1
|
Li Z, Qin J, Zhu Y, Zhou M, Zhao N, Zhou E, Wang X, Chen X, Cui X. Occurrence, distribution, and genetic diversity of faba bean viruses in China. Front Microbiol 2024; 15:1424699. [PMID: 38962134 PMCID: PMC11219563 DOI: 10.3389/fmicb.2024.1424699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/06/2024] [Indexed: 07/05/2024] Open
Abstract
With worldwide cultivation, the faba bean (Vicia faba L.) stands as one of the most vital cool-season legume crops, serving as a major component of food security. China leads global faba bean production in terms of both total planting area and yield, with major production hubs in Yunnan, Sichuan, Jiangsu, and Gansu provinces. The faba bean viruses have caused serious yield losses in these production areas, but previous researches have not comprehensively investigated this issue. In this study, we collected 287 faba bean samples over three consecutive years from eight provinces/municipalities of China. We employed small RNA sequencing, RT-PCR, DNA sequencing, and phylogenetic analysis to detect the presence of viruses and examine their incidence, distribution, and genetic diversity. We identified a total of nine distinct viruses: bean yellow mosaic virus (BYMV, Potyvirus), milk vetch dwarf virus (MDV, Nanovirus), vicia cryptic virus (VCV, Alphapartitivirus), bean common mosaic virus (BCMV, Potyvirus), beet western yellows virus (BWYV, Polerovirus), broad bean wilt virus (BBWV, Fabavirus), soybean mosaic virus (SMV, Potyvirus), pea seed-borne mosaic virus (PSbMV, Potyvirus), and cucumber mosaic virus (CMV, Cucumovirus). BYMV was the predominant virus found during our sampling, followed by MDV and VCV. This study marks the first reported detection of BCMV in Chinese faba bean fields. Except for several isolates from Gansu and Yunnan provinces, our sequence analysis revealed that the majority of BYMV isolates contain highly conserved nucleotide sequences of coat protein (CP). Amino acid sequence alignment indicates that there is a conserved NAG motif at the N-terminal region of BYMV CP, which is considered important for aphid transmission. Our findings not only highlight the presence and diversity of pathogenic viruses in Chinese faba bean production, but also provide target pathogens for future antiviral resource screening and a basis for antiviral breeding.
Collapse
Affiliation(s)
- Zongdi Li
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, Jiangsu, China
- Department of Economic Crops, Yanjiang Institute of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Nantong, Jiangsu, China
| | - Jiachao Qin
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, Jiangsu, China
| | - Yuxiang Zhu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, Jiangsu, China
| | - Mimi Zhou
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, Jiangsu, China
| | - Na Zhao
- Department of Economic Crops, Yanjiang Institute of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Nantong, Jiangsu, China
| | - Enqiang Zhou
- Department of Economic Crops, Yanjiang Institute of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Nantong, Jiangsu, China
| | - Xuejun Wang
- Department of Economic Crops, Yanjiang Institute of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Nantong, Jiangsu, China
| | - Xin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, Jiangsu, China
| | - Xiaoyan Cui
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Belkina D, Karpova D, Porotikova E, Lifanov I, Vinogradova S. Grapevine Virome of the Don Ampelographic Collection in Russia Has Concealed Five Novel Viruses. Viruses 2023; 15:2429. [PMID: 38140672 PMCID: PMC10747563 DOI: 10.3390/v15122429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
In this study, an analysis of the virome of 51 grapevines from the Don ampelographic collection named after Ya. I. Potapenko (Russia) was performed using high-throughput sequencing of total RNA. A total of 20 previously described grapevine viruses and 4 viroids were identified. The most detected were grapevine rupestris stem pitting-associated virus (98%), hop stunt viroid (98%), grapevine Pinot gris virus (96%), grapevine yellow speckle viroid 1 (94%), and grapevine fleck virus (GFkV, 80%). Among the economically significant viruses, the most present were grapevine leafroll-associated virus 3 (37%), grapevine virus A (24%), and grapevine leafroll-associated virus 1 (16%). For the first time in Russia, a grapevine-associated tymo-like virus (78%) was detected. After a bioinformatics analysis, 123 complete or nearly complete viral genomes and 64 complete viroid genomes were assembled. An analysis of the phylogenetic relationships with reported global isolates was performed. We discovered and characterized the genomes of five novel grapevine viruses: bipartite dsRNA grapevine alphapartitivirus (genus Alphapartitivirus, family Partitiviridae), bipartite (+) ssRNA grapevine secovirus (genus Fabavirus, family Secoviridae) and three (+) ssRNA grapevine umbra-like viruses 2, -3, -4 (which phylogenetically occupy an intermediate position between representatives of the genus Umbravirus and umbravirus-like associated RNAs).
Collapse
Affiliation(s)
- Daria Belkina
- Skryabin Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect, 33, Build. 2, 119071 Moscow, Russia; (D.B.)
- North Caucasian Federal Scientific Center of Horticulture, Viticulture, Wine-Making, 40 Years of Victory Street, Build. 39, 350901 Krasnodar, Russia
| | - Daria Karpova
- Skryabin Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect, 33, Build. 2, 119071 Moscow, Russia; (D.B.)
- North Caucasian Federal Scientific Center of Horticulture, Viticulture, Wine-Making, 40 Years of Victory Street, Build. 39, 350901 Krasnodar, Russia
| | - Elena Porotikova
- Skryabin Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect, 33, Build. 2, 119071 Moscow, Russia; (D.B.)
| | - Ilya Lifanov
- Skryabin Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect, 33, Build. 2, 119071 Moscow, Russia; (D.B.)
| | - Svetlana Vinogradova
- Skryabin Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect, 33, Build. 2, 119071 Moscow, Russia; (D.B.)
- North Caucasian Federal Scientific Center of Horticulture, Viticulture, Wine-Making, 40 Years of Victory Street, Build. 39, 350901 Krasnodar, Russia
| |
Collapse
|
3
|
Molecular characterization of a putative alphapartitivirus from Impatiens balsamina L. Arch Virol 2022; 167:2099-2102. [PMID: 35829823 DOI: 10.1007/s00705-022-05537-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/06/2022] [Indexed: 11/02/2022]
Abstract
Two double stranded RNAs (dsRNAs) that likely represent the genome of an alphapartitivirus, tentatively named "impatiens cryptic virus 1" (ICV1), were recovered from Impatiens balsamina L. RNA1 (2008 bp) codes for the RNA-dependent RNA polymerase (RdRp) of ICV1, which shares <83% amino acid sequence identity with the RdRps of other alphapartitiviruses. RNA2 (1906 bp) codes for the coat protein (CP) of ICV1, which shares <60% amino acid sequence identity with the CPs of other alphapartitiviruses. Phylogenetic analysis suggested that ICV1 is closely related to plant alphapartitiviruses, including vicia cryptic virus, beet cryptic virus 1, carrot cryptic virus, and white clover cryptic virus 1. Using primers specific for RNA1 or RNA2, ICV1 could be detected in I. balsamina from various parts of China.
Collapse
|
4
|
Xu H, Lu X, Wang C, Ning J, Chen M, Wang Y, Yuan K. Potential Roles of PTEN on Longevity in Two Closely Related Argopecten Scallops With Distinct Lifespans. Front Physiol 2022; 13:872562. [PMID: 35903068 PMCID: PMC9317058 DOI: 10.3389/fphys.2022.872562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Phosphatase and tensin homolog deleted on chromosome ten (PTEN) has been found to regulate longevity through the PI3K/Akt/FoxO pathway and maintenance of genome integrity in worms, flies, and mammals. However, limited information is available on the roles of PTEN in longevity of aquatic animals. Here we extended this paradigm using two closely related Argopecten scallops, Argopecten purpuratus, and Argopecten irradians, with significantly distinct life spans, which are commercially important bivalve species for fishery and aquaculture in China, United States, Peru, and Chile. The ORFs of the ApPTEN and AiPTEN were 1,476 and 1,473 bp, which encoded 491 and 490 amino acids, respectively. There were 48 synonymous and 16 non-synonymous SNPs and one InDel of three nucleotides between ApPTEN and AiPTEN, resulting in variations in 15 amino acids and lack of S453 in AiPTEN. Differences in conformation and posttranslational modification were predicted between ApPTEN and AiPTEN, which may indicate different activities of ApPTEN and AiPTEN. When the animals were subjected to nutrition restriction, the expression of both ApPTEN and AiPTEN was upregulated, with AiPTEN responded faster and more robust than ApPTEN. Ionizing radiation induced significantly elevated expression of ApPTNE but not AiPTEN in the adductor muscle, and the mortality rate of A. purpuratus was significantly lower than that of A. irradians, indicating that ApPTNE may play a protective role by maintaining the genome integrity. RNAi of ApPTNE significantly downregulated the expression of its downstream regulated genes known to favor longevity, such as FoxO, Mn-SOD, and CAT. These results indicated that PTEN may contribute to the longevity of A. purpuratus through regulation of nutrient availability and genomic stability, probably via PI3K/Akt/FoxO pathway. Our study may provide new evidence for understanding of the conservative functions of PTEN in regulation of lifespan in animals and human, and it may also benefit the selection of scallops strains with long lifespan and thus larger size.
Collapse
Affiliation(s)
- Hanzhi Xu
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Xia Lu
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- *Correspondence: Xia Lu,
| | - Chunde Wang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Junhao Ning
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Min Chen
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Yuan Wang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ke Yuan
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Metagenomic Approach with the NetoVIR Enrichment Protocol Reveals Virus Diversity within Ethiopian Honey Bees ( Apis mellifera simensis). Viruses 2020; 12:v12111218. [PMID: 33121140 PMCID: PMC7692050 DOI: 10.3390/v12111218] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022] Open
Abstract
Metagenomics studies have accelerated the discovery of novel or divergent viruses of the honey bee. However, most of these studies predominantly focused on RNA viruses, and many suffer from the relatively low abundance of viral nucleic acids in the samples (i.e., compared to that of the host). Here, we explored the virome of the Ethiopian honey bee, Apis mellifera simensis, using an unbiased metagenomic approach in which the next-generation sequencing step was preceded by an enrichment protocol for viral particles. Our study revealed five well-known bee viruses and 25 atypical virus species, most of which have never been found in A. mellifera before. The viruses belong to Iflaviridae, Dicistroviridae, Secoviridae, Partitiviridae, Parvoviridae, Potyviridae, and taxonomically unclassified families. Fifteen of these atypical viruses were most likely plant-specific, and the remaining ten were presumed to be insect-specific. Apis mellifera filamentous virus (AmFV) was found in one sampling site out of 10. Two samples contained high read counts of a virus similar to Diatraea saccharales densovirus (DsDNV), which is a virus that causes high mortality in the sugarcane borer. AmFV and the DsDNV-like virus were the only DNA viruses found. Three viruses that primarily infect Drosophila spp. were also discovered: La Jolla virus (LJV), Kilifi virus (KiV), and Thika virus. Our study suggests that phoretic varroa mites are involved in the transmission of LJV and KiV and that both viruses replicate in mites and adult bees. We also found an overwhelming dominance of the deformed wing virus type B variant, which fits well with the apparently harmless infestation by Varroa destructor. It was suggested that Ethiopian bees have developed tolerance against virus infections as the result of natural selection.
Collapse
|
6
|
Gaafar YZA, Ziebell H. Comparative study on three viral enrichment approaches based on RNA extraction for plant virus/viroid detection using high-throughput sequencing. PLoS One 2020; 15:e0237951. [PMID: 32841302 PMCID: PMC7447037 DOI: 10.1371/journal.pone.0237951] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/05/2020] [Indexed: 12/12/2022] Open
Abstract
High-throughput sequencing (HTS) has become increasingly popular as virus diagnostic tool. It has been used to detect and identify plant viruses and viroids in different types of matrices and tissues. A viral sequence enrichment method prior to HTS is required to increase the viral reads in the generated data to ease the bioinformatic analysis of generated sequences. In this study, we compared the sensitivity of three viral enrichment approaches, i.e. double stranded RNA (dsRNA), ribosomal RNA depleted total RNA (ribo-depleted totRNA) and small RNA (sRNA) for plant virus/viroid detection, followed by sequencing on MiSeq and NextSeq Illumina platforms. The three viral enrichment approaches used here enabled the detection of all viruses/viroid used in this study. When the data was normalised, the recovered viral/viroid nucleotides and depths were depending on the viral genome and the enrichment method used. Both dsRNA and ribo-depleted totRNA approaches detected a divergent strain of Wuhan aphid virus 2 that was not expected in this sample. Additionally, Vicia cryptic virus was detected in the data of dsRNA and sRNA approaches only. The results suggest that dsRNA enrichment has the highest potential to detect and identify plant viruses and viroids. The dsRNA approach used here detected all viruses/viroid, consumed less time, was lower in cost, and required less starting material. Therefore, this approach appears to be suitable for diagnostics laboratories.
Collapse
Affiliation(s)
- Yahya Zakaria Abdou Gaafar
- Julius Kühn Institute (JKI)–Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Heiko Ziebell
- Julius Kühn Institute (JKI)–Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
- * E-mail:
| |
Collapse
|
7
|
Complete genome sequence of a novel partitivirus from a wild brassicaceous plant, Arabidopsis halleri. Arch Virol 2020; 165:2091-2094. [PMID: 32533330 DOI: 10.1007/s00705-020-04670-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 04/21/2020] [Indexed: 10/24/2022]
Abstract
Two contigs with high similarity to partitivirus sequences were identified by de novo assembly of sequences obtained by RNA-Seq from a wild brassicaceous plant, Arabidopsis halleri subsp. gemmifera. Here, we report the complete genome sequence of a putative novel partitivirus. Excluding the poly-A tail, it consists of two RNA genome segments of 1912 and 1769 bp, which are predicted to encode a 585-amino-acid-long putative RNA-dependent RNA polymerase (RdRp) and a 487-amino-acid-long putative capsid protein (CP), respectively. Phylogenetically, this virus belongs to the genus Alphapartitivirus and is most closely related to Raphanus sativus partitivirus 1 from radish. We propose the name "Arabidopsis halleri partitivirus 1" (AhPV1) for this novel virus.
Collapse
|
8
|
Svanella-Dumas L, Theil S, Barret M, Candresse T. Complete genomic sequence of Raphanus sativus cryptic virus 4 (RsCV4), a novel alphapartitivirus from radish. Arch Virol 2018; 163:1097-1100. [PMID: 29302793 DOI: 10.1007/s00705-017-3693-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 11/10/2017] [Indexed: 11/30/2022]
Abstract
The present work reports the discovery and complete genome sequencing of a virus from symptomless radish seedlings, classifiable as a novel member of the genus Alphapartitivirus, family Partitiviridae. Total RNA extracted from germinating seedlings was sequenced using Illumina technology. Bioinformatic analysis of the RNA-seq data revealed two contigs representing the near full-length genomic sequences of two genomic RNAs representing a new virus. Analysis of the genome sequence (excluding the polyA tail, RNA1: 1976 nt and RNA2: 1751 nt, respectively) showed a genomic organization typical of viruses classed within the Partitiviridae, with each genomic RNA encoding a single open reading frame (ORF). Phylogenetic analysis of the RNA dependent RNA polymerase (RNA1 ORF) and of the capsid protein (RNA2 ORF) clearly showed the new virus can be classified within the genus Alphapartitivirus, but sequence divergence establishes it as a new species, for which the name "Raphanus sativus cryptic virus 4" is proposed.
Collapse
Affiliation(s)
- Laurence Svanella-Dumas
- UMR 1332 Biologie du Fruit et Pathologie, INRA, Univ. Bordeaux, CS 20032, 33882, Villenave d'Ornon Cedex, France
| | - Sébastien Theil
- UMR 1332 Biologie du Fruit et Pathologie, INRA, Univ. Bordeaux, CS 20032, 33882, Villenave d'Ornon Cedex, France
| | - Matthieu Barret
- IRHS, INRA, University of Angers, 42 rue Georges Morel, 49071, Beaucouzé, France
| | - Thierry Candresse
- UMR 1332 Biologie du Fruit et Pathologie, INRA, Univ. Bordeaux, CS 20032, 33882, Villenave d'Ornon Cedex, France.
| |
Collapse
|
9
|
Kim H, Park D, Hahn Y. Identification of novel RNA viruses in alfalfa (Medicago sativa): an Alphapartitivirus, a Deltapartitivirus, and a Marafivirus. Gene 2017; 638:7-12. [PMID: 28974471 DOI: 10.1016/j.gene.2017.09.069] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 09/13/2017] [Accepted: 09/29/2017] [Indexed: 12/16/2022]
Abstract
Genomic RNA molecules of plant RNA viruses are often co-isolated with the host RNAs, and their sequences can be detected in plant transcriptome datasets. Here, an alfalfa (Medicago sativa) transcriptome dataset was analyzed and three new RNA viruses were identified, which were named Medicago sativa alphapartitivirus 1 (MsAPV1), Medicago sativa deltapartitivirus 1 (MsDPV1), and Medicago sativa marafivirus 1 (MsMV1). The RNA-dependent RNA polymerases of MsAPV1, MsDPV1, and MsMV1 showed about 68%, 58%, and 46% amino acid sequence identity, respectively, with their closest virus species. Sequence similarity and phylogenetic analyses indicated that MsAPV1, MsDPV1, and MsMV1 were novel RNA virus species that belong to the genus Alphapartitivirus of the family Partitiviridae, the genus Deltapartitivirus of the family Partitiviridae, and the genus Marafivirus of the family Tymoviridae, respectively. The bioinformatics procedure applied in this study may facilitate the identification of novel RNA viruses from plant transcriptome data.
Collapse
Affiliation(s)
- Hyein Kim
- Department of Life Science, Research Center for Biomolecules and Biosystems, Chung-Ang University, Seoul 06974, South Korea
| | - Dongbin Park
- Department of Life Science, Research Center for Biomolecules and Biosystems, Chung-Ang University, Seoul 06974, South Korea
| | - Yoonsoo Hahn
- Department of Life Science, Research Center for Biomolecules and Biosystems, Chung-Ang University, Seoul 06974, South Korea.
| |
Collapse
|
10
|
Kumar S, Subbarao BL, Kumari R, Hallan V. Molecular characterization of a novel cryptic virus infecting pigeonpea plants. PLoS One 2017; 12:e0181829. [PMID: 28771507 PMCID: PMC5542627 DOI: 10.1371/journal.pone.0181829] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 07/08/2017] [Indexed: 12/24/2022] Open
Abstract
A new member of the genus Deltapartitivirus was identified containing three dsRNAs with an estimated size of 1.71, 1.49 and 1.43 kb. The dsRNAs were extracted from symptomless pigeonpea [Cajanus cajan (L.) Millspaugh] plants cv. Erra Kandulu. This new virus with 4.64 kb genome was tentatively named Arhar cryptic virus-1 (ArCV-1). The genomic RNAs were amplified and characterized by sequence independent single primer amplification. The dsRNAs shared a highly conserved 16 nt 5' non-coding region (5'-GATAATGATCCAAGGA-3'). The largest dsRNA (dsRNA-1) was identified as the viral RNA dependent RNA polymerase (replicase), predicted to encode a putative 55.34 kDa protein (P1). The two other smaller dsRNAs (dsRNA-2 and dsRNA-3) predicted to encode for putative capsid proteins of 38.50kDa (P2) and 38.51kDa (P3), respectively. Phylogenetic analysis indicated that ArCV-1 formed a clade together with Fragaria chiloensis cryptic virus, Rosa multiflora cryptic virus and Rose cryptic virus-1, indicating that ArCV-1 could be a new member of the genus Deltapartitivirus. ArCV-1 3Dpol structure revealed several interesting features. The 3Dpol in its full-length shares structural similarities with members of the family Caliciviridaeand family Picornaviridae. In addition, fourth dsRNA molecule (dsRNA-2A), not related to ArCV-1 genome, was found in the same plant tissue. The dsRNA-2A (1.6 kb) encodes a protein (P4), with a predicted size of 44.5 kDa. P4 shares similarity with coat protein genes of several cryptic viruses, in particular the bipartite cryptic viruses including Raphanus sativus cryptic virus-3. This is the first report of occurrence of a cryptic virus in pigeonpea plants.
Collapse
Affiliation(s)
- Surender Kumar
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT) Campus, Palampur, India
- Department of Biotechnology, Plant Virus Lab, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | | | - Reenu Kumari
- Department of Biotechnology, Plant Virus Lab, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Vipin Hallan
- Department of Biotechnology, Plant Virus Lab, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| |
Collapse
|
11
|
Ziegler A, Matoušek J, Steger G, Schubert J. Complete sequence of a cryptic virus from hemp (Cannabis sativa). Arch Virol 2011; 157:383-5. [DOI: 10.1007/s00705-011-1168-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 10/29/2011] [Indexed: 11/29/2022]
|
12
|
Sloan DB, Keller SR, Berardi AE, Sanderson BJ, Karpovich JF, Taylor DR. De novo transcriptome assembly and polymorphism detection in the flowering plant Silene vulgaris (Caryophyllaceae). Mol Ecol Resour 2011; 12:333-43. [PMID: 21999839 DOI: 10.1111/j.1755-0998.2011.03079.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Members of the angiosperm genus Silene are widely used in studies of ecology and evolution, but available genomic and population genetic resources within Silene remain limited. Deep transcriptome (i.e. expressed sequence tag or EST) sequencing has proven to be a rapid and cost-effective means to characterize gene content and identify polymorphic markers in non-model organisms. In this study, we report the results of 454 GS-FLX Titanium sequencing of a polyA-selected and normalized cDNA library from Silene vulgaris. The library was generated from a single pool of transcripts, combining RNA from leaf, root and floral tissue from three genetically divergent European subpopulations of S. vulgaris. A single full-plate 454 run produced 959,520 reads totalling 363.6 Mb of sequence data with an average read length of 379.0 bp after quality trimming and removal of custom library adaptors. We assembled 832,251 (86.7%) of these reads into 40,964 contigs, which have a total length of 25.4 Mb and can be organized into 18,178 graph-based clusters or 'isogroups'. Assembled sequences were annotated based on homology to genes in multiple public databases. Analysis of sequence variants identified 13,432 putative single-nucleotide polymorphisms (SNPs) and 1320 simple sequence repeats (SSRs) that are candidates for microsatellite analysis. Estimates of nucleotide diversity from 1577 contigs were used to generate genome-wide distributions that revealed several outliers with high diversity. All of these resources are publicly available through NCBI and/or our website (http://silenegenomics.biology.virginia.edu) and should provide valuable genomic and population genetic tools for the Silene research community.
Collapse
Affiliation(s)
- Daniel B Sloan
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Chiba S, Kondo H, Tani A, Saisho D, Sakamoto W, Kanematsu S, Suzuki N. Widespread endogenization of genome sequences of non-retroviral RNA viruses into plant genomes. PLoS Pathog 2011; 7:e1002146. [PMID: 21779172 PMCID: PMC3136472 DOI: 10.1371/journal.ppat.1002146] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Accepted: 05/17/2011] [Indexed: 02/06/2023] Open
Abstract
Non-retroviral RNA virus sequences (NRVSs) have been found in the chromosomes of vertebrates and fungi, but not plants. Here we report similarly endogenized NRVSs derived from plus-, negative-, and double-stranded RNA viruses in plant chromosomes. These sequences were found by searching public genomic sequence databases, and, importantly, most NRVSs were subsequently detected by direct molecular analyses of plant DNAs. The most widespread NRVSs were related to the coat protein (CP) genes of the family Partitiviridae which have bisegmented dsRNA genomes, and included plant- and fungus-infecting members. The CP of a novel fungal virus (Rosellinia necatrix partitivirus 2, RnPV2) had the greatest sequence similarity to Arabidopsis thaliana ILR2, which is thought to regulate the activities of the phytohormone auxin, indole-3-acetic acid (IAA). Furthermore, partitivirus CP-like sequences much more closely related to plant partitiviruses than to RnPV2 were identified in a wide range of plant species. In addition, the nucleocapsid protein genes of cytorhabdoviruses and varicosaviruses were found in species of over 9 plant families, including Brassicaceae and Solanaceae. A replicase-like sequence of a betaflexivirus was identified in the cucumber genome. The pattern of occurrence of NRVSs and the phylogenetic analyses of NRVSs and related viruses indicate that multiple independent integrations into many plant lineages may have occurred. For example, one of the NRVSs was retained in Ar. thaliana but not in Ar. lyrata or other related Camelina species, whereas another NRVS displayed the reverse pattern. Our study has shown that single- and double-stranded RNA viral sequences are widespread in plant genomes, and shows the potential of genome integrated NRVSs to contribute to resolve unclear phylogenetic relationships of plant species.
Collapse
Affiliation(s)
- Sotaro Chiba
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Hideki Kondo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Akio Tani
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Daisuke Saisho
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Wataru Sakamoto
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Satoko Kanematsu
- National Institute of Fruit Tree Science, National Agricultural Research Organization (NARO), Morioka, Japan
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| |
Collapse
|
14
|
Properties and detection of two cryptoviruses from pepper (Capsicum annuum). Virus Genes 2011; 43:307-12. [PMID: 21695493 DOI: 10.1007/s11262-011-0634-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 06/01/2011] [Indexed: 10/18/2022]
Abstract
Pepper (Capsicum annuum L.) contains a range of endogenous dsRNA molecules resembling the genomes of cryptoviruses. In this work, we have completed the molecular characterization of Pepper cryptic virus 1 (PCV-1) from cv "Jalapeño M" and generated complete genomic sequences of another cryptovirus from cv "Hungarian Wax" designated Pepper cryptic virus 2 (PCV-2). The two viruses share limited identical amino acid content in both genomic segments and appear phylogenetically closer to cryptoviruses reported from other crops (i.e. Raphanus sativus cryptic virus 3, Black raspberry cryptic virus) than to each other. Two sets of virus-specific primers were successfully used in RT-PCR tests for the simultaneous and discriminative detection of these two viruses in pepper leaves and seeds. Both viruses were detected in several pepper cultivars tested, either as single or mixed infections.
Collapse
|
15
|
Magae Y, Sunagawa M. Characterization of a mycovirus associated with the brown discoloration of edible mushroom, Flammulina velutipes. Virol J 2010; 7:342. [PMID: 21106114 PMCID: PMC3002925 DOI: 10.1186/1743-422x-7-342] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 11/25/2010] [Indexed: 11/10/2022] Open
Abstract
Background A mycovirus previously identified in brown discolored fruiting bodies of the cultivated mushroom Flammulina velutipes was characterized. We tentatively named the virus the F. velutipes browning virus (FvBV). Results Purified FvBV particles contained two dsRNA genomes (dsRNA1 and 2). The complete sequence of dsRNA1 was 1,915 bp long, containing a single open reading frame (ORF) that encoded 580 amino acids of a putative 66-kDa RNA-dependent RNA polymerase (RdRp). dsRNA2 was 1,730 bp long containing a single ORF encoding 541 amino acids of a putative 60-kDa coat protein (CP1). Phylogenetic analysis of the RdRp sequences revealed FvBV to be a Partitivirus, most closely related to Chondrostereum purpureum cryptic virus. An RT-PCR assay was developed for the amplification of a 495-bp cDNA fragment from dsRNA encoding the CP1. When wild F. velutipes isolated from various parts of Japan were examined by RT-PCR assay, three isolates from the central region of Japan contained FvBV. One wild strain infected with FvBV was isolated in Nagano prefecture, where brown discoloration of white cultivated strains has occurred. Fruiting bodies produced by virus-harboring and virus-free F. velutipes were compared. Conclusions Cap color of the fruiting bodies of F. velutipes that contained Partitivirus FvBV was darker than FvBV-free fruiting bodies. The use of RT-PCR enabled association of FvBV and dark brown color of the fruiting body produced by F. velutipes strains.
Collapse
Affiliation(s)
- Yumi Magae
- Department of Applied Microbiology, Forestry and Forest Products Research Institute, Tsukuba, Ibaraki 305-8687, Japan.
| | | |
Collapse
|
16
|
Vainio EJ, Korhonen K, Tuomivirta TT, Hantula J. A novel putative partitivirus of the saprotrophic fungus Heterobasidion ecrustosum infects pathogenic species of the Heterobasidion annosum complex. Fungal Biol 2010; 114:955-65. [PMID: 21036340 DOI: 10.1016/j.funbio.2010.09.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 08/31/2010] [Accepted: 09/15/2010] [Indexed: 11/29/2022]
Abstract
We characterized the bisegmented genome of a putative double-stranded (ds) RNA virus from a Chinese isolate of the fungus Heterobasidion ecrustosum, a member of the Heterobasidion insulare species complex. The larger genomic segment of 1885bp encoded a putative RNA dependent RNA polymerase (RdRp, 585aa), and the smaller one for a putative coat protein of 521aa (1826bp). Phylogenetic analyses suggest that this novel virus species, named as 'Heterobasidion RNA virus 3 from H. ecrustosum, strain 1' (HetRV3-ec1), can be assigned to the family Partitiviridae, being most similar to the Helicobasidium mompa dsRNA mycovirus with RdRp amino acid similarity of 54%. The similarity to known viruses of other Heterobasidion species was notably low (25-39%). The virus could be experimentally transmitted to members of the Heterobasidion annosum complex: the European Heterobasidion abietinum and North American Heterobasidion occidentale, and the original host strain could be cured from the virus by thermal treatment. Microscopical observations showed that hyphae of H. ecrustosum anastomosed occasionally with H. abietinum and H. occidentale, and suggested a possible route for horizontal transmission between these sexually incompatible species. The virus infection seemed to cause variable effects on the growth rate of its fungal hosts, but the results were strongly dependent on fungal strain, growth medium and incubation temperature.
Collapse
Affiliation(s)
- Eeva J Vainio
- Finnish Forest Research Institute, Jokiniemenkuja 1, P.O. Box 18, 01301 Vantaa, Finland.
| | | | | | | |
Collapse
|
17
|
Widespread horizontal gene transfer from double-stranded RNA viruses to eukaryotic nuclear genomes. J Virol 2010; 84:11876-87. [PMID: 20810725 DOI: 10.1128/jvi.00955-10] [Citation(s) in RCA: 173] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Horizontal gene transfer commonly occurs from cells to viruses but rarely occurs from viruses to their host cells, with the exception of retroviruses and some DNA viruses. However, extensive sequence similarity searches in public genome databases for various organisms showed that the capsid protein and RNA-dependent RNA polymerase genes from totiviruses and partitiviruses have widespread homologs in the nuclear genomes of eukaryotic organisms, including plants, arthropods, fungi, nematodes, and protozoa. PCR amplification and sequencing as well as comparative evidence of junction coverage between virus and host sequences support the conclusion that these viral homologs are real and occur in eukaryotic genomes. Sequence comparison and phylogenetic analysis suggest that these genes were likely transferred horizontally from viruses to eukaryotic genomes. Furthermore, we present evidence showing that some of the transferred genes are conserved and expressed in eukaryotic organisms and suggesting that these viral genes are also functional in the recipient genomes. Our findings imply that horizontal transfer of double-stranded RNA viral genes is widespread among eukaryotes and may give rise to functionally important new genes, thus entailing that RNA viruses may play significant roles in the evolution of eukaryotes.
Collapse
|
18
|
Szego A, Enünlü N, Deshmukh SD, Veliceasa D, Hunyadi-Gulyás E, Kühne T, Ilyés P, Potyondi L, Medzihradszky K, Lukács N. The genome of Beet cryptic virus 1 shows high homology to certain cryptoviruses present in phylogenetically distant hosts. Virus Genes 2010; 40:267-76. [PMID: 20058060 DOI: 10.1007/s11262-009-0432-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Accepted: 12/05/2009] [Indexed: 11/28/2022]
Abstract
UNLABELLED This study determined the complete nucleotide sequence of Beet cryptic virus 1 (BCV1). As expected by analogy to previously sequenced alphacryptoviruses, dsRNA1 (2008 bp) encodes a 72.5-kDa protein containing sequence motifs characteristic for RNA-dependent RNA polymerases (RdRp). In addition to the full-length dsRNA1, a truncated form was also detected in dsRNA extracts. dsRNA2 (1783 bp) codes for the viral coat protein (CP) as proven by the identity of the predicted CP sequence to peptide sequences of the purified virion protein. The amino acid sequence of BCV1 RdRp as well as the 5'- and 3'-UTRs show 81-85% identity to the corresponding regions of Vicia cryptic virus (VCV), White clover cryptic virus 1 (WCCV1) and Carrot cryptic virus (CaCV). The amino acid sequence identity of the CP is about 55-62%, moreover, a strong conservation of predicted alpha-helical regions was observed. The high degree of similarity of these seed- and pollen-transmitted viruses persisting in phylogenetically distant hosts, together with their high similarity to fungal partitiviruses strongly supports the hypothesis that horizontal transfer by a fungus played a role in the emergence of the present cryptovirus species. The change in the distribution of cryptic viruses may also be due to human influence: While earlier BCV1 occurred frequently in sugar beet cultivars, it is very rare in cultivars currently used in agricultural practice and was detected in only one of the 28 cultivars investigated in our experiments. ELECTRONIC SUPPLEMENTARY MATERIAL The online version of this article (doi:10.1007/s11262-009-0432-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anita Szego
- Department of Plant Physiology and Plant Biochemistry, Corvinus University of Budapest, Ménesi út 44, 1118 Budapest, Hungary
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Nibert ML, Woods KM, Upton SJ, Ghabrial SA. Cryspovirus: a new genus of protozoan viruses in the family Partitiviridae. Arch Virol 2009; 154:1959-65. [PMID: 19856142 DOI: 10.1007/s00705-009-0513-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Accepted: 09/03/2009] [Indexed: 11/26/2022]
Abstract
The family Partitiviridae includes plant and fungal viruses with bisegmented dsRNA genomes and isometric virions in which the two genome segments are packaged separately and used as templates for semiconservative transcription by the viral polymerase. A new genus, Cryspovirus, has been approved for this family. Its name is based on that of the host genus, Cryptosporidium, which encompasses several species of apicomplexan parasites that infect a wide range of mammals, birds, and reptiles, and are a major cause of human diarrheal illness worldwide. The type species of the new genus is Cryptosporidium parvum virus 1. Distinguishing characteristics include infection of a protozoan host, a smaller capsid protein than found in other members of the family Partitiviridae, and sequence-based phylogenetic divergence.
Collapse
Affiliation(s)
- Max L Nibert
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
20
|
Liu W, Chen J. A double-stranded RNA as the genome of a potential virus infecting Vicia faba. Virus Genes 2009; 39:126-31. [DOI: 10.1007/s11262-009-0362-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Accepted: 04/19/2009] [Indexed: 11/30/2022]
|
21
|
Li L, Tian Q, Du Z, Duns GJ, Chen J. A novel double-stranded RNA virus detected in Primula malacoides is a plant-isolated partitivirus closely related to partitivirus infecting fungal species. Arch Virol 2009; 154:565-72. [PMID: 19267226 DOI: 10.1007/s00705-009-0342-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2008] [Accepted: 02/19/2009] [Indexed: 11/24/2022]
Abstract
A novel virus was detected in ornamental plants of Primula malacoides Franch exhibiting typical yellow-edge symptoms. Two double-stranded RNA (dsRNA) segments, of 2390 bp and 2344 bp, respectively, were extracted from plant tissues, and these same dsRNAs were detected from purified virions of about 35 nm in diameter. The two dsRNAs, putatively encoding partitivirus-related RNA-dependent RNA polymerase and capsid protein, were sequenced. Analysis of phylogenetic relationships and genomic structures indicated that these two dsRNAs together make up the genome of a novel partitivirus. This virus was found to be more closely related to the fungus-infecting partitiviruses than to the ones that infect plants and was designated as Primula malacoides virus 1 (PmV1). It is strongly suggested that this novel virus be classified as a member of the genus Partitivirus.
Collapse
Affiliation(s)
- Liqiang Li
- Institute of Bioengineering, Zhejiang Sci-Tech University, Hangzhou, China
| | | | | | | | | |
Collapse
|
22
|
Molecular characterization of two alphacryptovirus dsRNAs isolated from Daucus carota. Arch Virol 2009; 154:541-3. [DOI: 10.1007/s00705-009-0314-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Accepted: 12/22/2008] [Indexed: 11/30/2022]
|