), Western blot, and immunofluorescence. Additionally, RNA sequencing (RNA-Seq) was conducted on the spinal cord from mice in the 18 kHz EA group for comprehensive transcriptomic analysis. The analgesic effect of EA on neuropathic pain in mice was frequency-dependent. Stimulation at 18 kHz provided superior and prolonged relief compared to 2 Hz and 100 Hz. Our research suggests that EA at frequencies of 2 Hz, 100 Hz, and 18 kHz significantly reduce the release of inflammatory cytokines. The analgesic effects of 2 Hz and 100 Hz stimulation are due to frequency-dependent regulation of opioid release in the spinal cord. Furthermore, 18 kHz stimulation has been shown to reduce spinal neuronal excitability by modulating the serotonergic pathway and downstream receptors in the spinal cord to alleviate neuropathic pain.
Collapse
Affiliation(s)
- Kexin Fang
- Tongji University School of Medicine, Shanghai, China
- Department of Anesthesiology, Yangzhi Rehabilitation Hospital Affiliated to Tongji University, School of Medicine, Tongji University, 2209 Guangxing Road, Songjiang District, Shanghai, China
| | - Wen Cheng
- Tongji University School of Medicine, Shanghai, China
- Department of Anesthesiology, Yangzhi Rehabilitation Hospital Affiliated to Tongji University, School of Medicine, Tongji University, 2209 Guangxing Road, Songjiang District, Shanghai, China
| | - Bin Yu
- Tongji University School of Medicine, Shanghai, China.
- Department of Anesthesiology, Yangzhi Rehabilitation Hospital Affiliated to Tongji University, School of Medicine, Tongji University, 2209 Guangxing Road, Songjiang District, Shanghai, China.
| |
Collapse
|
2
|
Jang K, Garraway SM. A review of dorsal root ganglia and primary sensory neuron plasticity mediating inflammatory and chronic neuropathic pain. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2024; 15:100151. [PMID: 38314104 PMCID: PMC10837099 DOI: 10.1016/j.ynpai.2024.100151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/04/2024] [Accepted: 01/19/2024] [Indexed: 02/06/2024]
Abstract
Pain is a sensory state resulting from complex integration of peripheral nociceptive inputs and central processing. Pain consists of adaptive pain that is acute and beneficial for healing and maladaptive pain that is often persistent and pathological. Pain is indeed heterogeneous, and can be expressed as nociceptive, inflammatory, or neuropathic in nature. Neuropathic pain is an example of maladaptive pain that occurs after spinal cord injury (SCI), which triggers a wide range of neural plasticity. The nociceptive processing that underlies pain hypersensitivity is well-studied in the spinal cord. However, recent investigations show maladaptive plasticity that leads to pain, including neuropathic pain after SCI, also exists at peripheral sites, such as the dorsal root ganglia (DRG), which contains the cell bodies of sensory neurons. This review discusses the important role DRGs play in nociceptive processing that underlies inflammatory and neuropathic pain. Specifically, it highlights nociceptor hyperexcitability as critical to increased pain states. Furthermore, it reviews prior literature on glutamate and glutamate receptors, voltage-gated sodium channels (VGSC), and brain-derived neurotrophic factor (BDNF) signaling in the DRG as important contributors to inflammatory and neuropathic pain. We previously reviewed BDNF's role as a bidirectional neuromodulator of spinal plasticity. Here, we shift focus to the periphery and discuss BDNF-TrkB expression on nociceptors, non-nociceptor sensory neurons, and non-neuronal cells in the periphery as a potential contributor to induction and persistence of pain after SCI. Overall, this review presents a comprehensive evaluation of large bodies of work that individually focus on pain, DRG, BDNF, and SCI, to understand their interaction in nociceptive processing.
Collapse
Affiliation(s)
- Kyeongran Jang
- Department of Cell Biology, Emory University, School of Medicine, Atlanta, GA, 30322, USA
| | - Sandra M. Garraway
- Department of Cell Biology, Emory University, School of Medicine, Atlanta, GA, 30322, USA
| |
Collapse
|
3
|
Moreau N, Peirs C, Dallel R, Boucher Y. [Specificities of orofacial neuropathic pain]. Med Sci (Paris) 2024; 40:64-71. [PMID: 38299905 DOI: 10.1051/medsci/2023197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024] Open
Abstract
Head pain and notably orofacial pain differs from spinal pain on pathophysiological, clinical, therapeutic and prognostic levels. Its high prevalence, important impact on quality of life and significant socio-economical burden justify specific study of such type of pain. Among them, neuropathic orofacial pain resulting from disease or trauma of the trigeminal nervous system is among the most difficult types of pain to diagnose and to treat. Deciphering of underlying peripheral and central mechanisms has allowed numerous conceptual, clinical and therapeutic advances, notably the role of neural and non neural cell types, such as glia, immunocytes, vascular endothelial cells or the role of trigeminal sensory complex neural circuitry reconfiguration in the development of post-traumatic trigeminal neuropathic pain. Cellular interactions within the trigeminal ganglion, allowing a better understanding of several painful dental, ocular or cephalalgic comorbidities, are also described.
Collapse
Affiliation(s)
- Nathan Moreau
- Laboratoire de neurobiologie orofaciale, EA 7543, Université Paris Cité, Paris, France - Hôpital Bretonneau, Service de médecine bucco-dentaire, AP-HP, Paris, France
| | - Cédric Peirs
- Université Clermont Auvergne, CHU Clermont-Ferrand, Inserm, Neuro-Dol, Clermont-Ferrand, France
| | - Radhouane Dallel
- Université Clermont Auvergne, CHU Clermont-Ferrand, Inserm, Neuro-Dol, Clermont-Ferrand, France
| | - Yves Boucher
- Laboratoire de neurobiologie orofaciale, EA 7543, Université Paris Cité, Paris, France - Hôpital Pitié-Salpêtrière, Service de médecine bucco-dentaire, AP-HP, Paris, France
| |
Collapse
|
4
|
Miranda CO, Hegedüs K, Kis G, Antal M. Synaptic Targets of Glycinergic Neurons in Laminae I-III of the Spinal Dorsal Horn. Int J Mol Sci 2023; 24:ijms24086943. [PMID: 37108107 PMCID: PMC10139066 DOI: 10.3390/ijms24086943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
A great deal of evidence supports the inevitable importance of spinal glycinergic inhibition in the development of chronic pain conditions. However, it remains unclear how glycinergic neurons contribute to the formation of spinal neural circuits underlying pain-related information processing. Thus, we intended to explore the synaptic targets of spinal glycinergic neurons in the pain processing region (laminae I-III) of the spinal dorsal horn by combining transgenic technology with immunocytochemistry and in situ hybridization accompanied by light and electron microscopy. First, our results suggest that, in addition to neurons in laminae I-III, glycinergic neurons with cell bodies in lamina IV may contribute substantially to spinal pain processing. On the one hand, we show that glycine transporter 2 immunostained glycinergic axon terminals target almost all types of excitatory and inhibitory interneurons identified by their neuronal markers in laminae I-III. Thus, glycinergic postsynaptic inhibition, including glycinergic inhibition of inhibitory interneurons, must be a common functional mechanism of spinal pain processing. On the other hand, our results demonstrate that glycine transporter 2 containing axon terminals target only specific subsets of axon terminals in laminae I-III, including nonpeptidergic nociceptive C fibers binding IB4 and nonnociceptive myelinated A fibers immunoreactive for type 1 vesicular glutamate transporter, indicating that glycinergic presynaptic inhibition may be important for targeting functionally specific subpopulations of primary afferent inputs.
Collapse
Affiliation(s)
- Camila Oliveira Miranda
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Krisztina Hegedüs
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Gréta Kis
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Miklós Antal
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| |
Collapse
|
5
|
Nickel J, Gonzalez Y, Wu Y, Liu Y, Liu H, Iwasaki L. Chronic Pain-Related Jaw Muscle Motor Load and Sensory Processing. J Dent Res 2022; 101:1165-1171. [PMID: 35708459 PMCID: PMC9403723 DOI: 10.1177/00220345221099885] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Chronic pain associated with temporomandibular disorders (TMDs) may reflect muscle mechanoreceptor afferent barrage and dysregulated sensory processing. This observational study tested for associations between Characteristic Pain Intensity (CPI), physical symptoms (Patient Health Questionnaire-15 [PHQ-15]), and cumulative jaw muscle motor load (mV*s). In accordance with institutional review board oversight and Strengthening the Reporting of Observational Studies in Epidemiology guidelines, adult subjects gave informed consent and were identified via Diagnostic Criteria for TMD (DC-TMD) examination and research protocols. Subjects were assigned to ±Pain groups using DC-TMD criteria for myalgia. CPI scores characterized pain intensity. PHQ-15 scores were surrogate measures of dysregulated sensory processing. Laboratory tests were performed to quantify masseter and temporalis muscle activities (mV) per bite force (N) for each subject. In their natural environments, subjects recorded day- and nighttime electromyography from which cumulative jaw muscle motor loads (mV*s) were determined for activities consistent with bite forces of >1 to ≤2 and >2 to ≤5 N. Data were assessed using univariate analysis of variance, simple effects tests, K-means cluster classification, and 3-dimensional regression analyses. Of 242 individuals screened, 144 enrolled, and 125 with complete data from study protocols, there were 35 females and 15 males for +Pain and 35 females and 40 males for -Pain. Subjects produced 324 daytime and 341 nighttime recordings of average duration 6.9 ± 1.7 and 7.6 ± 1.7 h, respectively. Overall, +Pain compared to -Pain subjects had significantly higher (all P ≤ 0.002) CPI and PHQ-15 scores. Cumulative jaw muscle motor loads showed significant between-subject effects for time, diagnostic group, and sex (all P < 0.003), where motor loads tended to be higher for daytime versus nighttime, +Pain versus -Pain groups, and males versus females. Two clusters were identified, and regression relations showed associations of low-magnitude daytime masseter motor load, PHQ-15, and CPI scores for cluster 1 (n = 105, R2 = 0.44) and cluster 2 (n = 18, R2 = 0.80). Furthermore, these regression relations showed thresholds of motor load and PHQ-15 scores, above which there were nonlinear increases in reported pain.
Collapse
Affiliation(s)
- J.C. Nickel
- Department of Orthodontics, School of Dentistry, Oregon Health & Science University, Portland, OR, USA
- Department of Oral Diagnostic Sciences, School of Dental Medicine, University at Buffalo, Buffalo, NY, USA
| | - Y.M. Gonzalez
- Department of Oral Diagnostic Sciences, School of Dental Medicine, University at Buffalo, Buffalo, NY, USA
| | - Y. Wu
- Department of Integrative Biomedical and Diagnostic Sciences, School of Dentistry, Oregon Health & Science University, Portland, OR, USA
| | - Y. Liu
- Department of Biostatistics and Epidemiology, College of Public Health, East Tennessee State University, Johnson City, TN, USA
| | - H. Liu
- Department of Orthodontics, School of Dentistry, Oregon Health & Science University, Portland, OR, USA
| | - L.R. Iwasaki
- Department of Orthodontics, School of Dentistry, Oregon Health & Science University, Portland, OR, USA
- Department of Oral Diagnostic Sciences, School of Dental Medicine, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
6
|
Singh H, Raja A, Shekhar N, Chauhan A, Prakash A, Avti P, Medhi B. Computational attributes of protein kinase-C gamma C2-domain & virtual screening for small molecules: elucidation from meta-dynamics simulations & free-energy calculations. J Biomol Struct Dyn 2022:1-12. [DOI: 10.1080/07391102.2022.2077447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Harvinder Singh
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Anupam Raja
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Nishant Shekhar
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Arushi Chauhan
- Department of Biophysics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ajay Prakash
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Pramod Avti
- Department of Biophysics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Bikash Medhi
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
7
|
El Khoueiry C, Alba-Delgado C, Antri M, Gutierrez-Mecinas M, Todd AJ, Artola A, Dallel R. GABAA and Glycine Receptor-Mediated Inhibitory Synaptic Transmission onto Adult Rat Lamina IIi PKCγ-Interneurons: Pharmacological but not Anatomical Specialization. Cells 2022; 11:cells11081356. [PMID: 35456035 PMCID: PMC9033052 DOI: 10.3390/cells11081356] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/07/2022] [Accepted: 04/13/2022] [Indexed: 11/16/2022] Open
Abstract
Mechanical allodynia (pain to normally innocuous tactile stimuli) is a widespread symptom of inflammatory and neuropathic pain. Spinal or medullary dorsal horn (SDH or MDH) circuits mediating tactile sensation and pain need to interact in order to evoke mechanical allodynia. PKCγ-expressing (PKCγ+) interneurons and inhibitory controls within SDH/MDH inner lamina II (IIi) are pivotal in connecting touch and pain circuits. However, the relative contribution of GABA and glycine to PKCγ+ interneuron inhibition remains unknown. We characterized inhibitory inputs onto PKCγ+ interneurons by combining electrophysiology to record spontaneous and miniature IPSCs (sIPSCs, mIPSCs) and immunohistochemical detection of GABAARα2 and GlyRα1 subunits in adult rat MDH. While GlyR-only- and GABAAR-only-mediated mIPSCs/sIPSCs are predominantly recorded from PKCγ+ interneurons, immunohistochemistry reveals that ~80% of their inhibitory synapses possess both GABAARα2 and GlyRα1. Moreover, nearly all inhibitory boutons at gephyrin-expressing synapses on these cells contain glutamate decarboxylase and are therefore GABAergic, with around half possessing the neuronal glycine transporter (GlyT2) and therefore being glycinergic. Thus, while GABA and glycine are presumably co-released and GABAARs and GlyRs are present at most inhibitory synapses on PKCγ+ interneurons, these interneurons exhibit almost exclusively GABAAR-only and GlyR-only quantal postsynaptic inhibitory currents, suggesting a pharmacological specialization of their inhibitory synapses.
Collapse
Affiliation(s)
- Corinne El Khoueiry
- Neuro-Dol, Inserm, Université Clermont Auvergne, CHU Clermont-Ferrand, F-63000 Clermont-Ferrand, France; (C.E.K.); (C.A.-D.); (M.A.)
| | - Cristina Alba-Delgado
- Neuro-Dol, Inserm, Université Clermont Auvergne, CHU Clermont-Ferrand, F-63000 Clermont-Ferrand, France; (C.E.K.); (C.A.-D.); (M.A.)
| | - Myriam Antri
- Neuro-Dol, Inserm, Université Clermont Auvergne, CHU Clermont-Ferrand, F-63000 Clermont-Ferrand, France; (C.E.K.); (C.A.-D.); (M.A.)
| | - Maria Gutierrez-Mecinas
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow G12 8QQ, UK; (M.G.-M.); (A.J.T.)
| | - Andrew J. Todd
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow G12 8QQ, UK; (M.G.-M.); (A.J.T.)
| | - Alain Artola
- Neuro-Dol, Inserm, Université Clermont Auvergne, CHU Clermont-Ferrand, F-63000 Clermont-Ferrand, France; (C.E.K.); (C.A.-D.); (M.A.)
- Correspondence: (A.A.); (R.D.)
| | - Radhouane Dallel
- Neuro-Dol, Inserm, Université Clermont Auvergne, CHU Clermont-Ferrand, F-63000 Clermont-Ferrand, France; (C.E.K.); (C.A.-D.); (M.A.)
- Correspondence: (A.A.); (R.D.)
| |
Collapse
|
8
|
Larsson M, Nagi SS. Role of C-tactile fibers in pain modulation: animal and human perspectives. Curr Opin Behav Sci 2022. [DOI: 10.1016/j.cobeha.2021.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
9
|
Postnatal development of inner lamina II interneurons of the rat medullary dorsal horn. Pain 2021; 163:984-998. [PMID: 34433770 DOI: 10.1097/j.pain.0000000000002459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/16/2021] [Indexed: 11/27/2022]
Abstract
ABSTRACT Pain processing in young mammals is immature. Despite the central role of the medullary dorsal horn (MDH) in processing orofacial sensory information, the maturation of the neurons within the MDH has been largely overlooked. Combining in vitro electrophysiological recordings and 3D morphological analysis over the first postnatal month in rats, we investigated the age-dependent development of the neurons within the inner lamina II (IIi) of the MDH. We show the lamina IIi neuronal population transition into a more hyperpolarized state, with modification of the action potential waveform, and a shift from single spiking, at early postnatal ages, to tonic firing and initial bursting at later stages. These physiological changes are associated with a strong structural remodelling of the neuronal morphology with most of the modifications occurring after the third postnatal week. Among the lamina IIi neuronal population, the subpopulation of interneurons expressing the γ isoform of the protein kinase C (PKCγ+) are key elements for the circuits underlying facial mechanical allodynia. How do they develop from the rest of the lamina IIi constitute an important question that remained to be addressed. Here, we show that PKCγ+ interneurons display electrophysiological changes over time comparable with the PKCγ- population. However, they show a distinctive increase of the soma volume and primary branches length, as opposed to the PKCγ- population. Together, our data demonstrate a novel pattern of late postnatal maturation of lamina IIi interneurons, with a spotlight on PKCγ+ interneurons, that may be relevant for the development of orofacial sensitivity.
Collapse
|
10
|
Visseq A, Descheemaeker A, Hérault K, Giraud F, Abrunhosa-Thomas I, Artola A, Anizon F, Dallel R, Moreau P. Improved potency of pyridin-2(1H)one derivatives for the treatment of mechanical allodynia. Eur J Med Chem 2021; 225:113748. [PMID: 34392191 DOI: 10.1016/j.ejmech.2021.113748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/04/2021] [Accepted: 08/04/2021] [Indexed: 11/30/2022]
Abstract
Mechanical allodynia, a painful sensation caused by innocuous touch, is a major chronic pain symptom, which often remains without an effective treatment. There is thus a need for new anti-allodynic treatments based on new drug classes. We recently synthetized new 3,5-disubstituted pyridin-2(1H)-one derivatives. By substituting the pyridinone at the 3-position by various aryl/heteroaryl moieties and at the 5-position by a phenylamino group, we discovered that some derivatives exhibited a strong anti-allodynic potency in rats. Here, we report that varying the substitution of the pyridinone 5-position, the 3-position being substituted by an indol-4-yl moiety, further improves such anti-allodynic potency. Compared with 2, one of the two most active compounds of the first series, eleven out of nineteen newly synthetized compounds showed higher anti-allodynic potency, with two of them completely preventing mechanical allodynia. In the first series, hit compounds 1 and 2 appeared to be inhibitors of p38α MAPK, a protein kinase known to underlie pain hypersensitivity in animal models. Depending on the substitution at the 5-position, some newly synthetized compounds were also stronger p38α MAPK inhibitors. Surprisingly, though, anti-allodynic effects and p38α MAPK inhibitory potencies were not correlated, suggesting that other biological target(s) is/are involved in the analgesic activity in this series. Altogether, these results confirm that 3,5-disubstituted pyridine-2(1H)-one derivatives are of high interest for the development of new treatment of mechanical allodynia.
Collapse
Affiliation(s)
- Alexia Visseq
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut de Chimie de Clermont-Ferrand, F-63000, Clermont-Ferrand, France
| | - Amélie Descheemaeker
- Université Clermont Auvergne, CHU Clermont-Ferrand, Inserm, Neuro-Dol, F-63000, Clermont-Ferrand, France
| | - Karine Hérault
- Université Clermont Auvergne, CHU Clermont-Ferrand, Inserm, Neuro-Dol, F-63000, Clermont-Ferrand, France
| | - Francis Giraud
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut de Chimie de Clermont-Ferrand, F-63000, Clermont-Ferrand, France
| | - Isabelle Abrunhosa-Thomas
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut de Chimie de Clermont-Ferrand, F-63000, Clermont-Ferrand, France.
| | - Alain Artola
- Université Clermont Auvergne, CHU Clermont-Ferrand, Inserm, Neuro-Dol, F-63000, Clermont-Ferrand, France.
| | - Fabrice Anizon
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut de Chimie de Clermont-Ferrand, F-63000, Clermont-Ferrand, France.
| | - Radhouane Dallel
- Université Clermont Auvergne, CHU Clermont-Ferrand, Inserm, Neuro-Dol, F-63000, Clermont-Ferrand, France.
| | - Pascale Moreau
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut de Chimie de Clermont-Ferrand, F-63000, Clermont-Ferrand, France
| |
Collapse
|
11
|
Liao C, Zhou H, Chen H, Yang X, Zhong W, Zhang W. Patterns of nerve fiber impairments and neuronal activation in male diabetic rats with and without mechanical allodynia: a comparative study. Can J Diabetes 2021; 46:157-164. [DOI: 10.1016/j.jcjd.2021.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 06/28/2021] [Accepted: 08/05/2021] [Indexed: 11/17/2022]
|
12
|
Dallel R. Advances in the understanding and treatment of pain and headache. J Neural Transm (Vienna) 2021; 127:389-392. [PMID: 32172470 DOI: 10.1007/s00702-020-02164-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Radhouane Dallel
- Université Clermont Auvergne, CHU Clermont-Ferrand, Inserm, Neuro-Dol, F-63000, Clermont-Ferrand, France.
| |
Collapse
|
13
|
Spinal Inhibitory Interneurons: Gatekeepers of Sensorimotor Pathways. Int J Mol Sci 2021; 22:ijms22052667. [PMID: 33800863 PMCID: PMC7961554 DOI: 10.3390/ijms22052667] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/26/2021] [Accepted: 03/04/2021] [Indexed: 12/20/2022] Open
Abstract
The ability to sense and move within an environment are complex functions necessary for the survival of nearly all species. The spinal cord is both the initial entry site for peripheral information and the final output site for motor response, placing spinal circuits as paramount in mediating sensory responses and coordinating movement. This is partly accomplished through the activation of complex spinal microcircuits that gate afferent signals to filter extraneous stimuli from various sensory modalities and determine which signals are transmitted to higher order structures in the CNS and to spinal motor pathways. A mechanistic understanding of how inhibitory interneurons are organized and employed within the spinal cord will provide potential access points for therapeutics targeting inhibitory deficits underlying various pathologies including sensory and movement disorders. Recent studies using transgenic manipulations, neurochemical profiling, and single-cell transcriptomics have identified distinct populations of inhibitory interneurons which express an array of genetic and/or neurochemical markers that constitute functional microcircuits. In this review, we provide an overview of identified neural components that make up inhibitory microcircuits within the dorsal and ventral spinal cord and highlight the importance of inhibitory control of sensorimotor pathways at the spinal level.
Collapse
|
14
|
Sachau J, Bruckmueller H, Gierthmühlen J, Magerl W, May D, Binder A, Forstenpointner J, Koetting J, Maier C, Tölle TR, Treede RD, Berthele A, Caliebe A, Diesch C, Flor H, Huge V, Maihöfner C, Rehm S, Kersebaum D, Fabig SC, Vollert J, Rolke R, Stemmler S, Sommer C, Westermann A, Cascorbi I, Baron R. The serotonin receptor 2A (HTR2A) rs6313 variant is associated with higher ongoing pain and signs of central sensitization in neuropathic pain patients. Eur J Pain 2020; 25:595-611. [PMID: 33171011 DOI: 10.1002/ejp.1696] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 09/08/2020] [Accepted: 11/08/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND The serotonin receptor 2A (HTR2A) has been described as an important facilitation mediator of spinal nociceptive processing leading to central sensitization (CS) in animal models of chronic pain. However, whether HTR2A single nucleotide variants (SNVs) modulate neuropathic pain states in patients has not been investigated so far. The aim of this study was to elucidate the potential association of HTR2A variants with sensory abnormalities or ongoing pain in neuropathic pain patients. METHODS At total of 240 neuropathic pain patients and 253 healthy volunteers were included. Patients were phenotypically characterized using standardized quantitative sensory testing (QST). Patients and controls were genotyped for HTR2A g.-1438G > A (rs6311) and c.102C > T (rs6313). Genotype-related differences in QST parameters were assessed considering QST profile clusters, principal somatosensory components and sex. RESULTS There was an equal distribution of rs6313 and linked rs6311 between patients and controls. However, the rs6313 variant was significantly associated with a principal component of pinprick hyperalgesia and dynamic mechanical allodynia, indicating enhanced CS in patients with sensory loss (-0.34 ± 0.15 vs. +0.31 ± 0.11 vs., p < .001). In this cluster, the variant allele was also associated with single QST parameters of pinprick hyperalgesia (MPT, +0.64 ± 0.18 vs. -0.34 ± 0.23 p = .002; MPS, +0.66 ± 0.17 vs. -0.09 ± 0.23, p = .009) and ongoing pain was increased by 30%. CONCLUSIONS The specific association of the rs6313 variant with pinprick hyperalgesia and increased levels of ongoing pain suggests that the HTR2A receptor might be an important modulator in the development of CS in neuropathic pain. SIGNIFICANCE This article presents new insights into serotonin receptor 2A-mediating mechanisms of central sensitization in neuropathic pain patients. The rs6313 variant allele was associated with increased mechanical pinprick sensitivity and increased levels of ongoing pain supporting a contribution of central sensitization in the genesis of ongoing pain providing a possible route for mechanism-based therapies.
Collapse
Affiliation(s)
- Juliane Sachau
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Henrike Bruckmueller
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany.,Department of Pharmacy, UiT The Arctic University of Norway, Tromsø, Norway
| | - Janne Gierthmühlen
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Walter Magerl
- Chair of Neurophysiology, Mannheim Center for Translational Neuroscience, Ruprecht Karls University Heidelberg, Mannheim, Germany
| | - Denisa May
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Andreas Binder
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Julia Forstenpointner
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Judith Koetting
- Department of Human Genetics, Ruhr University Bochum, Bochum, Germany
| | - Christoph Maier
- Department of Pain Management, BG Kliniken Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Thomas R Tölle
- Department of Neurology, Klinikum Rechts der Isar, Technical University Munich, München, Germany
| | - Rolf-Detlef Treede
- Chair of Neurophysiology, Mannheim Center for Translational Neuroscience, Ruprecht Karls University Heidelberg, Mannheim, Germany
| | - Achim Berthele
- Department of Neurology, Klinikum Rechts der Isar, Technical University Munich, München, Germany
| | - Amke Caliebe
- Institute of Medical Informatics and Statistics, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Carolin Diesch
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Herta Flor
- Department of Clinical and Cognitive Neuroscience, Central Institute for Mental Health, Medical Faculty Mannheim, Ruprecht Karls University Heidelberg, Mannheim, Germany
| | - Volker Huge
- Department of Anaesthesiology, Ludwig Maximilians University Munich, München, Germany
| | - Christian Maihöfner
- Department of Neurology, General Hospital Fürth, University of Erlangen-Nuremberg, Nuremberg, Germany
| | - Stefanie Rehm
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Dilara Kersebaum
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Sophie-Charlotte Fabig
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Jan Vollert
- Chair of Neurophysiology, Mannheim Center for Translational Neuroscience, Ruprecht Karls University Heidelberg, Mannheim, Germany.,Pain Research, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Roman Rolke
- Department of Palliative Medicine, Medical Faculty RWTH Aachen University, Aachen, Germany
| | - Susanne Stemmler
- Department of Human Genetics, Ruhr University Bochum, Bochum, Germany
| | - Claudia Sommer
- Department of Neurology, University of Würzburg, Würzburg, Germany
| | - Andrea Westermann
- Department of Pain Management, BG Kliniken Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Ingolf Cascorbi
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Ralf Baron
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| |
Collapse
|
15
|
Peirs C, Williams SPG, Zhao X, Arokiaraj CM, Ferreira DW, Noh MC, Smith KM, Halder P, Corrigan KA, Gedeon JY, Lee SJ, Gatto G, Chi D, Ross SE, Goulding M, Seal RP. Mechanical Allodynia Circuitry in the Dorsal Horn Is Defined by the Nature of the Injury. Neuron 2020; 109:73-90.e7. [PMID: 33181066 DOI: 10.1016/j.neuron.2020.10.027] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 09/16/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022]
Abstract
The spinal dorsal horn is a major site for the induction and maintenance of mechanical allodynia, but the circuitry that underlies this clinically important form of pain remains unclear. The studies presented here provide strong evidence that the neural circuits conveying mechanical allodynia in the dorsal horn differ by the nature of the injury. Calretinin (CR) neurons in lamina II inner convey mechanical allodynia induced by inflammatory injuries, while protein kinase C gamma (PKCγ) neurons at the lamina II/III border convey mechanical allodynia induced by neuropathic injuries. Cholecystokinin (CCK) neurons located deeper within the dorsal horn (laminae III-IV) are important for both types of injuries. Interestingly, the Maf+ subset of CCK neurons is composed of transient vesicular glutamate transporter 3 (tVGLUT3) neurons, which convey primarily dynamic allodynia. Identification of an etiology-based circuitry for mechanical allodynia in the dorsal horn has important implications for the mechanistic and clinical understanding of this condition.
Collapse
Affiliation(s)
- Cedric Peirs
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA; Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Sean-Paul G Williams
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA; Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Xinyi Zhao
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA; Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Cynthia M Arokiaraj
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA; Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - David W Ferreira
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA; Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Myung-Chul Noh
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA; Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Kelly M Smith
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA; Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Priyabrata Halder
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA; Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Kelly A Corrigan
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA; Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Jeremy Y Gedeon
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA; Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Suh Jin Lee
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA; Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Graziana Gatto
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Rd, La Jolla, CA 92037, USA
| | - David Chi
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Sarah E Ross
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA; Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Martyn Goulding
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Rebecca P Seal
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA; Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA; Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA.
| |
Collapse
|
16
|
Peirs C, Dallel R, Todd AJ. Recent advances in our understanding of the organization of dorsal horn neuron populations and their contribution to cutaneous mechanical allodynia. J Neural Transm (Vienna) 2020; 127:505-525. [PMID: 32239353 PMCID: PMC7148279 DOI: 10.1007/s00702-020-02159-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/10/2020] [Indexed: 02/07/2023]
Abstract
The dorsal horns of the spinal cord and the trigeminal nuclei in the brainstem contain neuron populations that are critical to process sensory information. Neurons in these areas are highly heterogeneous in their morphology, molecular phenotype and intrinsic properties, making it difficult to identify functionally distinct cell populations, and to determine how these are engaged in pathophysiological conditions. There is a growing consensus concerning the classification of neuron populations, based on transcriptomic and transductomic analyses of the dorsal horn. These approaches have led to the discovery of several molecularly defined cell types that have been implicated in cutaneous mechanical allodynia, a highly prevalent and difficult-to-treat symptom of chronic pain, in which touch becomes painful. The main objective of this review is to provide a contemporary view of dorsal horn neuronal populations, and describe recent advances in our understanding of on how they participate in cutaneous mechanical allodynia.
Collapse
Affiliation(s)
- Cedric Peirs
- Université Clermont Auvergne, CHU Clermont-Ferrand, Inserm, Neuro-Dol, Clermont-Ferrand, F-63000, France.
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Radhouane Dallel
- Université Clermont Auvergne, CHU Clermont-Ferrand, Inserm, Neuro-Dol, Clermont-Ferrand, F-63000, France
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Andrew J Todd
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|