1
|
Sinkala M, Retshabile G, Mpangase PT, Bamba S, Goita MK, Nembaware V, Elsheikh SSM, Heckmann J, Esoh K, Matshaba M, Adebamowo CA, Adebamowo SN, Amih OE, Wonkam A, Ramsay M, Mulder N. Mapping Epigenetic Gene Variant Dynamics: Comparative Analysis of Frequency, Functional Impact and Trait Associations in African and European Populations. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.11.24311816. [PMID: 39185519 PMCID: PMC11343269 DOI: 10.1101/2024.08.11.24311816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Epigenetic modifications influence gene expression levels, impact organismal traits, and play a role in the development of diseases. Therefore, variants in genes involved in epigenetic processes are likely to be important in disease susceptibility, and the frequency of variants may vary between populations with African and European ancestries. Here, we analyse an integrated dataset to define the frequencies, associated traits, and functional impact of epigenetic gene variants among individuals of African and European ancestry represented in the UK Biobank. We find that the frequencies of 88.4% of epigenetic gene variants significantly differ between these groups. Furthermore, we find that the variants are associated with many traits and diseases, and some of these associations may be population-specific owing to allele frequency differences. Additionally, we observe that variants associated with traits are significantly enriched for quantitative trait loci that affect DNA methylation, chromatin accessibility, and gene expression. We find that methylation quantitative trait loci account for 71.2% of the variants influencing gene expression. Moreover, variants linked to biomarker traits exhibit high correlation. We therefore conclude that epigenetic gene variants associated with traits tend to differ in their allele frequencies among African and European populations and are enriched for QTLs.
Collapse
Affiliation(s)
- Musalula Sinkala
- Division of Computational Biology, Department of Integrative Biomedical Sciences and Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Gaone Retshabile
- Department of Biological Sciences, University of Botswana, Gaborone, Botswana
| | - Phelelani T Mpangase
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Salia Bamba
- Faculté de Médecine et d'Odontostomatologie, USTTB, Bamako, Mali
| | - Modibo K Goita
- Faculté de Médecine et d'Odontostomatologie, USTTB, Bamako, Mali
| | - Vicky Nembaware
- Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Samar S M Elsheikh
- Pharmacogenetics Research Clinic, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Jeannine Heckmann
- Neurology Research Group, Neurosciences Institute, University of Cape Town, Cape Town, South Africa
| | - Kevin Esoh
- McKusick-Nathans Institute & Department of Genetic Medicine, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205
| | - Mogomotsi Matshaba
- Botswana-Baylor Children's Clinical Centre of Excellence, Gaborone, Botswana
- Department of Pediatrics, Section of Retrovirology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Clement A Adebamowo
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD 21201
- Institute of Human Virology, Abuja, Nigeria
| | - Sally N Adebamowo
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD 21201
- Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Ofon Elvis Amih
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, University of Buea, Buea, Cameroon
- Molecular Parasitology & Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Ambroise Wonkam
- McKusick-Nathans Institute & Department of Genetic Medicine, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205
| | - Michele Ramsay
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nicola Mulder
- Division of Computational Biology, Department of Integrative Biomedical Sciences and Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- University of Cape Town, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, CIDRI Africa
| |
Collapse
|
2
|
Rice RC, Gil DV, Baratta AM, Frawley RR, Hill SY, Farris SP, Homanics GE. Inter- and transgenerational heritability of preconception chronic stress or alcohol exposure: Translational outcomes in brain and behavior. Neurobiol Stress 2024; 29:100603. [PMID: 38234394 PMCID: PMC10792982 DOI: 10.1016/j.ynstr.2023.100603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/19/2024] Open
Abstract
Chronic stress and alcohol (ethanol) use are highly interrelated and can change an individual's behavior through molecular adaptations that do not change the DNA sequence, but instead change gene expression. A recent wealth of research has found that these nongenomic changes can be transmitted across generations, which could partially account for the "missing heritability" observed in genome-wide association studies of alcohol use disorder and other stress-related neuropsychiatric disorders. In this review, we summarize the molecular and behavioral outcomes of nongenomic inheritance of chronic stress and ethanol exposure and the germline mechanisms that could give rise to this heritability. In doing so, we outline the need for further research to: (1) Investigate individual germline mechanisms of paternal, maternal, and biparental nongenomic chronic stress- and ethanol-related inheritance; (2) Synthesize and dissect cross-generational chronic stress and ethanol exposure; (3) Determine cross-generational molecular outcomes of preconception ethanol exposure that contribute to alcohol-related disease risk, using cancer as an example. A detailed understanding of the cross-generational nongenomic effects of stress and/or ethanol will yield novel insight into the impact of ancestral perturbations on disease risk across generations and uncover actionable targets to improve human health.
Collapse
Affiliation(s)
- Rachel C. Rice
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniela V. Gil
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA, USA
| | - Annalisa M. Baratta
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA, USA
| | - Remy R. Frawley
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shirley Y. Hill
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sean P. Farris
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA, USA
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gregg E. Homanics
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA, USA
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
3
|
Haehner P, Bleidorn W, Hopwood CJ. Examining individual differences in personality trait changes after negative life events. EUROPEAN JOURNAL OF PERSONALITY 2023. [DOI: 10.1177/08902070231156840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Personality traits can change throughout the entire life span, but people differ in their personality trait changes. To better understand individual differences in personality changes, we examined personal (personality functioning), environmental (environmental changes), and event-related moderators (e.g., perceived event characteristics) of personality trait changes. Therefore, we used a sample of 1069 participants who experienced a negative life event in the last 5 weeks and assessed their personality traits at five measurement occasions over 6 months. Employing preregistered multilevel lasso estimation, we did not find any significant effects. While exploratory analyses generally confirmed this conclusion, they also identified some effects that might being worth to be considered in future research (e.g., perceived impact and perceived social status changes were associated with changes in agreeableness after experiencing a relationship breakup). In total, our moderators explained less than 2% of variance in personality traits. Nonetheless, our study has several important implications for future research on individual differences in personality change. For example, future research should consider personal, environmental, and event-related moderators, use different analytical methods, and rely on highly powered samples to detect very small effects.
Collapse
Affiliation(s)
- Peter Haehner
- Department of Psychology, Ruhr University Bochum, Bochum, Germany
| | - Wiebke Bleidorn
- Department of Psychology, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
4
|
Zou Z, Xiang M, Zhang Y, Huang Y, Wang J, He Y, Min W, Zhou B. Associations of DNA methylation of HPA axis-related genes and neuroendocrine abnormalities in panic disorder. Psychoneuroendocrinology 2022; 142:105777. [PMID: 35504198 DOI: 10.1016/j.psyneuen.2022.105777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/24/2022] [Accepted: 04/24/2022] [Indexed: 11/17/2022]
Abstract
OBJECTIVE The purpose of this study was to investigate the role of aberrant DNA methylation of hypothalamic-pituitary-adrenal (HPA) axis-related genes (CRHR1, CRHR2, CRH, FKBP5, HSP90AA1, NR3C1, and POMC) in panic disorder (PD) development. We investigated the correlation among gene methylation levels, adrenocorticotropic hormone (ACTH), cortisol, and PD severity in patients. METHODS We compared the methylation levels of HPA axis-related genes between 178 patients with PD and 184 healthy controls using MethylTarget. We then measured ACTH and cortisol levels using chemiluminescence. Disease severity was assessed using the Panic Disorder Severity Scale. RESULTS Compared with healthy controls, patients with PD displayed significantly higher levels of ACTH and cortisol, and significantly reduced methylation levels of CRHR1, FKBP5, HSP90AA1, and NR3C1 after correcting for multiple testing using the false discovery method. A significant positive correlation was observed between the methylation of CRHR1, CRHR2, and NR3C1 and ACTH levels in patients with PD, and methylation levels of CRHR1 and NR3C1 were significantly positively related to cortisol levels. In addition, a negative correlation was observed between PD severity and the methylation of CRH, CRHR1, CRHR2, and HSP90AA1. CONCLUSION Aberrant methylation of HPA axis-related genes may predict PD development and impact ACTH and cortisol levels.
Collapse
Affiliation(s)
- Zhili Zou
- Provincial Center for Mental Health, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, China; Department of Psychosomatic Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Miao Xiang
- Department of Psychosomatic Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yuan Zhang
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, China
| | - Yulan Huang
- Provincial Center for Mental Health, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, China
| | - Jinyu Wang
- Provincial Center for Mental Health, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, China
| | - Ying He
- Provincial Center for Mental Health, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, China
| | - Wenjiao Min
- Provincial Center for Mental Health, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, China
| | - Bo Zhou
- Provincial Center for Mental Health, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, China; Key Laboratory of psychosomatic medicine,Chinese Academy of Medical Sciences, Chengdu 610072, China.
| |
Collapse
|
5
|
Colucci F, Di Bella D, Pisciotta C, Sarto E, Gualandi F, Neri M, Ferlini A, Contaldi E, Pugliatti M, Pareyson D, Sensi M. Beyond canvas: behavioral onset of rfc1-expansion disease in an Italian family-causal or casual? Neurol Sci 2022; 43:5095-5098. [PMID: 35585435 DOI: 10.1007/s10072-022-06137-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 05/08/2022] [Indexed: 01/03/2023]
Abstract
INTRODUCTION Biallelic intronic AAGGG repeat expansion in the replication factor C subunit 1 (RFC1) gene was recently identified in two/third of patients with cerebellar ataxia, sensory neuropathy, and bilateral vestibular areflexia syndrome (CANVAS). The phenotypic spectrum has expanded since (i.e., parkinsonism, motor neuron involvement, cognitive decline); no behavioral symptoms have been reported yet. CASE REPORT We report an Italian family that met the diagnostic criteria for CANVAS, and RFC1-expansion was detected in five of seven. All the affected members presented behavioral-psychiatric symptoms (anxiety, panic attacks, alcohol abuse) before the multisystemic RFC1-expansion manifestation. The disease course was progressive, with ataxia and behavioral-cognitive aspects as the most disabling symptoms. CONCLUSION These behavioral-cognitive observations may broaden the RFC1-expansion phenotypic spectrum and highlight the importance of investigating the whole non-motor symptoms in ataxic patients.
Collapse
Affiliation(s)
- Fabiana Colucci
- Department of Biomedical and Specialist Surgical Sciences, Section of Neurological, Psychiatric and Psychological Sciences, University of Ferrara, Ferrara, Italy.
| | - Daniela Di Bella
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Chiara Pisciotta
- Unit of Rare Neurodegenerative and Neurometabolic Diseases, Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Elisa Sarto
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Francesca Gualandi
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Marcella Neri
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Alessandra Ferlini
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Elena Contaldi
- Department of Neurology and Movement Disorders Centre, Translational Medicine, University of Piemonte Orientale and "Maggiore della Carità" University Hospital, Novara, Italy
| | - Maura Pugliatti
- Department of Biomedical and Specialist Surgical Sciences, Section of Neurological, Psychiatric and Psychological Sciences, University of Ferrara, Ferrara, Italy.,Interdepartmental Research Center for the Study of Multiple Sclerosis and Inflammatory and Degenerative Diseases of the Nervous System, University of Ferrara, Ferrara, Italy
| | - Davide Pareyson
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Mariachiara Sensi
- Department of Neuroscience and Rehabilitation, AziendaOspedaliera-Universitaria S. Anna, Ferrara, Italy
| |
Collapse
|
6
|
Ask H, Cheesman R, Jami ES, Levey DF, Purves KL, Weber H. Genetic contributions to anxiety disorders: where we are and where we are heading. Psychol Med 2021; 51:2231-2246. [PMID: 33557968 DOI: 10.1017/s0033291720005486] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Anxiety disorders are among the most common psychiatric disorders worldwide. They often onset early in life, with symptoms and consequences that can persist for decades. This makes anxiety disorders some of the most debilitating and costly disorders of our time. Although much is known about the synaptic and circuit mechanisms of fear and anxiety, research on the underlying genetics has lagged behind that of other psychiatric disorders. However, alongside the formation of the Psychiatric Genomic Consortium Anxiety workgroup, progress is rapidly advancing, offering opportunities for future research.Here we review current knowledge about the genetics of anxiety across the lifespan from genetically informative designs (i.e. twin studies and molecular genetics). We include studies of specific anxiety disorders (e.g. panic disorder, generalised anxiety disorder) as well as those using dimensional measures of trait anxiety. We particularly address findings from large-scale genome-wide association studies and show how such discoveries may provide opportunities for translation into improved or new therapeutics for affected individuals. Finally, we describe how discoveries in anxiety genetics open the door to numerous new research possibilities, such as the investigation of specific gene-environment interactions and the disentangling of causal associations with related traits and disorders.We discuss how the field of anxiety genetics is expected to move forward. In addition to the obvious need for larger sample sizes in genome-wide studies, we highlight the need for studies among young people, focusing on specific underlying dimensional traits or components of anxiety.
Collapse
Affiliation(s)
- Helga Ask
- Department of Mental Disorders, Norwegian Institute of Public Health, Oslo, Norway
| | - Rosa Cheesman
- PROMENTA Research Center, Department of Psychology, University of Oslo, Oslo, Norway
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Eshim S Jami
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Clinical, Educational and Health Psychology, Division of Psychology and Language Sciences, University College London, London, UK
| | - Daniel F Levey
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, Connecticut
| | - Kirstin L Purves
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Heike Weber
- Department of Psychology, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
| |
Collapse
|