1
|
Dy Closas AMF, Tan AH, Tay YW, Hor JW, Toh TS, Lim JL, Lew CY, Cham CY, Yim CCW, Chee KY, Ng CG, Lit LC, Anuar ANK, Lange LM, Fang ZH, Ciga SB, Lohmann K, Klein C, Ahmad-Annuar A, Muthusamy KA, Lim SY. New insights from a Malaysian real-world deep brain stimulation cohort. JOURNAL OF PARKINSON'S DISEASE 2025; 15:189-201. [PMID: 39973484 DOI: 10.1177/1877718x241297715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
BackgroundThe availability of deep brain stimulation (DBS), a highly efficacious treatment for several movement disorders, remains low in developing countries, with scarce data available on utilization and outcomes.ObjectiveWe characterized the DBS cohort and outcomes at a Malaysian quaternary medical center.MethodsA retrospective chart review was done on DBS-related surgery at the University of Malaya, including clinico-demographic, genetics, and outcomes data focusing on post-operative medication reduction and complications.Results149 Parkinson's disease (PD) patients underwent DBS targeting the subthalamic nucleus. Six had globus pallidus internus DBS (primarily for dystonia). Only 16.1% of patients were government-funded. Of the 133 PD patients operated in the past decade (2013-2022), 25 (18.8%) had disease duration <5 years. At 6-12 months post-DBS, median levodopa-equivalent daily dose (LEDD) reduction was 440.5 [418.9] mg/day, corresponding to a reduction of ≥50% and ≥30% in 42.2% and 69.8% of patients, respectively. LEDD reductions were larger in the early-onset and short-duration subgroups. Three patients (1.9% of 155) had symptomatic intracranial hemorrhage, resulting in stroke in two. Pathogenic monogenic or GBA1 variants were detected in 12/76 (16%) of patients tested, mostly comprising the "severe" GBA1 variant p.L483P (12%).ConclusionsThis is the largest report on DBS from Southeast Asia. The procedures were effective, and complication rates on par with international norms. Our study found a high frequency of GBA1-PD; and included a substantial number of patients with short-duration PD, who had good outcomes. It also highlights regional inequities in access to device-aided therapy.
Collapse
Affiliation(s)
- Alfand Marl F Dy Closas
- Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- The Mah Pooi Soo & Tan Chin Nam Centre for Parkinson's & Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Ai Huey Tan
- Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- The Mah Pooi Soo & Tan Chin Nam Centre for Parkinson's & Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yi Wen Tay
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Jia Wei Hor
- The Mah Pooi Soo & Tan Chin Nam Centre for Parkinson's & Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Tzi Shin Toh
- The Mah Pooi Soo & Tan Chin Nam Centre for Parkinson's & Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Jia Lun Lim
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Choey Yee Lew
- The Mah Pooi Soo & Tan Chin Nam Centre for Parkinson's & Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Chun Yoong Cham
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Carolyn Chue Wai Yim
- Department of Anaesthesiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kok Yoon Chee
- Department of Psychiatry and Mental Health, Hospital Kuala Lumpur, Ministry of Health, Malaysia
| | - Chong Guan Ng
- Department of Psychological Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Lei Cheng Lit
- Department of Physiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Lara M Lange
- Institute of Neurogenetics and Department of Neurology, University of Luebeck and University Hospital Schleswig-Holstein, Luebeck, Germany
| | - Zih-Hua Fang
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Tübingen, Germany
| | - Sara Bandres Ciga
- Center for Alzheimer's Disease and Related Dementias (CARD), National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Katja Lohmann
- Institute of Neurogenetics and Department of Neurology, University of Luebeck and University Hospital Schleswig-Holstein, Luebeck, Germany
| | - Christine Klein
- Institute of Neurogenetics and Department of Neurology, University of Luebeck and University Hospital Schleswig-Holstein, Luebeck, Germany
| | - Azlina Ahmad-Annuar
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kalai Arasu Muthusamy
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Shen-Yang Lim
- Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- The Mah Pooi Soo & Tan Chin Nam Centre for Parkinson's & Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Chew EG, Liu Z, Li Z, Chung SJ, Lian MM, Tandiono M, Heng YJ, Ng EY, Tan LC, Chng WL, Tan TJ, Peh EK, Ho YS, Chen XY, Lim EY, Chang CH, Leong JJ, Peh TX, Chan LL, Chao Y, Au WL, Prakash KM, Lim JL, Tay YW, Mok V, Chan AY, Lin JJ, Jeon BS, Song K, Tham CC, Pang CP, Ahn J, Park KH, Wiggs JL, Aung T, Tan AH, Ahmad Annuar A, Makarious MB, Blauwendraat C, Nalls MA, Robak LA, Alcalay RN, Gan-Or Z, Reynolds R, Lim SY, Xia Y, Khor CC, Tan EK, Wang Z, Foo JN. Exome sequencing in Asian populations identifies low-frequency and rare coding variation influencing Parkinson's disease risk. NATURE AGING 2025; 5:205-218. [PMID: 39572736 PMCID: PMC11839463 DOI: 10.1038/s43587-024-00760-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 10/24/2024] [Indexed: 02/21/2025]
Abstract
Parkinson's disease (PD) is an incurable, progressive and common movement disorder that is increasing in incidence globally because of population aging. We hypothesized that the landscape of rare, protein-altering variants could provide further insights into disease pathogenesis. Here we performed whole-exome sequencing followed by gene-based tests on 4,298 PD cases and 5,512 controls of Asian ancestry. We showed that GBA1 and SMPD1 were significantly associated with PD risk, with replication in a further 5,585 PD cases and 5,642 controls. We further refined variant classification using in vitro assays and showed that SMPD1 variants with reduced enzymatic activity display the strongest association (<44% activity, odds ratio (OR) = 2.24, P = 1.25 × 10-15) with PD risk. Moreover, 80.5% of SMPD1 carriers harbored the Asian-specific p.Pro332Arg variant (OR = 2.16; P = 4.47 × 10-8). Our findings highlight the utility of performing exome sequencing in diverse ancestry groups to identify rare protein-altering variants in genes previously unassociated with disease.
Collapse
Grants
- MOE-T2EP30220-0008 Ministry of Education - Singapore (MOE)
- MOH-000435 MOH | National Medical Research Council (NMRC)
- MOH-001110 MOH | National Medical Research Council (NMRC)
- OT2 OD032100 NIH HHS
- OT2 OD027060 NIH HHS
- MOH-000207 MOH | National Medical Research Council (NMRC)
- R01 EY015473 NEI NIH HHS
- MOH-001329 Ministry of Health -Singapore (MOH)
- MOH-001110 Ministry of Health -Singapore (MOH)
- MOE-MOET32020-0004 Ministry of Education - Singapore (MOE)
- MOH-001072 MOH | National Medical Research Council (NMRC)
- MOH-000559 MOH | National Medical Research Council (NMRC)
- OT2 OD027852 NIH HHS
- MOE-T2EP30220-0005 Ministry of Education - Singapore (MOE)
- P30 EY014104 NEI NIH HHS
- MOH-001214 MOH | National Medical Research Council (NMRC)
- Agency for Science, Technology and Research (A*STAR)
- University of Malaya Parkinson’s Disease and Movement Disorders Research Program (PV035-2017)
- Intramural Research Program of the NIH, National Institute on Aging, National Institutes of Health, Department of Health and Human Services; project number ZO1 AG000534, the National Institute of Neurological Disorders and Stroke, the Office of Intramural research, Office of the director NIH, and utilized the computational resources of the NIH STRIDES Initiative (https://cloud.nih.gov) through the Other Transaction agreement - Azure: OT2OD032100, Google Cloud Platform: OT2OD027060, Amazon Web Services: OT2OD027852, and the NIH HPC Biowulf cluster (https://hpc.nih.gov).
- Michael J. Fox Foundation for Parkinson's Research (Michael J. Fox Foundation)
- Parkinson's Foundation (Parkinson's Foundation, Inc.)
- Silverstein Foundation
- Singapore National Research Foundation (NRF-NRFI2018-01)
Collapse
Affiliation(s)
- Elaine Gy Chew
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Zhehao Liu
- Duke-National University of Singapore Medical School, Singapore, Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Zheng Li
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Sun Ju Chung
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Michelle M Lian
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Moses Tandiono
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Yue Jing Heng
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Ebonne Y Ng
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore, Singapore
| | - Louis Cs Tan
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
| | - Wee Ling Chng
- Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Tiak Ju Tan
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Esther Kl Peh
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore
| | - Ying Swan Ho
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore
| | - Xiao Yin Chen
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Erin Yt Lim
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Chu Hua Chang
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Jonavan J Leong
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Ting Xuan Peh
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Ling Ling Chan
- Duke-National University of Singapore Medical School, Singapore, Singapore
- Department of Neuroradiology, Singapore General Hospital, Singapore, Singapore
| | - Yinxia Chao
- Duke-National University of Singapore Medical School, Singapore, Singapore
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore, Singapore
| | - Wing-Lok Au
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
| | - Kumar M Prakash
- Duke-National University of Singapore Medical School, Singapore, Singapore
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore, Singapore
| | - Jia Lun Lim
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yi Wen Tay
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Vincent Mok
- Department of Medicine and Therapeutics, Division of Neurology, Margaret K.L. Cheung Research Centre for Management of Parkinsonism, Lui Che Woo Institute of Innovative Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Gerald Choa Neuroscience Institute, Li Ka Shing Institute of Health Sciences, Hong Kong, China
| | - Anne Yy Chan
- Department of Medicine and Therapeutics, Division of Neurology, Margaret K.L. Cheung Research Centre for Management of Parkinsonism, Lui Che Woo Institute of Innovative Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Juei-Jueng Lin
- Department of Neurology, Chushang Show-Chwan Hospital, Nantou, Taiwan
| | - Beom S Jeon
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea
| | - Kyuyoung Song
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, South Korea
| | - Clement C Tham
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Chi Pui Pang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jeeyun Ahn
- Department of Ophthalmology, Seoul Metropolitan Government, Seoul National University Boramae Medical Center, Seoul, South Korea
- Department of Ophthalmology, Seoul National University Hospital, Seoul, Korea
| | - Kyu Hyung Park
- Department of Ophthalmology, Seoul National University Hospital, Seoul, Korea
| | - Janey L Wiggs
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Tin Aung
- Duke-National University of Singapore Medical School, Singapore, Singapore
- Singapore Eye Research Institute, Singapore, Singapore
| | - Ai Huey Tan
- Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Azlina Ahmad Annuar
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mary B Makarious
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- UCL Movement Disorders Centre, University College London, London, UK
| | - Cornelis Blauwendraat
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias, National Institute on Aging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Mike A Nalls
- Center for Alzheimer's and Related Dementias, National Institute on Aging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica International, LLC, Bethesda, MD, USA
| | - Laurie A Robak
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurologic Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Roy N Alcalay
- Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Columbia University Irving Medical Center, New York, NY, USA
| | - Ziv Gan-Or
- The Neuro (Montréal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| | - Richard Reynolds
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Shen-Yang Lim
- Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yun Xia
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Chiea Chuen Khor
- Duke-National University of Singapore Medical School, Singapore, Singapore.
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore.
- Singapore Eye Research Institute, Singapore, Singapore.
| | - Eng-King Tan
- Duke-National University of Singapore Medical School, Singapore, Singapore.
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore, Singapore.
| | - Zhenxun Wang
- Duke-National University of Singapore Medical School, Singapore, Singapore.
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore.
| | - Jia Nee Foo
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore.
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore.
| |
Collapse
|
3
|
Koros C, Bougea A, Alefanti I, Simitsi AM, Papagiannakis N, Pachi I, Sfikas E, Antonelou R, Stefanis L. A Global Perspective of GBA1-Related Parkinson's Disease: A Narrative Review. Genes (Basel) 2024; 15:1605. [PMID: 39766872 PMCID: PMC11675599 DOI: 10.3390/genes15121605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/02/2024] [Accepted: 12/14/2024] [Indexed: 01/03/2025] Open
Abstract
Parkinson's disease (PD) is considered to be the second most prominent neurodegenerative disease and has a global prevalence. Glucocerebrosidase (GBA1) gene mutations represent a significant hereditary risk factor for the development of PD and have a profound impact on the motor and cognitive progression of the disease. The aim of this review is to summarize the literature data on the prevalence, type, and peculiarities of GBA1 mutations in populations of different ethnic backgrounds. We reviewed articles spanning the 2000-2024 period. GBA1-related PD has a worldwide distribution. It has long been recognized that pathogenic GBA1 mutations are particularly common in certain ethnic populations, including PD patients of Ashkenazi Jewish ancestry. Moreover, a considerable number of studies focused on European ancestry patients from Europe and North America have revealed a high proportion (up to 15%) of carriers among the PD population. GBA1 mutations also appear to play an important role in patient groups with an East Asian background, although the frequency of specific variants may differ as compared to those of European ancestry. Notably, the assessment of underrepresented populations in other parts of Asia (including India) and Latin America is in the spotlight of current research, while a variant with a newly described pathogenic mechanism has been reported in Sub-Saharan Africans. Given the importance of GBA1 mutations for PD genetics and clinical phenotype, a focused assessment of the prevalence and type of GBA1 variants in distinct ethnic populations will possibly inform ongoing PD-related clinical studies and facilitate upcoming therapeutic trials.
Collapse
Affiliation(s)
| | - Anastasia Bougea
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (C.K.); (I.A.); (A.M.S.); (N.P.); (I.P.); (E.S.); (R.A.); (L.S.)
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Lim SY, Tan AH, Ahmad-Annuar A, Okubadejo NU, Lohmann K, Morris HR, Toh TS, Tay YW, Lange LM, Bandres-Ciga S, Mata I, Foo JN, Sammler E, Ooi JCE, Noyce AJ, Bahr N, Luo W, Ojha R, Singleton AB, Blauwendraat C, Klein C. Uncovering the genetic basis of Parkinson's disease globally: from discoveries to the clinic. Lancet Neurol 2024; 23:1267-1280. [PMID: 39447588 DOI: 10.1016/s1474-4422(24)00378-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/29/2024] [Accepted: 09/04/2024] [Indexed: 10/26/2024]
Abstract
Knowledge on the genetic basis of Parkinson's disease has grown tremendously since the discovery of the first monogenic form, caused by a mutation in α-synuclein, and with the subsequent identification of multiple other causative genes and associated loci. Genetic studies provide insights into the phenotypic heterogeneity and global distribution of Parkinson's disease. By shedding light on the underlying biological mechanisms, genetics facilitates the identification of new biomarkers and therapeutic targets. Several clinical trials of genetics-informed therapies are ongoing or imminent. International programmes in populations who have been under-represented in Parkinson's disease genetics research are fostering collaboration and capacity-building, and have already generated novel findings. Many challenges remain for genetics research in these populations, but addressing them provides opportunities to obtain a more complete and equitable understanding of Parkinson's disease globally. These advances facilitate the integration of genetics into the clinic, to improve patient management and personalised medicine.
Collapse
Affiliation(s)
- Shen-Yang Lim
- Division of Neurology, Department of Medicine, and The Mah Pooi Soo & Tan Chin Nam Centre for Parkinson's & Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| | - Ai Huey Tan
- Division of Neurology, Department of Medicine, and The Mah Pooi Soo & Tan Chin Nam Centre for Parkinson's & Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Azlina Ahmad-Annuar
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Njideka Ulunma Okubadejo
- College of Medicine, University of Lagos and Lagos University Teaching Hospital, Idi Araba, Lagos State, Nigeria
| | - Katja Lohmann
- Institute of Neurogenetics, University of Luebeck, Luebeck, Germany
| | - Huw R Morris
- Department of Clinical and Movement Neurosciences, University College London, Institute of Neurology, London, UK
| | - Tzi Shin Toh
- Division of Neurology, Department of Medicine, and The Mah Pooi Soo & Tan Chin Nam Centre for Parkinson's & Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yi Wen Tay
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Lara M Lange
- Institute of Neurogenetics, University of Luebeck, Luebeck, Germany; Department of Neurology, University of Luebeck and University Hospital Schleswig-Holstein, Luebeck, Germany
| | - Sara Bandres-Ciga
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Ignacio Mata
- Lerner Research Institute, Genomic Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Jia Nee Foo
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore; Laboratory of Neurogenetics, Genome Institute of Singapore, A*STAR, Singapore
| | - Esther Sammler
- Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK; Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Joshua Chin Ern Ooi
- Department of Neurology, Queen Elizabeth Hospital, Kota Kinabalu, Sabah, Malaysia
| | - Alastair J Noyce
- Centre for Preventive Neurology, Wolfson Institute of Population Health, Queen Mary University of London, London, UK
| | - Natascha Bahr
- Institute of Neurogenetics, University of Luebeck, Luebeck, Germany; Department of Neurology, University of Luebeck and University Hospital Schleswig-Holstein, Luebeck, Germany
| | - Wei Luo
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, People's Republic of China
| | - Rajeev Ojha
- Department of Neurology, Tribhuvan University Teaching Hospital, Kathmandu, Nepal
| | - Andrew B Singleton
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA; Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland, USA
| | - Cornelis Blauwendraat
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA; Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland, USA
| | - Christine Klein
- Institute of Neurogenetics, University of Luebeck, Luebeck, Germany; Department of Neurology, University of Luebeck and University Hospital Schleswig-Holstein, Luebeck, Germany
| |
Collapse
|
5
|
Vieira SR, Mezabrovschi R, Toffoli M, Del Pozo SL, Menozzi E, Mullin S, Yalkic S, Limbachiya N, Koletsi S, Loefflad N, Lopez GJ, Gan‐Or Z, Alcalay RN, Sidransky E, Schapira AH. Consensus Guidance for Genetic Counseling in GBA1 Variants: A Focus on Parkinson's Disease. Mov Disord 2024; 39:2144-2154. [PMID: 39258449 PMCID: PMC11657020 DOI: 10.1002/mds.30006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/16/2024] [Indexed: 09/12/2024] Open
Abstract
Glucocerebrosidase (GBA1) variants constitute numerically the most common known genetic risk factor for Parkinson's disease (PD) and are distributed worldwide. Access to GBA1 genotyping varies across the world and even regionally within countries. Guidelines for GBA1 variant counseling are evolving. We review the current knowledge of the link between GBA1 and PD, and discuss the practicalities of GBA1 testing. Lastly, we provide a consensus for an approach to counseling people with GBA1 variants, notably the communication of PD risk. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Sophia R.L. Vieira
- Department of Clinical and Movement NeurosciencesUniversity College London Queen Square Institute of NeurologyLondonUnited Kingdom
| | - Roxana Mezabrovschi
- Department of Clinical and Movement NeurosciencesUniversity College London Queen Square Institute of NeurologyLondonUnited Kingdom
| | - Marco Toffoli
- Department of Clinical and Movement NeurosciencesUniversity College London Queen Square Institute of NeurologyLondonUnited Kingdom
| | - Sara Lucas Del Pozo
- Department of Clinical and Movement NeurosciencesUniversity College London Queen Square Institute of NeurologyLondonUnited Kingdom
| | - Elisa Menozzi
- Department of Clinical and Movement NeurosciencesUniversity College London Queen Square Institute of NeurologyLondonUnited Kingdom
| | - Stephen Mullin
- Department of Clinical and Movement NeurosciencesUniversity College London Queen Square Institute of NeurologyLondonUnited Kingdom
- Faculty of HealthUniversity of PlymouthPlymouthUnited Kingdom
| | - Selen Yalkic
- Department of Clinical and Movement NeurosciencesUniversity College London Queen Square Institute of NeurologyLondonUnited Kingdom
| | - Naomi Limbachiya
- Department of Clinical and Movement NeurosciencesUniversity College London Queen Square Institute of NeurologyLondonUnited Kingdom
| | - Sofia Koletsi
- Department of Clinical and Movement NeurosciencesUniversity College London Queen Square Institute of NeurologyLondonUnited Kingdom
- Aligning Science Across Parkinson's Collaborative Research NetworkChevy ChaseMarylandUSA
| | - Nadine Loefflad
- Department of Clinical and Movement NeurosciencesUniversity College London Queen Square Institute of NeurologyLondonUnited Kingdom
| | - Grisel J. Lopez
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of HealthBethesdaMarylandUSA
| | - Ziv Gan‐Or
- Department of Neurology and Neurosurgery, The Neuro (Montreal Neurological Institute‐Hospital), and Department of Human GeneticsMcGill UniversityMontrealQuebecCanada
| | - Roy N. Alcalay
- Columbia University Irving Medical CenterNew YorkNew YorkUSA
- Tel Aviv Sourasky Medical Center, Tel Aviv School of Medicine, Tel Aviv UniversityTel AvivIsrael
| | - Ellen Sidransky
- Aligning Science Across Parkinson's Collaborative Research NetworkChevy ChaseMarylandUSA
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of HealthBethesdaMarylandUSA
| | - Anthony H.V. Schapira
- Department of Clinical and Movement NeurosciencesUniversity College London Queen Square Institute of NeurologyLondonUnited Kingdom
- Aligning Science Across Parkinson's Collaborative Research NetworkChevy ChaseMarylandUSA
| |
Collapse
|
6
|
Ng ASL, Tan AH, Tan YJ, Lim JL, Lian MM, Dy Closas AM, Ahmad-Annuar A, Viswanathan S, Chia YK, Foo JN, Lim WK, Tan EK, Lim SY. Identification of Genetic Variants in Progressive Supranuclear Palsy in Southeast Asia. Mov Disord 2024; 39:1829-1842. [PMID: 39149795 DOI: 10.1002/mds.29932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/21/2024] [Accepted: 07/01/2024] [Indexed: 08/17/2024] Open
Abstract
BACKGROUND Progressive supranuclear palsy (PSP) is largely a sporadic disease with few reported familial cases. Genome-wide association studies (GWAS) in sporadic PSP in Caucasian populations have identified MAPT as the most commonly associated genetic risk locus with the strongest effect size. At present there are limited data on genetic factors associated with PSP in Asian populations. OBJECTIVES Our goal was to investigate the genetic factors associated with PSP in Southeast Asian PSP patients. METHODS Next-generation sequencing (whole-exome, whole-genome and targeted sequencing) was performed in two Asian cohorts, comprising 177 PSP patients. RESULTS We identified 17 pathogenic or likely pathogenic variants in 16 PSP patients (9%), eight of which were novel. The most common relevant genetic variants identified were in MAPT, GBA1, OPTN, SYNJ1, and SQSTM1. Other variants detected were in TBK1, PRNP, and ABCA7-genes that have been implicated in other neurodegenerative diseases. Eighteen patients had a positive family history, of whom two carried pathogenic MAPT variants, and one carried a likely pathogenic GBA1 variant. None of the patients had expanded repeats in C9orf72. Furthermore, we found 16 different variants of uncertain significance in 21 PSP patients in PSEN2, ABCA7, SMPD1, MAPT, ATP13A2, OPTN, SQSTM1, CYLD, and BSN. CONCLUSIONS The genetic findings in our PSP cohorts appear to be somewhat distinct from those in Western populations, and also suggest an overlap of the genetic architecture between PSP and other neurodegenerative diseases. Further functional studies and validation in independent Asian cohorts will be useful for improving our understanding of PSP genetics and guiding genetic screening strategies in these populations. © 2024 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Adeline Su Lyn Ng
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
- Neuroscience and Behavioural Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Ai Huey Tan
- Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- Mah Pooi Soo and Tan Chin Nam Centre for Parkinson's and Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yi Jayne Tan
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
| | - Jia Lun Lim
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Michelle Mulan Lian
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Alfand Marl Dy Closas
- Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- Mah Pooi Soo and Tan Chin Nam Centre for Parkinson's and Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- Metro Davao Medical and Research Center, Davao Doctors Hospital, Davao City, Philippines
| | - Azlina Ahmad-Annuar
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Yuen Kang Chia
- Department of Neurology, Queen Elizabeth Hospital, Kota Kinabalu, Sabah, Malaysia
| | - Jia Nee Foo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Weng Khong Lim
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
- Singhealth Duke-NUS Institute of Precision Medicine, Singapore
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
- SingHealth Duke-NUS Genomic Medicine Centre, Singapore
| | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
- Neuroscience and Behavioural Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Shen-Yang Lim
- Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- Mah Pooi Soo and Tan Chin Nam Centre for Parkinson's and Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
7
|
McGlinchey E, Duran-Aniotz C, Akinyemi R, Arshad F, Zimmer ER, Cho H, Adewale BA, Ibanez A. Biomarkers of neurodegeneration across the Global South. THE LANCET. HEALTHY LONGEVITY 2024; 5:100616. [PMID: 39369726 PMCID: PMC11540104 DOI: 10.1016/s2666-7568(24)00132-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 06/22/2024] [Accepted: 06/24/2024] [Indexed: 10/08/2024] Open
Abstract
Research on neurodegenerative diseases has predominantly focused on high-income countries in the Global North. This Series paper describes the state of biomarker evidence for neurodegeneration in the Global South, including Latin America, Africa, and countries in south, east, and southeast Asia. Latin America shows growth in fluid biomarker and neuroimaging research, with notable advancements in genetics. Research in Africa focuses on genetics and cognition but there is a paucity of data on fluid and neuroimaging biomarkers. South and east Asia, particularly India and China, has achieved substantial progress in plasma, neuroimaging, and genetic studies. However, all three regions face several challenges in the form of a lack of harmonisation, insufficient funding, and few comparative studies both within the Global South, and between the Global North and Global South. Other barriers include scarce infrastructure, lack of knowledge centralisation, genetic and cultural diversity, sociocultural stigmas, and restricted access to tools such as PET scans. However, the diverse ethnic, genetic, economic, and cultural backgrounds in the Global South present unique opportunities for bidirectional learning, underscoring the need for global collaboration to enhance the understanding of dementia and brain health.
Collapse
Affiliation(s)
- Eimear McGlinchey
- Trinity College Dublin, Dublin, Ireland; Global Brain Health Institute, University of California San Francisco (UCSF), San Francisco, CA, USA; Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland.
| | - Claudia Duran-Aniotz
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibanez, Santiago de Chile, Chile
| | - Rufus Akinyemi
- Global Brain Health Institute, University of California San Francisco (UCSF), San Francisco, CA, USA; Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland; Neuroscience and Ageing Research Unit, Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, Ibadan, Nigeria; Centre for Genomic and Precision Medicine, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Faheem Arshad
- Global Brain Health Institute, University of California San Francisco (UCSF), San Francisco, CA, USA; Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland; National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, India
| | - Eduardo R Zimmer
- Department of Pharmacology, Graduate Program in Biological Sciences: Pharmacology and Therapeutics (PPGFT) and Biochemistry (PPGBioq), Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Brain Institute of Rio Grande do Sul, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil; McGill Centre for Studies in Aging, McGill University, Montreal, QC, Canada
| | - Hanna Cho
- Global Brain Health Institute, University of California San Francisco (UCSF), San Francisco, CA, USA; Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland; Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Boluwatife Adeleye Adewale
- Neuroscience and Ageing Research Unit, Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Agustin Ibanez
- Trinity College Dublin, Dublin, Ireland; Global Brain Health Institute, University of California San Francisco (UCSF), San Francisco, CA, USA; Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland; Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibanez, Santiago de Chile, Chile.
| |
Collapse
|
8
|
Colijn MA. Quetiapine, Clozapine, and Pimavanserin Treatment Response in Monogenic Parkinson's Disease Psychosis: A Systematic Review. J Neuropsychiatry Clin Neurosci 2024; 37:6-13. [PMID: 39034670 DOI: 10.1176/appi.neuropsych.20230231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Psychotic symptoms frequently occur in idiopathic Parkinson's disease (PD) and often require treatment with antipsychotic therapy. Most antipsychotics have the potential to worsen the motor symptoms of PD; quetiapine, clozapine, and pimavanserin are commonly used for the treatment of idiopathic PD because these medications tend to be comparatively well tolerated. Although psychotic symptoms may also occur in monogenic forms of PD, no reviews have focused on the use of antipsychotic medications in this context. The objective of the present systematic review was to characterize the effectiveness and tolerability of quetiapine, clozapine, and pimavanserin in monogenic PD-associated psychosis. A literature search was performed with PubMed, Scopus, and Embase. The search yielded 24 eligible articles describing 30 individuals, although treatment response with respect to psychotic symptoms was described in only 11 cases; of these, six individuals experienced symptomatic improvement or remission (four with clozapine and two with quetiapine), two exhibited a poor therapeutic response (one to clozapine and one to quetiapine), and the other three responded initially to antipsychotic therapy before experiencing a recurrence of symptoms. The use of quetiapine and clozapine in GBA variant-associated PD is briefly reviewed separately. Notably, no reports of pimavanserin therapy were identified. In keeping with the idiopathic PD literature, relatively low doses of medication were used in most cases. Lastly, side effects were rarely reported. Although quetiapine and particularly clozapine may be effective and well tolerated in the treatment of monogenic PD psychosis, this review highlights the paucity of available evidence to guide clinical decision making in this context.
Collapse
Affiliation(s)
- Mark Ainsley Colijn
- Department of Psychiatry, Hotchkiss Brain Institute, and Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, Alta., Canada
| |
Collapse
|
9
|
Khani M, Cerquera-Cleves C, Kekenadze M, Crea PAW, Singleton AB, Bandres-Ciga S. Towards a Global View of Parkinson's Disease Genetics. Ann Neurol 2024; 95:831-842. [PMID: 38557965 PMCID: PMC11060911 DOI: 10.1002/ana.26905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 04/04/2024]
Abstract
Parkinson's disease (PD) is a global health challenge, yet historically studies of PD have taken place predominantly in European populations. Recent genetics research conducted in non-European populations has revealed novel population-specific genetic loci linked to PD risk, highlighting the importance of studying PD globally. These insights have broadened our understanding of PD etiology, which is crucial for developing disease-modifying interventions. This review comprehensively explores the global genetic landscape of PD, emphasizing the scientific rationale for studying underrepresented populations. It underscores challenges, such as genotype-phenotype heterogeneity and inclusion difficulties for non-European participants, emphasizing the ongoing need for diverse and inclusive research in PD. ANN NEUROL 2024;95:831-842.
Collapse
Affiliation(s)
- Marzieh Khani
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Catalina Cerquera-Cleves
- Pontificia Universidad Javeriana, San Ignacio Hospital, Neurology Unit, Bogotá, Colombia
- CHU de Québec Research Center, Axe Neurosciences, Laval University. Quebec City, Canada
| | - Mariam Kekenadze
- Tbilisi State Medical University, Tbilisi, 0141, Georgia
- University College London, Queen Square Institute of Neurology , WC1N 3BG, London, UK
| | - Peter A. Wild Crea
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Andrew B. Singleton
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Sara Bandres-Ciga
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
10
|
Kamath SD, Holla VV, Phulpagar P, Kamble N, Yadav R, Muthusamy B, Pal PK. Clinicogenetic Characterization of Patients with PD and Heterozygous GBA1 Variants in an Indian Cohort. Mov Disord 2024; 39:628-630. [PMID: 38124431 DOI: 10.1002/mds.29699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/02/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Affiliation(s)
- Sneha D Kamath
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Vikram V Holla
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Prashant Phulpagar
- Institute of Bioinformatics, International Technology Park, Bengaluru, India
- Manipal Academy of Higher Education, Manipal, India
| | - Nitish Kamble
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Ravi Yadav
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Babylakshmi Muthusamy
- Institute of Bioinformatics, International Technology Park, Bengaluru, India
- Manipal Academy of Higher Education, Manipal, India
| | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| |
Collapse
|
11
|
Tan AH, Cornejo‐Olivas M, Okubadejo N, Pal PK, Saranza G, Saffie‐Awad P, Ahmad‐Annuar A, Schumacher‐Schuh AF, Okeng'o K, Mata IF, Gatto EM, Lim S. Genetic Testing for Parkinson's Disease and Movement Disorders in Less Privileged Areas: Barriers and Opportunities. Mov Disord Clin Pract 2024; 11:14-20. [PMID: 38291851 PMCID: PMC10828609 DOI: 10.1002/mdc3.13903] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/14/2023] [Accepted: 07/30/2023] [Indexed: 02/01/2024] Open
Affiliation(s)
- Ai Huey Tan
- Division of Neurology, Department of Medicine, Faculty of MedicineUniversity of MalayaKuala LumpurMalaysia
| | - Mario Cornejo‐Olivas
- Neurogenetics Working GroupUniversidad Científica del SurLimaPeru
- Neurogenetics Research Center, Instituto Nacional de Ciencias NeurológicasLimaPeru
| | - Njideka Okubadejo
- Department of Medicine, College of MedicineUniversity of LagosLagosNigeria
| | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS)BengaluruIndia
| | - Gerard Saranza
- Movement Disorders Service, Section of Neurology, Department of Internal Medicine, Chong Hua Hospital and Vicente Sotto Memorial Medical CenterCebuPhilippines
| | - Paula Saffie‐Awad
- CETRAM‐Centro de Estudios de Transtornos del Movimiento, Clínica Santa MaríaSantiagoChile
| | - Azlina Ahmad‐Annuar
- Department of Biomedical Science, Faculty of MedicineUniversity of MalayaKuala LumpurMalaysia
| | - Artur F. Schumacher‐Schuh
- Departamento de FarmacologiaUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
- Serviço de Neurologia, Hospital de Clínicas de Porto AlegrePorto AlegreBrazil
| | | | - Ignacio F. Mata
- Genomic Medicine Institute, Lerner Research Institute, Genomic Medicine, Cleveland Clinic FoundationClevelandOhioUSA
| | - Emilia M. Gatto
- Department of Neurology, Hospital Sanatorio de la Trinidad Mitre, Instituto de Neurociencias Buenos Aires, School of MedicineBuenos Aires UniversityBuenos AiresArgentina
| | - Shen‐Yang Lim
- Division of Neurology, Department of Medicine, Faculty of MedicineUniversity of MalayaKuala LumpurMalaysia
| |
Collapse
|
12
|
Lim SY, Klein C. Parkinson's Disease is Predominantly a Genetic Disease. JOURNAL OF PARKINSON'S DISEASE 2024; 14:467-482. [PMID: 38552119 PMCID: PMC11091652 DOI: 10.3233/jpd-230376] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/10/2024] [Indexed: 04/06/2024]
Abstract
The discovery of a pathogenic variant in the alpha-synuclein (SNCA) gene in the Contursi kindred in 1997 indisputably confirmed a genetic cause in a subset of Parkinson's disease (PD) patients. Currently, pathogenic variants in one of the seven established PD genes or the strongest known risk factor gene, GBA1, are identified in ∼15% of PD patients unselected for age at onset and family history. In this Debate article, we highlight multiple avenues of research that suggest an important - and in some cases even predominant - role for genetics in PD aetiology, including familial clustering, high rates of monogenic PD in selected populations, and complete penetrance with certain forms. At first sight, the steep increase in PD prevalence exceeding that of other neurodegenerative diseases may argue against a predominant genetic etiology. Notably, the principal genetic contribution in PD is conferred by pathogenic variants in LRRK2 and GBA1 and, in both cases, characterized by an overall late age of onset and age-related penetrance. In addition, polygenic risk plays a considerable role in PD. However, it is likely that, in the majority of PD patients, a complex interplay of aging, genetic, environmental, and epigenetic factors leads to disease development.
Collapse
Affiliation(s)
- Shen-Yang Lim
- The Mah Pooi Soo and Tan Chin Nam Centre for Parkinson’s and Related Disorders, University of Malaya, Kuala Lumpur, Malaysia
- Department of Medicine, Faculty of Medicine, Division of Neurology, University of Malaya, Kuala Lumpur, Malaysia
| | - Christine Klein
- Institute of Neurogenetics, University of Luebeck, Luebeck, Germany
| |
Collapse
|
13
|
Ou R, Li C, Wei Q, Liu K, Lin J, Yang T, Xiao Y, Jiang Q, Cheng Y, Hou Y, Zhang L, Song W, Chen X, Lai X, Shang H. Freezing of gait in Parkinson's disease with glucocerebrosidase mutations: prevalence, clinical correlates and effect on quality of life. Front Neurosci 2023; 17:1288631. [PMID: 38089969 PMCID: PMC10713814 DOI: 10.3389/fnins.2023.1288631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/13/2023] [Indexed: 03/17/2025] Open
Abstract
OBJECTIVES Mutations in glucocerebrosidase (GBA1) can change the clinical phenotype of Parkinson's disease (PD). This study aimed to explore the clinical characteristics of freezing of gait (FOG) in PD patients with GBA1 mutations. METHODS A whole-exome sequencing analysis was used to identify the GBA1 mutations (pathogenic or likely pathogenic) and exclude other PD-related gene mutations. A forward binary logistic regression model was conducted to identify the associated factors of FOG. The stepwise multiple linear regression analysis models were used to explore the effect of FOG on quality of life. RESULTS The prevalence of FOG in patients with GBA1 mutations (30/95, 31.6%) was significantly higher than those in patients without GBA1 mutations (152/760, 20%) (p = 0.009). A higher (i.e., worse) Unified PD Rating Scale part III score (OR = 1.126, 95%CI = 1.061-1.194, p < 0.001) and a lower (i.e., worse) Montreal Cognitive Assessment score (OR = 0.830, 95%CI = 0.713-0.967, p = 0.017) were significantly associated with FOG in PD patients with GBA1 mutations. The presence of FOG was significantly associated with the decreased (i.e., worse) score of PD Questionnaire 39 after adjustment for sex, age, disease duration, motor score, and non-motor score (B = 14.981, p = 0.001). CONCLUSION FOG is a relatively common disabling symptom in PD patients with GBA1 mutations, which is affected by motor disability and cognitive decline. Quality of life is reduced in patients with FOG and GBA1 mutations.
Collapse
Affiliation(s)
- Ruwei Ou
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chunyu Li
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qianqian Wei
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kuncheng Liu
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Junyu Lin
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tianmi Yang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yi Xiao
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qirui Jiang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yangfan Cheng
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yanbing Hou
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lingyu Zhang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wei Song
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xueping Chen
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaohui Lai
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Huifang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
14
|
Koros C, Bougea A, Simitsi AM, Papagiannakis N, Angelopoulou E, Pachi I, Antonelou R, Bozi M, Stamelou M, Stefanis L. The Landscape of Monogenic Parkinson's Disease in Populations of Non-European Ancestry: A Narrative Review. Genes (Basel) 2023; 14:2097. [PMID: 38003040 PMCID: PMC10671808 DOI: 10.3390/genes14112097] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
INTRODUCTION There has been a bias in the existing literature on Parkinson's disease (PD) genetics as most studies involved patients of European ancestry, mostly in Europe and North America. Our target was to review published research data on the genetic profile of PD patients of non-European or mixed ancestry. METHODS We reviewed articles published during the 2000-2023 period, focusing on the genetic status of PD patients of non-European origin (Indian, East and Central Asian, Latin American, sub-Saharan African and Pacific islands). RESULTS There were substantial differences regarding monogenic PD forms between patients of European and non-European ancestry. The G2019S Leucine Rich Repeat Kinase 2 (LRRK2) mutation was rather scarce in non-European populations. In contrast, East Asian patients carried different mutations like p.I2020T, which is common in Japan. Parkin (PRKN) variants had a global distribution, being common in early-onset PD in Indians, in East Asians, and in early-onset Mexicans. Furthermore, they were occasionally present in Black African PD patients. PTEN-induced kinase 1 (PINK1) and PD protein 7 (DJ-1) variants were described in Indian, East Asian and Pacific Islands populations. Glucocerebrosidase gene variants (GBA1), which represent an important predisposing factor for PD, were found in East and Southeast Asian and Indian populations. Different GBA1 variants have been reported in Black African populations and Latin Americans. CONCLUSIONS Existing data reveal a pronounced heterogeneity in the genetic background of PD. A number of common variants in populations of European ancestry appeared to be absent or scarce in patients of diverse ethnic backgrounds. Large-scale studies that include genetic screening in African, Asian or Latin American populations are underway. The outcomes of such efforts will facilitate further clinical studies and will possibly contribute to the identification of either new pathogenic mutations in already described genes or novel PD-related genes.
Collapse
Affiliation(s)
- Christos Koros
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (C.K.); (A.M.S.); (N.P.); (E.A.); (I.P.); (R.A.); (L.S.)
| | - Anastasia Bougea
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (C.K.); (A.M.S.); (N.P.); (E.A.); (I.P.); (R.A.); (L.S.)
| | - Athina Maria Simitsi
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (C.K.); (A.M.S.); (N.P.); (E.A.); (I.P.); (R.A.); (L.S.)
| | - Nikolaos Papagiannakis
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (C.K.); (A.M.S.); (N.P.); (E.A.); (I.P.); (R.A.); (L.S.)
| | - Efthalia Angelopoulou
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (C.K.); (A.M.S.); (N.P.); (E.A.); (I.P.); (R.A.); (L.S.)
| | - Ioanna Pachi
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (C.K.); (A.M.S.); (N.P.); (E.A.); (I.P.); (R.A.); (L.S.)
| | - Roubina Antonelou
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (C.K.); (A.M.S.); (N.P.); (E.A.); (I.P.); (R.A.); (L.S.)
| | - Maria Bozi
- Dafni Psychiatric Hospital, 12462 Athens, Greece;
- 2nd Department of Neurology, Attikon Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | | | - Leonidas Stefanis
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (C.K.); (A.M.S.); (N.P.); (E.A.); (I.P.); (R.A.); (L.S.)
| |
Collapse
|
15
|
Zhou Y, Wang Y, Wan J, Zhao Y, Pan H, Zeng Q, Zhou X, He R, Zhou X, Xiang Y, Zhou Z, Chen B, Sun Q, Xu Q, Tan J, Shen L, Jiang H, Yan X, Li J, Guo J, Tang B, Wu H, Liu Z. Mutational spectrum and clinical features of GBA1 variants in a Chinese cohort with Parkinson's disease. NPJ Parkinsons Dis 2023; 9:129. [PMID: 37658046 PMCID: PMC10474275 DOI: 10.1038/s41531-023-00571-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/16/2023] [Indexed: 09/03/2023] Open
Abstract
GBA1 variants are important risk factors for Parkinson's disease (PD). Most studies assessing GBA1-related PD risk have been performed in European-derived populations. Although the coding region of the GBA1 gene in the Chinese population has been analyzed, the sample sizes were not adequate. In this study, we aimed to investigate GBA1 variants in a large Chinese cohort of patients with PD and healthy control and explore the associated clinical characteristics. GBA1 variants in 4034 patients and 2931 control participants were investigated using whole-exome and whole-genome sequencing. The clinical features of patients were evaluated using several scales. Regression analysis, chi-square, and Fisher exact tests were used to analyze GBA1 variants and the clinical symptoms of different groups. We identified 104 variants, including 8 novel variants, expanding the spectrum of GBA1 variants. The frequency of GBA1 variants in patients with PD was 7.46%, higher than that in the control (1.81%) (P < 0.001, odds ratio [OR] = 4.38, 95% confidence interval [CI]: 3.26-5.89). Among patients, 176 (4.36%) had severe variants, 34 (0.84%) carried mild variants, three (0.07%) had risk variants, and 88 (2.18%) carried unknown variants. Our study, for the first time, found that p.G241R (P = 0.007, OR = 15.3, 95% CI: 1.25-261.1) and p.S310G (P = 0.005, OR = 4.86, 95% CI: 1.52-28.04) variants increased the risk of PD. Patients with GBA1 variants exhibited an earlier onset age and higher risk of probable rapid-eye-movement sleep behavior disorder, olfactory dysfunction, depression, and autonomic dysfunction than patients without GBA1 variants.
Collapse
Affiliation(s)
- Yangjie Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yige Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Juan Wan
- Department of Neurology, & Multi-Omics Research Center for Brain Disorders, The First Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Yuwen Zhao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hongxu Pan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qian Zeng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xun Zhou
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Runcheng He
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoxia Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yaqin Xiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhou Zhou
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bin Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiying Sun
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qian Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jieqiong Tan
- Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Changsha, Hunan, China
- Bioinformatics Center & National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Changsha, Hunan, China
| | - Xinxiang Yan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jinchen Li
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
- Bioinformatics Center & National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Changsha, Hunan, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Neurology, & Multi-Omics Research Center for Brain Disorders, The First Affiliated Hospital, University of South China, Hengyang, Hunan, China
- Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Changsha, Hunan, China
- Bioinformatics Center & National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Heng Wu
- Department of Neurology, & Multi-Omics Research Center for Brain Disorders, The First Affiliated Hospital, University of South China, Hengyang, Hunan, China.
- Clinical Research Center for Immune-Related Encephalopathy of Hunan Province, Hengyang, Hunan, China.
| | - Zhenhua Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China.
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Changsha, Hunan, China.
- Bioinformatics Center & National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
16
|
Chatterjee D, Krainc D. Mechanisms of Glucocerebrosidase Dysfunction in Parkinson's Disease. J Mol Biol 2023; 435:168023. [PMID: 36828270 PMCID: PMC10247409 DOI: 10.1016/j.jmb.2023.168023] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023]
Abstract
Beta-glucocerebrosidase is a lysosomal hydrolase, encoded by GBA1 that represents the most common risk gene associated with Parkinson's disease (PD) and Lewy Body Dementia. Glucocerebrosidase dysfunction has been also observed in the absence of GBA1 mutations across different genetic and sporadic forms of PD and related disorders, suggesting a broader role of glucocerebrosidase in neurodegeneration. In this review, we highlight recent advances in mechanistic characterization of glucocerebrosidase function as the foundation for development of novel therapeutics targeting glucocerebrosidase in PD and related disorders.
Collapse
Affiliation(s)
- Diptaman Chatterjee
- Ken and Ruth Davee Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA. https://twitter.com/NeilChatterBox
| | - Dimitri Krainc
- Ken and Ruth Davee Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA; Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
17
|
Tang Y, Wei L, Wu Z, Xu P, Mo M. Parkinson's disease in a patient with GBA and LRRK2 covariants after acute hypoxic insult: a case report. BMC Neurol 2023; 23:226. [PMID: 37301871 PMCID: PMC10257258 DOI: 10.1186/s12883-023-03269-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND The glucocerebrosidase (GBA) and leucine-rich repeat kinase 2 (LRRK2) genes are associated with the risk of sporadic Parkinson's disease (PD). As an environmental factor, hypoxic insults may impair dopamine neurons in the substantia nigra and exacerbate PD symptoms. However, covariants of GBA and LRRK2 combined with hypoxic insults in clinical cases of Parkinsonism have not yet been reported. CASE PRESENTATION A 69-year-old male patient with PD and his relatives were clinically characterized and sequenced using the whole-exome technique. A novel covariant, c.1448 T > C (p. L483P, rs421016) on GBA and c.691 T > C (p. S231P, rs201332859) on LRRK2 were identified in this patient who first developed bradykinesia and rigidity in the neck at one month after an acute hypoxic insult during mountaineering. The patient presented with a mask-like face, festinating gait, asymmetric bradykinesia, and moderate rigidity. These symptoms were treated with levodopa and pramipexole, resulting in a 65% improvement in the Unified Parkinson's Disease Rating Scale (UPDRS) motor score. These parkinsonian symptoms persisted and developed with hallucinations, constipation, and rapid eye movement sleep behavior disorder. After 4 years, the patient exhibited a wearing-off phenomenon and died from pulmonary infection 8 years after disease onset. His parents, wife, and siblings were not diagnosed with PD, and his son carried p. L483P without Parkinsonism-like symptoms. CONCLUSIONS This is a case report of PD after hypoxic insult in a patient carrying a covariant of GBA and LRRK2. This study may help us understand the interaction between genetic and environmental factors in clinical PD.
Collapse
Affiliation(s)
- Yuting Tang
- Department of Neurology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lijian Wei
- Department of Neurology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhuohua Wu
- Department of Neurology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Pingyi Xu
- Department of Neurology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mingshu Mo
- Department of Neurology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
18
|
Jagota P, Lim S, Pal PK, Lee J, Kukkle PL, Fujioka S, Shang H, Phokaewvarangkul O, Bhidayasiri R, Mohamed Ibrahim N, Ugawa Y, Aldaajani Z, Jeon B, Diesta C, Shambetova C, Lin C. Genetic Movement Disorders Commonly Seen in Asians. Mov Disord Clin Pract 2023; 10:878-895. [PMID: 37332644 PMCID: PMC10272919 DOI: 10.1002/mdc3.13737] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 02/27/2023] [Accepted: 03/21/2023] [Indexed: 11/21/2023] Open
Abstract
The increasing availability of molecular genetic testing has changed the landscape of both genetic research and clinical practice. Not only is the pace of discovery of novel disease-causing genes accelerating but also the phenotypic spectra associated with previously known genes are expanding. These advancements lead to the awareness that some genetic movement disorders may cluster in certain ethnic populations and genetic pleiotropy may result in unique clinical presentations in specific ethnic groups. Thus, the characteristics, genetics and risk factors of movement disorders may differ between populations. Recognition of a particular clinical phenotype, combined with information about the ethnic origin of patients could lead to early and correct diagnosis and assist the development of future personalized medicine for patients with these disorders. Here, the Movement Disorders in Asia Task Force sought to review genetic movement disorders that are commonly seen in Asia, including Wilson's disease, spinocerebellar ataxias (SCA) types 12, 31, and 36, Gerstmann-Sträussler-Scheinker disease, PLA2G6-related parkinsonism, adult-onset neuronal intranuclear inclusion disease (NIID), and paroxysmal kinesigenic dyskinesia. We also review common disorders seen worldwide with specific mutations or presentations that occur frequently in Asians.
Collapse
Affiliation(s)
- Priya Jagota
- Chulalongkorn Centre of Excellence for Parkinson's Disease and Related Disorders, Department of Medicine, Faculty of MedicineChulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross SocietyBangkokThailand
| | - Shen‐Yang Lim
- Division of Neurology, Department of Medicine, Faculty of MedicineUniversity of MalayaKuala LumpurMalaysia
- The Mah Pooi Soo & Tan Chin Nam Centre for Parkinson's & Related Disorders, Faculty of MedicineUniversity of MalayaKuala LumpurMalaysia
| | - Pramod Kumar Pal
- Department of NeurologyNational Institute of Mental Health & Neurosciences (NIMHANS)BengaluruIndia
| | - Jee‐Young Lee
- Department of NeurologySeoul Metropolitan Government‐Seoul National University Boramae Medical Center & Seoul National University College of MedicineSeoulRepublic of Korea
| | - Prashanth Lingappa Kukkle
- Center for Parkinson's Disease and Movement DisordersManipal HospitalBangaloreIndia
- Parkinson's Disease and Movement Disorders ClinicBangaloreIndia
| | - Shinsuke Fujioka
- Department of Neurology, Fukuoka University, Faculty of MedicineFukuokaJapan
| | - Huifang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases CenterWest China Hospital, Sichuan UniversityChengduChina
| | - Onanong Phokaewvarangkul
- Chulalongkorn Centre of Excellence for Parkinson's Disease and Related Disorders, Department of Medicine, Faculty of MedicineChulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross SocietyBangkokThailand
| | - Roongroj Bhidayasiri
- Chulalongkorn Centre of Excellence for Parkinson's Disease and Related Disorders, Department of Medicine, Faculty of MedicineChulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross SocietyBangkokThailand
- The Academy of Science, The Royal Society of ThailandBangkokThailand
| | - Norlinah Mohamed Ibrahim
- Neurology Unit, Department of Medicine, Faculty of MedicineUniversiti Kebangsaan MalaysiaKuala LumpurMalaysia
| | - Yoshikazu Ugawa
- Deprtment of Human Neurophysiology, Faculty of MedicineFukushima Medical UniversityFukushimaJapan
| | - Zakiyah Aldaajani
- Neurology Unit, King Fahad Military Medical ComplexDhahranSaudi Arabia
| | - Beomseok Jeon
- Department of NeurologySeoul National University College of MedicineSeoulRepublic of Korea
- Movement Disorder CenterSeoul National University HospitalSeoulRepublic of Korea
| | - Cid Diesta
- Section of Neurology, Department of NeuroscienceMakati Medical Center, NCRMakatiPhilippines
| | | | - Chin‐Hsien Lin
- Department of NeurologyNational Taiwan University HospitalTaipeiTaiwan
| |
Collapse
|
19
|
Tay YW, Tan AH, Lim JL, Lohmann K, Ibrahim KA, Abdul Aziz Z, Chin YT, Mawardi AS, Lim TT, Looi I, Chia YK, Ooi JCE, Cheah WK, Dy Closas AMF, Lit LC, Hor JW, Toh TS, Muthusamy KA, Bauer P, Skrahin V, Rolfs A, Klein C, Ahmad-Annuar A, Lim SY. Genetic study of early-onset Parkinson's disease in the Malaysian population. Parkinsonism Relat Disord 2023; 111:105399. [PMID: 37209484 DOI: 10.1016/j.parkreldis.2023.105399] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/17/2023] [Accepted: 04/11/2023] [Indexed: 05/22/2023]
Abstract
BACKGROUND About 5-10% of Parkinson's disease (PD) cases are early onset (EOPD), with several genes implicated, including GBA1, PRKN, PINK1, and SNCA. The spectrum and frequency of mutations vary across populations and globally diverse studies are crucial to comprehensively understand the genetic architecture of PD. The ancestral diversity of Southeast Asians offers opportunities to uncover a rich PD genetics landscape, and identify common regional mutations and new pathogenic variants. OBJECTIVES This study aimed to investigate the genetic architecture of EOPD in a multi-ethnic Malaysian cohort. METHODS 161 index patients with PD onset ≤50 years were recruited from multiple centers across Malaysia. A two-step approach to genetic testing was used, combining a next-generation sequencing-based PD gene panel and multiplex ligation-dependent probe amplification (MLPA). RESULTS Thirty-five patients (21.7%) carried pathogenic or likely pathogenic variants involving (in decreasing order of frequency): GBA1, PRKN, PINK1, DJ-1, LRRK2, and ATP13A2. Pathogenic/likely pathogenic variants in GBA1 were identified in thirteen patients (8.1%), and were also commonly found in PRKN and PINK1 (11/161 = 6.8% and 6/161 = 3.7%, respectively). The overall detection rate was even higher in those with familial history (48.5%) or age of diagnosis ≤40 years (34.8%). PRKN exon 7 deletion and the PINK1 p.Leu347Pro variant appear to be common among Malay patients. Many novel variants were found across the PD-related genes. CONCLUSIONS This study provides novel insights into the genetic architecture of EOPD in Southeast Asians, expands the genetic spectrum in PD-related genes, and highlights the importance of diversifying PD genetic research to include under-represented populations.
Collapse
Affiliation(s)
- Yi Wen Tay
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Ai Huey Tan
- The Mah Pooi Soo & Tan Chin Nam Centre for Parkinson's & Related Disorders, University of Malaya, Kuala Lumpur, Malaysia; Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Jia Lun Lim
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Katja Lohmann
- Institute of Neurogenetics, University of Luebeck, Luebeck, Germany
| | - Khairul Azmi Ibrahim
- Department of Medicine, Hospital Sultanah Nur Zahirah, Kuala Terengganu, Malaysia
| | - Zariah Abdul Aziz
- Department of Medicine, Hospital Sultanah Nur Zahirah, Kuala Terengganu, Malaysia
| | - Yen Theng Chin
- Department of Medicine, Hospital Sultanah Nur Zahirah, Kuala Terengganu, Malaysia
| | | | | | - Irene Looi
- Department of Neurology, Seberang Jaya Hospital, Penang, Malaysia
| | - Yuen Kang Chia
- Department of Neurology, Queen Elizabeth Hospital, Kota Kinabalu, Sabah, Malaysia
| | - Joshua Chin Ern Ooi
- Department of Neurology, Queen Elizabeth Hospital, Kota Kinabalu, Sabah, Malaysia
| | - Wee Kooi Cheah
- Department of Geriatrics, Taiping Hospital, Taiping, Malaysia
| | - Alfand Marl F Dy Closas
- The Mah Pooi Soo & Tan Chin Nam Centre for Parkinson's & Related Disorders, University of Malaya, Kuala Lumpur, Malaysia; Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Lei Cheng Lit
- Department of Physiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Jia Wei Hor
- The Mah Pooi Soo & Tan Chin Nam Centre for Parkinson's & Related Disorders, University of Malaya, Kuala Lumpur, Malaysia; Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Tzi Shin Toh
- The Mah Pooi Soo & Tan Chin Nam Centre for Parkinson's & Related Disorders, University of Malaya, Kuala Lumpur, Malaysia; Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kalai Arasu Muthusamy
- Division of Neurosurgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Peter Bauer
- Centogene GmbH, Am Strande 7, 18057, Rostock, Germany
| | - Volha Skrahin
- Centogene GmbH, Am Strande 7, 18057, Rostock, Germany; Arcensus, Goethestrasse 20, 18055, Rostock, Germany
| | - Arndt Rolfs
- Centogene GmbH, Am Strande 7, 18057, Rostock, Germany; Arcensus, Goethestrasse 20, 18055, Rostock, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Luebeck, Luebeck, Germany.
| | - Azlina Ahmad-Annuar
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| | - Shen-Yang Lim
- The Mah Pooi Soo & Tan Chin Nam Centre for Parkinson's & Related Disorders, University of Malaya, Kuala Lumpur, Malaysia; Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
20
|
GBA1 Gene Mutations in α-Synucleinopathies-Molecular Mechanisms Underlying Pathology and Their Clinical Significance. Int J Mol Sci 2023; 24:ijms24032044. [PMID: 36768367 PMCID: PMC9917178 DOI: 10.3390/ijms24032044] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
α-Synucleinopathies comprise a group of neurodegenerative diseases characterized by altered accumulation of a protein called α-synuclein inside neurons and glial cells. This aggregation leads to the formation of intraneuronal inclusions, Lewy bodies, that constitute the hallmark of α-synuclein pathology. The most prevalent α-synucleinopathies are Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA). To date, only symptomatic treatment is available for these disorders, hence new approaches to their therapy are needed. It has been observed that GBA1 mutations are one of the most impactful risk factors for developing α-synucleinopathies such as PD and DLB. Mutations in the GBA1 gene, which encodes a lysosomal hydrolase β-glucocerebrosidase (GCase), cause a reduction in GCase activity and impaired α-synuclein metabolism. The most abundant GBA1 gene mutations are N370S or N409S, L444P/L483P and E326K/E365K. The mechanisms by which GCase impacts α-synuclein aggregation are poorly understood and need to be further investigated. Here, we discuss some of the potential interactions between α-synuclein and GCase and show how GBA1 mutations may impact the course of the most prevalent α-synucleinopathies.
Collapse
|
21
|
Closas AMFD, Lohmann K, Tan AH, Ibrahim NM, Lim JL, Tay YW, Muthusamy KA, Ahmad-Annuar AB, Klein C, Lim SY. A KMT2B Frameshift Variant Causing Focal Dystonia Restricted to the Oromandibular Region After Long-Term Follow-up. J Mov Disord 2023; 16:91-94. [PMID: 36537064 PMCID: PMC9978264 DOI: 10.14802/jmd.22109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/14/2022] [Indexed: 12/28/2022] Open
Abstract
KMT2B-linked dystonia (DYT-KMT2B) is a childhood-onset dystonia syndrome typically beginning in the lower limbs and progressing caudocranially to affect the upper limbs with eventual prominent craniocervical involvement. Despite its recent recognition, it now appears to be one of the more common monogenic causes of dystonia syndromes. Here, we present an atypical case of DYT-KMT2B with oromandibular dystonia as the presenting feature, which remained restricted to this region three decades after symptom onset. This appears to be the first reported case of DYT-KMT2B from Southeast Asia and provides further supporting evidence for the pathogenic impact of the KMT2B c.6210_6213delTGAG variant.
Collapse
Affiliation(s)
- Alfand Marl F. Dy Closas
- Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia,The Mah Pooi Soo and Tan Chin Nam Centre for Parkinson’s and Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Katja Lohmann
- Institute of Neurogenetics, University of Luebeck, Luebeck, Germany
| | - Ai Huey Tan
- Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia,The Mah Pooi Soo and Tan Chin Nam Centre for Parkinson’s and Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Norlinah Mohamed Ibrahim
- Neurology Unit, Department of Medicine, Faculty of Medicine, The National University of Malaysia, Kuala Lumpur, Malaysia
| | - Jia Lun Lim
- The Mah Pooi Soo and Tan Chin Nam Centre for Parkinson’s and Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia,Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yi Wen Tay
- The Mah Pooi Soo and Tan Chin Nam Centre for Parkinson’s and Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia,Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kalai Arasu Muthusamy
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Christine Klein
- Institute of Neurogenetics, University of Luebeck, Luebeck, Germany
| | - Shen-Yang Lim
- Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia,The Mah Pooi Soo and Tan Chin Nam Centre for Parkinson’s and Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia,Corresponding author: Shen-Yang Lim, MD, FRACP, FASc Division of Neurology, Department of Medicine, Faculty of Medicine, Neurology Laboratory, Level 6 South Block, University of Malaya Medical Centre, Kuala Lumpur 50603, Malaysia / Tel: +603-7949-2891 / E-mail:
| |
Collapse
|
22
|
Abdul Murad NA, Sulaiman SA, Ahmad-Annuar A, Mohamed Ibrahim N, Mohamed W, Md Rani SA, Mok KY. Editorial: Genetic and molecular diversity in Parkinson's disease. Front Aging Neurosci 2022; 14:1094914. [PMID: 36589546 PMCID: PMC9800990 DOI: 10.3389/fnagi.2022.1094914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Affiliation(s)
- Nor Azian Abdul Murad
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
| | - Siti Aishah Sulaiman
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
| | - Azlina Ahmad-Annuar
- Department of Biomedical Science, Faculty of Medicine, University of Malaya (UM), Kuala Lumpur, Malaysia
| | - Norlinah Mohamed Ibrahim
- Neurology Unit, Department of Medicine, Faculty of Medicine, Hospital Canselor Tuanku Muhriz, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia,*Correspondence: Norlinah Mohamed Ibrahim ✉
| | - Wael Mohamed
- Kulliyah of Medicine, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Shahrul Azmin Md Rani
- Neurology Unit, Department of Medicine, Faculty of Medicine, Hospital Canselor Tuanku Muhriz, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
| | - Kin Ying Mok
- Department of Neurodegenerative Disease, University College London (UCL) Institute of Neurology, University College London, London, United Kingdom,State Key Laboratory of Molecular Neuroscience, Division of Life Science, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, Hong Kong SAR, China,Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong, Hong Kong SAR, China,Kin Ying Mok ✉
| |
Collapse
|
23
|
Angelopoulou E, Bougea A, Papageorgiou SG, Villa C. Psychosis in Parkinson's Disease: A Lesson from Genetics. Genes (Basel) 2022; 13:genes13061099. [PMID: 35741861 PMCID: PMC9222985 DOI: 10.3390/genes13061099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 02/06/2023] Open
Abstract
Psychosis in Parkinson's disease (PDP) represents a common and debilitating condition that complicates Parkinson's disease (PD), mainly in the later stages. The spectrum of psychotic symptoms are heterogeneous, ranging from minor phenomena of mild illusions, passage hallucinations and sense of presence to severe psychosis consisting of visual hallucinations (and rarely, auditory and tactile or gustatory) and paranoid delusions. PDP is associated with increased caregiver stress, poorer quality of life for patients and carers, reduced survival and risk of institutionalization with a significant burden on the healthcare system. Although several risk factors for PDP development have been identified, such as aging, sleep disturbances, long history of PD, cognitive impairment, depression and visual disorders, the pathophysiology of psychosis in PD is complex and still insufficiently clarified. Additionally, several drugs used to treat PD can aggravate or even precipitate PDP. Herein, we reviewed and critically analyzed recent studies exploring the genetic architecture of psychosis in PD in order to further understand the pathophysiology of PDP, the risk factors as well as the most suitable therapeutic strategies.
Collapse
Affiliation(s)
- Efthalia Angelopoulou
- Department of Neurology, Eginition University Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (E.A.); (A.B.); (S.G.P.)
| | - Anastasia Bougea
- Department of Neurology, Eginition University Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (E.A.); (A.B.); (S.G.P.)
| | - Sokratis G. Papageorgiou
- Department of Neurology, Eginition University Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (E.A.); (A.B.); (S.G.P.)
| | - Chiara Villa
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
- Correspondence: ; Tel.: +39-02-6448-8138
| |
Collapse
|
24
|
Monogenic Parkinson’s Disease: Genotype, Phenotype, Pathophysiology, and Genetic Testing. Genes (Basel) 2022; 13:genes13030471. [PMID: 35328025 PMCID: PMC8950888 DOI: 10.3390/genes13030471] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/24/2022] [Accepted: 03/02/2022] [Indexed: 02/07/2023] Open
Abstract
Parkinson’s disease may be caused by a single pathogenic variant (monogenic) in 5–10% of cases, but investigation of these disorders provides valuable pathophysiological insights. In this review, we discuss each genetic form with a focus on genotype, phenotype, pathophysiology, and the geographic and ethnic distribution. Well-established Parkinson’s disease genes include autosomal dominant forms (SNCA, LRRK2, and VPS35) and autosomal recessive forms (PRKN, PINK1 and DJ1). Furthermore, mutations in the GBA gene are a key risk factor for Parkinson’s disease, and there have been major developments for X-linked dystonia parkinsonism. Moreover, atypical or complex parkinsonism may be due to mutations in genes such as ATP13A2, DCTN1, DNAJC6, FBXO7, PLA2G6, and SYNJ1. Furthermore, numerous genes have recently been implicated in Parkinson’s disease, such as CHCHD2, LRP10, TMEM230, UQCRC1, and VPS13C. Additionally, we discuss the role of heterozygous mutations in autosomal recessive genes, the effect of having mutations in two Parkinson’s disease genes, the outcome of deep brain stimulation, and the role of genetic testing. We highlight that monogenic Parkinson’s disease is influenced by ethnicity and geographical differences, reinforcing the need for global efforts to pool large numbers of patients and identify novel candidate genes.
Collapse
|