1
|
Wang Y, Wang Y, Li Z, Zeng Q, Xu Q, Wang Z, Zhou X. Genomic characterization of a novel cytorhabdovirus infecting Ixeris denticulata in China. Arch Virol 2024; 169:46. [PMID: 38366035 DOI: 10.1007/s00705-024-05988-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/12/2024] [Indexed: 02/18/2024]
Abstract
Ixeris denticulata is a perennial herbal plant with important medical and economic value. In this study, a novel rhabdovirus from I. denticulata with leaf curling and mottle symptoms was identified through next-generation sequencing and molecular cloning approaches. Based on the host species and properties of this virus, it was tentatively named "Ixeris denticulata-associated rhabdovirus" (IdaRV). IdaRV has a negative-sense RNA genome that is 12,705 nucleotides in length and has five open reading frames (ORFs) in the order 3'-nucleoprotein -phosphoprotein -movement protein -matrix protein -large RNA-dependent RNA polymerase-5'. Pairwise sequence comparisons showed that IdaRV had 42.2-53.0% sequence identity to members of the genera Cytorhabdovirus, Varicosavirus, Betanucleorhabdovirus, Gammanucleorhabdovirus, Dichorhavirus, and Alphanucleorhabdovirus in the subfamily Betarhabdovirinae. BLASTp searches indicated that putative products of ORF1, ORF2, ORF3, ORF4, and ORF5 of IdaRV are most closely related to those of rudbeckia virus 1 (RudV1, GenBank accession number ON185810), with 32.1%, 21.3%, 52.4%, 37.6%, and 57.1% amino acid sequence identity, respectively, at the protein level. Phylogenetic analysis showed that IdaRV forms a smaller branch with RudV1, which belongs to the genus Cytorhabdovirus. These results establish IdaRV as a novel rhabdovirus in the genus Cytorhabdovirus of the family Rhabdoviridae.
Collapse
Affiliation(s)
- Yaqin Wang
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yongzhi Wang
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Zhenghe Li
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Qinwen Zeng
- Bureau of Agriculture and Rural Affairs of Longquan City, Longquan, 610100, China
| | - Qiqiang Xu
- Bureau of Agriculture and Rural Affairs of Longquan City, Longquan, 610100, China
| | - Zhanqi Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou, 313000, China.
| | - Xueping Zhou
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
2
|
Complete genome sequence of a putative novel cytorhabdovirus isolated from Rudbeckia sp. Arch Virol 2022; 167:2381-2385. [PMID: 35920980 DOI: 10.1007/s00705-022-05556-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/23/2022] [Indexed: 11/02/2022]
Abstract
Through high-throughput RNA sequencing, we discovered a putative new cytorhabdovirus in the seeds of Rudbeckia sp., which we have tentatively named "rudbeckia virus 1" (RudV1). Its complete 12,502-nt genomic sequence contains five open reading frames (ORFs): ORF1 (putative nucleocapsid protein, N), ORF2 (putative phosphoprotein, P), ORF3 (putative cell-to-cell movement protein, P3), ORF4 (putative matrix protein, M), and ORF5 (putative RNA-dependent RNA polymerase, L). BLASTp searches showed that ORF1, ORF3, ORF4, and ORF5 of RudV1 are most closely related to the corresponding proteins of Tagetes erecta virus 1 (a putative member of the genus Cytorhabdovirus) with 33.87% (88% query coverage), 55.98% (89% query coverage), 35.33% (94% query coverage), and 57.75% (98% query coverage) sequence identity at the amino acid level, respectively. Phylogenetic analysis and pairwise comparisons indicated that RudV1 is a novel member of the genus Cytorhabdovirus within the family Rhabdoviridae.
Collapse
|
3
|
Is the Glycoprotein Responsible for the Differences in Dispersal Rates between Lettuce Necrotic Yellows Virus Subgroups? Viruses 2022; 14:v14071574. [PMID: 35891554 PMCID: PMC9316239 DOI: 10.3390/v14071574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022] Open
Abstract
Lettuce necrotic yellows virus is a type of species in the Cytorhabdovirus genus and appears to be endemic to Australia and Aotearoa New Zealand (NZ). The population of lettuce necrotic yellows virus (LNYV) is made up of two subgroups, SI and SII. Previous studies demonstrated that SII appears to be outcompeting SI and suggested that SII may have greater vector transmission efficiency and/or higher replication rate in its host plant or insect vector. Rhabdovirus glycoproteins are important for virus–insect interactions. Here, we present an analysis of LNYV glycoprotein sequences to identify key features and variations that may cause SII to interact with its aphid vector with greater efficiency than SI. Phylogenetic analysis of glycoprotein sequences from NZ isolates confirmed the existence of two subgroups within the NZ LNYV population, while predicted 3D structures revealed the LNYV glycoproteins have domain architectures similar to Vesicular Stomatitis Virus (VSV). Importantly, changing amino acids at positions 244 and 247 of the post-fusion form of the LNYV glycoprotein altered the predicted structure of Domain III, glycosylation at N248 and the overall stability of the protein. These data support the glycoprotein as having a role in the population differences of LNYV observed between Australia and New Zealand.
Collapse
|
4
|
Read DA, Strydom E, Slippers B, Steenkamp E, Pietersen G. Genomic characterization of soybean blotchy mosaic virus, a cytorhabdovirus from South Africa. Arch Virol 2022; 167:2359-2363. [PMID: 35857145 DOI: 10.1007/s00705-022-05526-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 05/24/2022] [Indexed: 11/25/2022]
Abstract
Samples showing blotchy mottle symptoms were collected from soybeans in North-West province, South Africa. The assembly of high-throughput sequencing data from three samples yielded contigs of 13,426 to 13,435nt, which represent the first complete genome sequences of soybean blotchy mosaic virus (SbBMV). SbBMV shows a typical cytorhabdovirus gene organization (3'-N-P-P3-M-G-L-5'), with each putative gene product being most similar, but with only 49.1-71.1% sequence identity, to those of cucurbit cytorhabdovirus 1. Given the species demarcation thresholds for rhabdoviruses, SbBMV is thus a distinct member of the genus Cytorhabdovirus.
Collapse
Affiliation(s)
- David A Read
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa.
| | - Elrea Strydom
- Macadamias South Africa (SAMAC), Ben Vista Office Park, Jansen Park, Boksburg, 1459, South Africa
| | - Bernard Slippers
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Emma Steenkamp
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | | |
Collapse
|
5
|
Xuan Z, Li S, Zhang S, Ran W, Zhou Y, Yang F, Zhou C, Cao M. Complete genome sequence of citrus yellow spot virus, a newly discovered member of the family Betaflexiviridae. Arch Virol 2020; 165:2709-2713. [PMID: 32880020 DOI: 10.1007/s00705-020-04794-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/02/2020] [Indexed: 10/23/2022]
Abstract
A novel plant virus with a positive single-stranded (+ss) RNA genome was detected in Taibei pomelo (Citrus grandis (L.) Osbeck cv. Taibeiyou) in China by high-throughput sequencing (HTS). Tentatively named "citrus yellow spot virus" (CiYSV), it has 8,061 nucleotides (nt) excluding the poly(A) tail and contains three open reading frames (ORFs). ORF1 is predicted to encode a replicase polyprotein (RP) with conserved domains typical of members of the family Betaflexiviridae. ORF2 encodes a protein sharing the highest sequence identity with the putative movement protein (MP) found in the negative-stranded RNA virus Trifolium pratense virus B (TpVB, MH982249, genus Cytorhabdovirus). ORF3 overlaps ORF2 by 137 nt and encodes a predicted coat protein (CP) that is distantly related to those of betaflexiviruses. Phylogenetic analysis based on the MP amino acid sequence showed that the CiYSV clustered with cytorhabdoviruses rather than betaflexiviruses, whilst trees based on the whole genome, RP, and CP showed it to belong to the family Betaflexiviridae but to be distinct from any other known betaflexiviruses. These results suggest that the CiYSV should be considered the first member of a tentative new genus in the family Betaflexiviridae.
Collapse
Affiliation(s)
- Zhiyou Xuan
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, 400712, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Shuai Li
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, 400712, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Song Zhang
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, 400712, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Wenyi Ran
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, 400712, China.,Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Yan Zhou
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, 400712, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Fangyun Yang
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, 400712, China
| | - Changyong Zhou
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, 400712, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Mengji Cao
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, 400712, China. .,Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
6
|
Read DA, Featherston J, Rees DJG, Thompson GD, Roberts R, Flett BC, Mashingaidze K, Pietersen G, Kiula B, Kullaya A, Mbega ER. Molecular characterization of Morogoro maize-associated virus, a nucleorhabdovirus detected in maize (Zea mays) in Tanzania. Arch Virol 2019; 164:1711-1715. [PMID: 30900068 DOI: 10.1007/s00705-019-04212-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 02/20/2019] [Indexed: 01/17/2023]
Abstract
RNAtag-seq of maize samples collected in Tanzania revealed the presence of a previously undescribed nucleorhabdovirus, tentatively named "Morogoro maize-associated virus" (MMaV), in three samples. The MMaV genome is 12,185-12,187 nucleotides long and shares a 69-70% nucleotide sequence identity with taro vein chlorosis virus. Annotation of the genomes showed a typical nucleorhabdovirus gene organization. PCR was unable to detect the same virus in the remaining 35 samples collected in the region.
Collapse
Affiliation(s)
- David Alan Read
- Agricultural Research Council-Biotechnology Platform, Onderstepoort, Private Bag X05, Pretoria, 0110, South Africa.
| | - Jonathan Featherston
- Agricultural Research Council-Biotechnology Platform, Onderstepoort, Private Bag X05, Pretoria, 0110, South Africa
| | - David Jasper Gilbert Rees
- Agricultural Research Council-Biotechnology Platform, Onderstepoort, Private Bag X05, Pretoria, 0110, South Africa
| | - Genevieve Dawn Thompson
- Agricultural Research Council-Biotechnology Platform, Onderstepoort, Private Bag X05, Pretoria, 0110, South Africa
| | - Ronel Roberts
- Agricultural Research Council-Plant Protection Research, Queenswood, Private Bag X134, Pretoria, 0001, South Africa
| | - Bradley Charles Flett
- Agricultural Research Council-Grain Crops, Private Bag X1251, Potchefstroom, 2520, South Africa
| | - Kingstone Mashingaidze
- Agricultural Research Council-Grain Crops, Private Bag X1251, Potchefstroom, 2520, South Africa
| | - Gerhard Pietersen
- Department of Genetics, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Barnabas Kiula
- Tanzania Agricultural Research Institute (TARI-Ilonga), Kilosa, Morogoro, Tanzania
| | - Alois Kullaya
- Tanzania Agricultural Research Institute (TARI, Mikocheni), Dar es Salaam, Tanzania
| | - Ernest R Mbega
- Nelson Mandela African Institution of Science and Technology (NM-AIST), Arusha, Tanzania
| |
Collapse
|
7
|
Jackson AO, Dietzgen RG, Goodin MM, Li Z. Development of Model Systems for Plant Rhabdovirus Research. Adv Virus Res 2018; 102:23-57. [PMID: 30266175 DOI: 10.1016/bs.aivir.2018.06.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This chapter reviews the discoveries and initial characterizations (1930-1990) of three plant rhabdoviruses, sonchus yellow net virus, potato yellow dwarf virus, and lettuce necrotic yellows virus, that have become model systems for research on this group of enveloped negative-strand RNA plant viruses. We have used our personal perspectives to review the early historical studies of these viruses, the important technologies and tools, such as density gradient centrifugation, that were developed during the research, and to highlight the eminent scientists involved in these discoveries. Early studies on sites of virus replication, virion structure, physicochemical composition, and the use of protoplasts and vector insect cell culture for virus research are discussed, and differences between the nuclear and cytoplasmic lifestyles of plant rhabdoviruses are contrasted. Finally, we briefly summarize the genome organization and more recent developments culminating in the development of a reverse genetics system for plant negative-strand RNA viruses.
Collapse
Affiliation(s)
| | - Ralf G Dietzgen
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | | | - Zhenghe Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
Xu C, Sun X, Taylor A, Jiao C, Xu Y, Cai X, Wang X, Ge C, Pan G, Wang Q, Fei Z, Wang Q. Diversity, Distribution, and Evolution of Tomato Viruses in China Uncovered by Small RNA Sequencing. J Virol 2017; 91:e00173-17. [PMID: 28331089 PMCID: PMC5432854 DOI: 10.1128/jvi.00173-17] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 03/09/2017] [Indexed: 12/16/2022] Open
Abstract
Tomato is a major vegetable crop that has tremendous popularity. However, viral disease is still a major factor limiting tomato production. Here, we report the tomato virome identified through sequencing small RNAs of 170 field-grown samples collected in China. A total of 22 viruses were identified, including both well-documented and newly detected viruses. The tomato viral community is dominated by a few species, and they exhibit polymorphisms and recombination in the genomes with cold spots and hot spots. Most samples were coinfected by multiple viruses, and the majority of identified viruses are positive-sense single-stranded RNA viruses. Evolutionary analysis of one of the most dominant tomato viruses, Tomato yellow leaf curl virus (TYLCV), predicts its origin and the time back to its most recent common ancestor. The broadly sampled data have enabled us to identify several unreported viruses in tomato, including a completely new virus, which has a genome of ∼13.4 kb and groups with aphid-transmitted viruses in the genus Cytorhabdovirus Although both DNA and RNA viruses can trigger the biogenesis of virus-derived small interfering RNAs (vsiRNAs), we show that features such as length distribution, paired distance, and base selection bias of vsiRNA sequences reflect different plant Dicer-like proteins and Argonautes involved in vsiRNA biogenesis. Collectively, this study offers insights into host-virus interaction in tomato and provides valuable information to facilitate the management of viral diseases.IMPORTANCE Tomato is an important source of micronutrients in the human diet and is extensively consumed around the world. Virus is among the major constraints on tomato production. Categorizing virus species that are capable of infecting tomato and understanding their diversity and evolution are challenging due to difficulties in detecting such fast-evolving biological entities. Here, we report the landscape of the tomato virome in China, the leading country in tomato production. We identified dozens of viruses present in tomato, including both well-documented and completely new viruses. Some newly emerged viruses in tomato were found to spread fast, and therefore, prompt attention is needed to control them. Moreover, we show that the virus genomes exhibit considerable degree of polymorphisms and recombination, and the virus-derived small interfering RNA (vsiRNA) sequences indicate distinct vsiRNA biogenesis mechanisms for different viruses. The Chinese tomato virome that we developed provides valuable information to facilitate the management of tomato viral diseases.
Collapse
Affiliation(s)
- Chenxi Xu
- Development and Collaborative Innovation Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
| | - Xuepeng Sun
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York, USA
| | - Angela Taylor
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York, USA
| | - Chen Jiao
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York, USA
| | - Yimin Xu
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York, USA
| | - Xiaofeng Cai
- Development and Collaborative Innovation Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
| | - Xiaoli Wang
- Development and Collaborative Innovation Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
| | - Chenhui Ge
- Development and Collaborative Innovation Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
| | - Guanghui Pan
- Chongqing Academy of Agricultural Science, Chongqing, China
| | - Quanxi Wang
- Development and Collaborative Innovation Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
| | - Zhangjun Fei
- Development and Collaborative Innovation Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York, USA
- USDA-ARS, Robert W. Holley Center for Agriculture and Health, Ithaca, New York, USA
| | - Quanhua Wang
- Development and Collaborative Innovation Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
| |
Collapse
|
9
|
Yang X, Huang J, Liu C, Chen B, Zhang T, Zhou G. Rice Stripe Mosaic Virus, a Novel Cytorhabdovirus Infecting Rice via Leafhopper Transmission. Front Microbiol 2017; 7:2140. [PMID: 28101087 PMCID: PMC5210121 DOI: 10.3389/fmicb.2016.02140] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 12/19/2016] [Indexed: 01/08/2023] Open
Abstract
A new rice viral disease exhibiting distinct symptoms-yellow stripes, mosaic and twisted tips on leaves-was found in China. Electron microscopy of infected leaf cells revealed the presence of bacilliform virions and electron-translucent granular-fibrillar viroplasm in the cytoplasm. The enveloped viral particles were 300 to 375 nm long and 45 to 55 nm wide. The leafhopper Recilia dorsalis was able to transmit the virus to rice seedlings, which subsequently exhibited symptoms similar to those observed in fields. The complete genome of the virus was obtained by small-RNA deep sequencing and reverse transcription-PCR product sequencing. The anti-genome contains seven open reading frames (ORFs). The deduced amino acids of ORF1, ORF5, and ORF7 are, respectively, homologous to the nucleocapsid protein (N), glycoprotein (G), and large polymerase protein (L) of known rhabdoviruses. The predicted product of ORF2 is identified as a phosphoprotein (P) based on its multiple potential phosphorylation sites and 12.6 to 21.0% amino acid (aa) identities with the P proteins of plant rhabdoviruses. The product of ORF4 is presumed to be the viral matrix (M) protein for it shares 10.3 to 14.3% aa identities with those of other rhabdoviruses. The above five products were confirmed as the viral structural proteins by SDS-PAGE and aa sequencing analyses of purified virus preparation. ORF3 and ORF6 are considered to encode two nonstructural proteins with unknown functions. Phylogenetic analysis based on protein N, G, and L amino acid sequences indicated that the isolated virus, which we have tentatively named Rice stripe mosaic virus (RSMV), is a new species in the genus Cytorhabdovirus. To our knowledge, RSMV is the only cytorhabdovirus naturally infecting rice and the first reported leafhopper-transmitted cytorhabdovirus. Our surveys of rice fields indicate that RSMV occurs frequently in Guangdong Province, China. Although the disease incidence is low at present, it might become serious with the vector insect population increasing.
Collapse
Affiliation(s)
- Xin Yang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural UniversityGuangdong, China
| | - Jilei Huang
- Instrumental Analysis and Research Center, South China Agricultural UniversityGuangdong, China
| | - Chuanhe Liu
- Instrumental Analysis and Research Center, South China Agricultural UniversityGuangdong, China
| | - Biao Chen
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural UniversityGuangdong, China
| | - Tong Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural UniversityGuangdong, China
| | - Guohui Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural UniversityGuangdong, China
| |
Collapse
|
10
|
Higgins CM, Chang WL, Khan S, Tang J, Elliott C, Dietzgen RG. Diversity and evolutionary history of lettuce necrotic yellows virus in Australia and New Zealand. Arch Virol 2016; 161:269-77. [PMID: 26526146 DOI: 10.1007/s00705-015-2626-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 09/24/2015] [Indexed: 11/26/2022]
Abstract
Lettuce necrotic yellows virus (LNYV) is the type member of the genus Cytorhabdovirus, family Rhabdoviridae, and causes a severe disease of lettuce (Lactuca sativa L.). This virus has been described as endemic to Australia and New Zealand, with sporadic reports of a similar virus in Europe. Genetic variability studies of plant-infecting rhabdoviruses are scarce. We have extended a previous study on the variability of the LNYV nucleocapsid gene, comparing sequences from isolates sampled from both Australia and New Zealand, as well as analysing symptom expression on Nicotiana glutinosa. Phylogenetic and BEAST analyses confirm separation of LNYV isolates into two subgroups (I and II) and suggest that subgroup I is slightly older than subgroup II. No correlation was observed between isolate subgroup and disease symptoms on N. glutinosa. The origin of LNYV remains unclear; LNYV may have moved between native and weed hosts within Australia or New Zealand before infecting lettuce or may have appeared as a result of at least two incursions, with the first coinciding with the beginning of European agriculture in the region. The apparent extinction of subgroup I in Australia may have been due to less-efficient dispersal than that which has occurred for subgroup II - possibly a consequence of suboptimal interactions with plant and/or insect hosts. Introduction of subgroup II to New Zealand appears to be more recent. More-detailed epidemiological studies using molecular tools are needed to fully understand how LNYV interacts with its hosts and to determine where the virus originated.
Collapse
Affiliation(s)
- Colleen M Higgins
- Institute of Applied Ecology, School of Applied Sciences, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand.
- AUT Roche Diagnostics Laboratory, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand.
| | - Wee-Leong Chang
- Institute of Applied Ecology, School of Applied Sciences, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand
| | - Subuhi Khan
- Plant Health and Environment Laboratory, Ministry for Primary Industries, P.O. Box 2095, Auckland, 1140, New Zealand
| | - Joe Tang
- Plant Health and Environment Laboratory, Ministry for Primary Industries, P.O. Box 2095, Auckland, 1140, New Zealand
| | - Carol Elliott
- Plant Health and Environment Laboratory, Ministry for Primary Industries, P.O. Box 2095, Auckland, 1140, New Zealand
| | - Ralf G Dietzgen
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia
| |
Collapse
|
11
|
Mann KS, Bejerman N, Johnson KN, Dietzgen RG. Cytorhabdovirus P3 genes encode 30K-like cell-to-cell movement proteins. Virology 2016; 489:20-33. [PMID: 26700068 DOI: 10.1016/j.virol.2015.11.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 11/25/2015] [Accepted: 11/26/2015] [Indexed: 12/13/2022]
Abstract
Plant viruses encode movement proteins (MP) to facilitate cell-to-cell transport through plasmodesmata. In this study, using trans-complementation of a movement-defective turnip vein-clearing tobamovirus (TVCV) replicon, we show for the first time for cytorhabdoviruses (lettuce necrotic yellows virus (LNYV) and alfalfa dwarf virus (ADV)) that their P3 proteins function as MP similar to the TVCV P30 protein. All three MP localized to plasmodesmata when ectopically expressed. In addition, we show that these MP belong to the 30K superfamily since movement was inhibited by mutation of an aspartic acid residue in the critical 30K-specific LxD/N50-70G motif. We also report that Nicotiana benthamiana microtubule-associated VOZ1-like transcriptional activator interacts with LNYV P3 and TVCV P30 but not with ADV P3 or any of the MP point mutants. This host protein, which is known to interact with P3 of sonchus yellow net nucleorhabdovirus, may be involved in aiding the cell-to-cell movement of LNYV and TVCV.
Collapse
Affiliation(s)
- Krin S Mann
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Nicolas Bejerman
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Karyn N Johnson
- School of Biological Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Ralf G Dietzgen
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
12
|
Complete genome sequence of Colocasia bobone disease-associated virus, a putative cytorhabdovirus infecting taro. Arch Virol 2015; 161:745-8. [PMID: 26687584 DOI: 10.1007/s00705-015-2713-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 11/30/2015] [Indexed: 10/22/2022]
Abstract
We report the first genome sequence of a Colocasia bobone disease-associated virus (CBDaV) derived from bobone-affected taro [Colocasia esculenta L. Schott] from Solomon Islands. The negative-strand RNA genome is 12,193 nt long, with six major open reading frames (ORFs) with the arrangement 3'-N-P-P3-M-G-L-5'. Typical of all rhabdoviruses, the 3' leader and 5' trailer sequences show complementarity to each other. Phylogenetic analysis indicated that CBDaV is a member of the genus Cytorhabdovirus, supporting previous reports of virus particles within the cytoplasm of bobone-infected taro cells. The availability of the CBDaV genome sequence now makes it possible to assess the role of this virus in bobone, and possibly alomae disease of taro and confirm that this sequence is that of Colocasia bobone disease virus (CBDV).
Collapse
|
13
|
Bejerman N, Giolitti F, de Breuil S, Trucco V, Nome C, Lenardon S, Dietzgen RG. Complete genome sequence and integrated protein localization and interaction map for alfalfa dwarf virus, which combines properties of both cytoplasmic and nuclear plant rhabdoviruses. Virology 2015; 483:275-83. [PMID: 26004251 DOI: 10.1016/j.virol.2015.05.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 05/01/2015] [Accepted: 05/02/2015] [Indexed: 12/19/2022]
Abstract
We have determined the full-length 14,491-nucleotide genome sequence of a new plant rhabdovirus, alfalfa dwarf virus (ADV). Seven open reading frames (ORFs) were identified in the antigenomic orientation of the negative-sense, single-stranded viral RNA, in the order 3'-N-P-P3-M-G-P6-L-5'. The ORFs are separated by conserved intergenic regions and the genome coding region is flanked by complementary 3' leader and 5' trailer sequences. Phylogenetic analysis of the nucleoprotein amino acid sequence indicated that this alfalfa-infecting rhabdovirus is related to viruses in the genus Cytorhabdovirus. When transiently expressed as GFP fusions in Nicotiana benthamiana leaves, most ADV proteins accumulated in the cell periphery, but unexpectedly P protein was localized exclusively in the nucleus. ADV P protein was shown to have a homotypic, and heterotypic nuclear interactions with N, P3 and M proteins by bimolecular fluorescence complementation. ADV appears unique in that it combines properties of both cytoplasmic and nuclear plant rhabdoviruses.
Collapse
Affiliation(s)
- Nicolás Bejerman
- Instituto de Patología Vegetal (IPAVE), Centro de Investigaciones Agropecuarias (CIAP), Instituto Nacional de Tecnología Agropecuaria (INTA), Camino a 60 Cuadras k 5,5, Córdoba X5020ICA, Argentina; Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD 4072, Australia.
| | - Fabián Giolitti
- Instituto de Patología Vegetal (IPAVE), Centro de Investigaciones Agropecuarias (CIAP), Instituto Nacional de Tecnología Agropecuaria (INTA), Camino a 60 Cuadras k 5,5, Córdoba X5020ICA, Argentina
| | - Soledad de Breuil
- Instituto de Patología Vegetal (IPAVE), Centro de Investigaciones Agropecuarias (CIAP), Instituto Nacional de Tecnología Agropecuaria (INTA), Camino a 60 Cuadras k 5,5, Córdoba X5020ICA, Argentina
| | - Verónica Trucco
- Instituto de Patología Vegetal (IPAVE), Centro de Investigaciones Agropecuarias (CIAP), Instituto Nacional de Tecnología Agropecuaria (INTA), Camino a 60 Cuadras k 5,5, Córdoba X5020ICA, Argentina
| | - Claudia Nome
- Instituto de Patología Vegetal (IPAVE), Centro de Investigaciones Agropecuarias (CIAP), Instituto Nacional de Tecnología Agropecuaria (INTA), Camino a 60 Cuadras k 5,5, Córdoba X5020ICA, Argentina
| | - Sergio Lenardon
- Instituto de Patología Vegetal (IPAVE), Centro de Investigaciones Agropecuarias (CIAP), Instituto Nacional de Tecnología Agropecuaria (INTA), Camino a 60 Cuadras k 5,5, Córdoba X5020ICA, Argentina
| | - Ralf G Dietzgen
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
14
|
Dietzgen RG, Innes DJ, Bejerman N. Complete genome sequence and intracellular protein localization of Datura yellow vein nucleorhabdovirus. Virus Res 2015; 205:7-11. [PMID: 25975739 DOI: 10.1016/j.virusres.2015.05.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 04/29/2015] [Accepted: 05/01/2015] [Indexed: 11/29/2022]
Abstract
A limited number of plant rhabdovirus genomes have been fully sequenced, making taxonomic classification, evolutionary analysis and molecular characterization of this virus group difficult. We have for the first time determined the complete genome sequence of 13,188 nucleotides of Datura yellow vein nucleorhabdovirus (DYVV). DYVV genome organization resembles that of its closest relative, Sonchus yellow net virus (SYNV), with six ORFs in antigenomic orientation, separated by highly conserved intergenic regions and flanked by complementary 3' leader and 5' trailer sequences. As is typical for nucleorhabdoviruses, all viral proteins, except the glycoprotein, which is targeted to the endoplasmic reticulum, are localized to the nucleus. Nucleocapsid (N) protein, matrix (M) protein and polymerase, as components of nuclear viroplasms during replication, have predicted strong canonical nuclear localization signals, and N and M proteins exclusively localize to the nucleus when transiently expressed as GFP fusions. As in all nucleorhabdoviruses studied so far, N and phosphoprotein P interact when co-expressed, significantly increasing P nuclear localization in the presence of N protein. This research adds to the list of complete genomes of plant-infecting rhabdoviruses, provides molecular tools for further characterization and supports classification of DYVV as a nucleorhabdovirus closely related to but with some distinct differences from SYNV.
Collapse
Affiliation(s)
- Ralf G Dietzgen
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD 4072, Australia.
| | - David J Innes
- Queensland Department of Agriculture and Fisheries, Agri-Science Queensland, Crop and Food Science, Health and Food Sciences Precinct, Coopers Plains, QLD 4108, Australia.
| | - Nicolas Bejerman
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
15
|
Yan T, Zhu JR, Di D, Gao Q, Zhang Y, Zhang A, Yan C, Miao H, Wang XB. Characterization of the complete genome of Barley yellow striate mosaic virus reveals a nested gene encoding a small hydrophobic protein. Virology 2015; 478:112-22. [PMID: 25666524 DOI: 10.1016/j.virol.2014.12.042] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 12/23/2014] [Accepted: 12/24/2014] [Indexed: 10/24/2022]
Abstract
Barley yellow striate mosaic virus (BYSMV), a member of the genus Cytorhabdovirus, causes serious crop losses in agriculture. Here, we have cloned the BYSMV-derived small interfering RNAs (siRNAs), assembled the siRNAs and used RT-PCR to reconstruct the BYSMV genome. The genome consists of 12,706 nucleotides and encodes ten predicted genes from the antigenomic strand. The major BYSMV structural proteins share identities ranging from 35% to 62% with northern cereal mosaic virus (NCMV) counterparts. A notable difference is that BYSMV contains three transcriptional units residing between the P and M genes compared with four units in the corresponding region of NCMV. Unexpectedly, the middle mRNA in this region encodes gene5 nested in an alternative frame within gene4 via a leaky scanning mechanism. The gene5 encodes a small hydrophobic protein targeting to the endoplasmic reticulum (ER). To our knowledge, this is the first report of nested gene in plant rhabdoviruses.
Collapse
Affiliation(s)
- Teng Yan
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China.
| | - Jing-Rong Zhu
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China.
| | - Dianping Di
- Plant Protection Institute, Hebei Academy of Agricultural and Forestry Sciences, IPM Center of Hebei Province, Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture, Baoding 071000, Hebei Province, PR China.
| | - Qiang Gao
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China.
| | - Yongliang Zhang
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China.
| | - Aihong Zhang
- Plant Protection Institute, Hebei Academy of Agricultural and Forestry Sciences, IPM Center of Hebei Province, Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture, Baoding 071000, Hebei Province, PR China.
| | - Chong Yan
- Plant Protection Institute, Hebei Academy of Agricultural and Forestry Sciences, IPM Center of Hebei Province, Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture, Baoding 071000, Hebei Province, PR China.
| | - Hongqin Miao
- Plant Protection Institute, Hebei Academy of Agricultural and Forestry Sciences, IPM Center of Hebei Province, Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture, Baoding 071000, Hebei Province, PR China.
| | - Xian-Bing Wang
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
16
|
Abstract
UNLABELLED The Sf9 cell line, derived from Spodoptera frugiperda, is used as a cell substrate for biological products, and no viruses have been reported in this cell line after extensive testing. We used degenerate PCR assays and massively parallel sequencing (MPS) to identify a novel RNA virus belonging to the order Mononegavirales in Sf9 cells. Sequence analysis of the assembled virus genome showed the presence of five open reading frames (ORFs) corresponding to the genes for the N, P, M, G, and L proteins in other rhabdoviruses and an unknown ORF of 111 amino acids located between the G- and L-protein genes. BLAST searches indicated that the S. frugiperda rhabdovirus (Sf-rhabdovirus) was related in a limited region of the L-protein gene to Taastrup virus, a newly discovered member of the Mononegavirales from a leafhopper (Hemiptera), and also to plant rhabdoviruses, particularly in the genus Cytorhabdovirus. Phylogenetic analysis of sequences in the L-protein gene indicated that Sf-rhabdovirus is a novel virus that branched with Taastrup virus. Rhabdovirus morphology was confirmed by transmission electron microscopy of filtered supernatant samples from Sf9 cells. Infectivity studies indicated potential transient infection by Sf-rhabdovirus in other insect cell lines, but there was no evidence of entry or virus replication in human cell lines. Sf-rhabdovirus sequences were also found in the Sf21 parental cell line of Sf9 cells but not in other insect cell lines, such as BT1-TN-5B1-4 (Tn5; High Five) cells and Schneider's Drosophila line 2 [D.Mel.(2); SL2] cells, indicating a species-specific infection. The results indicate that conventional methods may be complemented by state-of-the-art technologies with extensive bioinformatics analysis for identification of novel viruses. IMPORTANCE The Spodoptera frugiperda Sf9 cell line is used as a cell substrate for the development and manufacture of biological products. Extensive testing has not previously identified any viruses in this cell line. This paper reports on the identification and characterization of a novel rhabdovirus in Sf9 cells. This was accomplished through the use of next-generation sequencing platforms, de novo assembly tools, and extensive bioinformatics analysis. Rhabdovirus identification was further confirmed by transmission electron microscopy. Infectivity studies showed the lack of replication of Sf-rhabdovirus in human cell lines. The overall study highlights the use of a combinatorial testing approach including conventional methods and new technologies for evaluation of cell lines for unexpected viruses and use of comprehensive bioinformatics strategies for obtaining confident next-generation sequencing results.
Collapse
|
17
|
Mann KS, Dietzgen RG. Plant rhabdoviruses: new insights and research needs in the interplay of negative-strand RNA viruses with plant and insect hosts. Arch Virol 2014; 159:1889-900. [DOI: 10.1007/s00705-014-2029-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 02/15/2014] [Indexed: 11/30/2022]
|
18
|
Kondo H, Maruyama K, Chiba S, Andika IB, Suzuki N. Transcriptional mapping of the messenger and leader RNAs of orchid fleck virus, a bisegmented negative-strand RNA virus. Virology 2014; 452-453:166-74. [PMID: 24606694 DOI: 10.1016/j.virol.2014.01.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 12/25/2013] [Accepted: 01/11/2014] [Indexed: 11/24/2022]
Abstract
The transcriptional strategy of orchid fleck virus (OFV), which has a two-segmented negative-strand RNA genome and resembles plant nucleorhabdoviruses, remains unexplored. In this study, the transcripts of six genes encoded by OFV RNA1 and RNA2 in the poly(A)-enriched RNA fraction from infected plants were molecularly characterized. All of the OFV mRNAs were initiated at a start sequence 3'-UU-5' with one to three non-viral adenine nucleotides which were added at the 5' end of each mRNA, whereas their 3' termini ended with a 5'-AUUUAAA(U/G)AAAA(A)n-3' sequence. We also identified the presence of polyadenylated short transcripts derived from the 3'-terminal leader regions of both genomic and antigenomic strands, providing the first example of plus- and minus-strand leader RNAs in a segmented minus-strand RNA virus. The similarity in the transcriptional strategy between this bipartite OFV and monopartite rhabdoviruses, especially nucleorhabdoviruses (family Rhabdoviridae) is additional support for their close relationship.
Collapse
Affiliation(s)
- Hideki Kondo
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki 710-0046, Japan.
| | - Kazuyuki Maruyama
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki 710-0046, Japan
| | - Sotaro Chiba
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki 710-0046, Japan
| | - Ida Bagus Andika
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki 710-0046, Japan
| |
Collapse
|
19
|
Martinez N, Ribeiro EA, Leyrat C, Tarbouriech N, Ruigrok RWH, Jamin M. Structure of the C-terminal domain of lettuce necrotic yellows virus phosphoprotein. J Virol 2013; 87:9569-78. [PMID: 23785215 PMCID: PMC3754093 DOI: 10.1128/jvi.00999-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 06/14/2013] [Indexed: 12/26/2022] Open
Abstract
Lettuce necrotic yellows virus (LNYV) is a prototype of the plant-adapted cytorhabdoviruses. Through a meta-prediction of disorder, we localized a folded C-terminal domain in the amino acid sequence of its phosphoprotein. This domain consists of an autonomous folding unit that is monomeric in solution. Its structure, solved by X-ray crystallography, reveals a lollipop-shaped structure comprising five helices. The structure is different from that of the corresponding domains of other Rhabdoviridae, Filoviridae, and Paramyxovirinae; only the overall topology of the polypeptide chain seems to be conserved, suggesting that this domain evolved under weak selective pressure and varied in size by the acquisition or loss of functional modules.
Collapse
Affiliation(s)
- Nicolas Martinez
- Université Grenoble Alpes, UVHCI, Grenoble, France
- CNRS, UVHCI, Grenoble, France
- Unit for Virus Host-Cell Interactions, Université Grenoble Alpes-EMBL-CNRS, Grenoble, France
- Institut Laue Langevin, Grenoble, France
| | - Euripedes A. Ribeiro
- Université Grenoble Alpes, UVHCI, Grenoble, France
- CNRS, UVHCI, Grenoble, France
- Unit for Virus Host-Cell Interactions, Université Grenoble Alpes-EMBL-CNRS, Grenoble, France
| | - Cédric Leyrat
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Nicolas Tarbouriech
- Université Grenoble Alpes, UVHCI, Grenoble, France
- CNRS, UVHCI, Grenoble, France
- Unit for Virus Host-Cell Interactions, Université Grenoble Alpes-EMBL-CNRS, Grenoble, France
| | - Rob W. H. Ruigrok
- Université Grenoble Alpes, UVHCI, Grenoble, France
- CNRS, UVHCI, Grenoble, France
- Unit for Virus Host-Cell Interactions, Université Grenoble Alpes-EMBL-CNRS, Grenoble, France
| | - Marc Jamin
- Université Grenoble Alpes, UVHCI, Grenoble, France
- CNRS, UVHCI, Grenoble, France
- Unit for Virus Host-Cell Interactions, Université Grenoble Alpes-EMBL-CNRS, Grenoble, France
| |
Collapse
|
20
|
Genetic characterization of novel putative rhabdovirus and dsRNA virus from Japanese persimmon. J Gen Virol 2013; 94:1917-1921. [DOI: 10.1099/vir.0.054445-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Deep-sequencing analysis of nucleic acids from leaf tissue of Japanese persimmon trees exhibiting fruit apex disorder in some fruits detected two molecules that were graft transmitted to healthy seedlings. One of the complete genomes consisted of 13 467 nt and encoded six genes similar to those of plant rhabdoviruses. The virus formed a distinct cluster in the genus Cytorhabdovirus with lettuce necrotic yellows virus, lettuce yellow mottle virus and strawberry crinkle virus in a phylogenetic tree based on the L protein (RNA-dependent RNA polymerase, RdRp). The other consisted of 7475 nt and shared a genome organization similar to those of some insect and fungal viruses having dsRNA genomes. In a phylogenetic tree using the RdRp sequence of several unassigned dsRNA viruses, the virus formed a possible new genus cluster with two insect viruses, Circulifer tenellus virus 1 and Spissistilus festinus virus 1, and one plant virus, cucurbit yellows-associated virus.
Collapse
|
21
|
[Plant rhabdoviruses with bipartite genomes]. Uirusu 2013; 63:143-54. [PMID: 25366049 DOI: 10.2222/jsv.63.143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Members of the family Rhabdoviridae (order Mononegavirales) have a broad range of hosts, including humans, livestock, fish, plants, and invertebrates. They have a nonsegmented negative-sense RNA as the genome. Orchid fleck virus (OFV) is distributed world-wide on several orchid plants and transmitted by the false spider mite, Brevipalpus californicus. Based on its virions morphology and cytopathic effects in the infected cells, OFV was tentatively placed as unassigned plant rhabdoviruses in the sixth ICTV Report. However, the molecular studies reveled that OFV has a unique two-segmented negative-sense RNA genome that resembles monopartite genomes of plant nucleorhabdoviruses. In this review, we describe the current knowledge on the genome structure and gene expression strategy of OFV, the possible mechanism of nuclear viroplasm formation, and the taxonomical consideration of the virus as well.
Collapse
|
22
|
Evidence for negative-strand RNA virus infection in fungi. Virology 2013; 435:201-9. [DOI: 10.1016/j.virol.2012.10.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Revised: 09/27/2012] [Accepted: 10/02/2012] [Indexed: 11/22/2022]
|
23
|
Martin KM, Dietzgen RG, Wang R, Goodin MM. Lettuce necrotic yellows cytorhabdovirus protein localization and interaction map, and comparison with nucleorhabdoviruses. J Gen Virol 2012; 93:906-914. [PMID: 22190014 DOI: 10.1099/vir.0.038034-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Lettuce necrotic yellows virus (LNYV), Sonchus yellow net virus (SYNV) and Potato yellow dwarf virus (PYDV) are members of the family Rhabdoviridae that infect plants. LNYV is a cytorhabdovirus that replicates in the cytoplasm, while SYNV and PYDV are nucleorhabdoviruses that replicate in the nuclei of infected cells. LNYV and SYNV share a similar genome organization with a gene order of nucleoprotein (N), phosphoprotein (P), putative movement protein (Mv), matrix protein (M), glycoprotein (G) and polymerase (L). PYDV contains an additional predicted gene of unknown function located between N and P. In order to gain insight into the associations of viral structural and non-structural proteins and the mechanisms by which they may function, we constructed protein localization and interaction maps. Subcellular localization was determined by transiently expressing the viral proteins fused to green or red fluorescent protein in leaf epidermal cells of Nicotiana benthamiana. Protein interactions were tested in planta by using bimolecular fluorescence complementation. All three viruses showed Mv to be localized at the cell periphery and the G protein to be membrane associated. Comparing the interaction maps revealed that only the N-P and M-M interactions are common to all three viruses. Associations unique to only one virus include P-M for LNYV, G-Mv for SYNV and M-Mv, M-G and N-M for PYDV. The cognate N-P proteins of all three viruses interacted and exhibited characteristic changes in localization when co-expressed.
Collapse
Affiliation(s)
- Kathleen M Martin
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA
| | - Ralf G Dietzgen
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia Qld 4072, Australia
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA
| | - Renyuan Wang
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA
| | - Michael M Goodin
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
24
|
Walker PJ, Dietzgen RG, Joubert DA, Blasdell KR. Rhabdovirus accessory genes. Virus Res 2011; 162:110-25. [PMID: 21933691 PMCID: PMC7114375 DOI: 10.1016/j.virusres.2011.09.004] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 09/02/2011] [Accepted: 09/04/2011] [Indexed: 12/16/2022]
Abstract
The Rhabdoviridae is one of the most ecologically diverse families of RNA viruses with members infecting a wide range of organisms including placental mammals, marsupials, birds, reptiles, fish, insects and plants. The availability of complete nucleotide sequences for an increasing number of rhabdoviruses has revealed that their ecological diversity is reflected in the diversity and complexity of their genomes. The five canonical rhabdovirus structural protein genes (N, P, M, G and L) that are shared by all rhabdoviruses are overprinted, overlapped and interspersed with a multitude of novel and diverse accessory genes. Although not essential for replication in cell culture, several of these genes have been shown to have roles associated with pathogenesis and apoptosis in animals, and cell-to-cell movement in plants. Others appear to be secreted or have the characteristics of membrane-anchored glycoproteins or viroporins. However, most encode proteins of unknown function that are unrelated to any other known proteins. Understanding the roles of these accessory genes and the strategies by which rhabdoviruses use them to engage, divert and re-direct cellular processes will not only present opportunities to develop new anti-viral therapies but may also reveal aspects of cellar function that have broader significance in biology, agriculture and medicine.
Collapse
Affiliation(s)
- Peter J Walker
- CSIRO Livestock Industries, Australian Animal Health Laboratory, 5 Portarlington Road, Geelong, VIC 3220, Australia.
| | | | | | | |
Collapse
|
25
|
Lamprecht RL, Kasdorf GGF, Stiller M, Staples SM, Nel LH, Pietersen G. Soybean blotchy mosaic virus, a New Cytorhabdovirus Found in South Africa. PLANT DISEASE 2010; 94:1348-1354. [PMID: 30743624 DOI: 10.1094/pdis-09-09-0598] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A previously unidentified plant Rhabdovirus sp. associated with a blotchy mosaic symptom of soybean (Glycine max), prevalent in the lower-lying, warmer soybean production areas of South Africa, was isolated and partially characterized. The virus was shown to be transmitted by mechanical inoculation and at least one species of leafhopper (Peragallia caboverdensis Lindberg (Cicadellidae, Agalliinae)). To determine the morphology and virion size, as well as intercellular accumulation, negative-stained preparations or embedded ultrathin sections of infected plant samples were observed under a transmission electron microscope. The distribution of the virions within the cytoplasm and its bullet-shaped morphology and size (338 to 371 nm by 93 nm) suggested that it is a putative member of the genus Cytorhabdovirus. Degenerate primers designed to a conserved region of the polymerase gene of a number of Rhabdovirus spp. were used in reverse-transcriptase polymerase chain reaction with total RNA from symptomatic plants as template. Amplicons were sequenced and compared with related sequences available on GenBank. The analysis confirmed that the virus was related to Cytorhabdovirus spp., with the highest nucleotide similarity being 60.7% with Northern cereal mosaic virus. The particle morphology, typical virion accumulation in the cytoplasm of infected cells, nucleotide sequence similarity with that of other plant Rhabdovirus spp., and unique symptoms on soybean suggest that the virus is a previously unknown Cytorhabdovirus sp., for which we propose the name Soybean blotchy mosaic virus (SbBMV).
Collapse
Affiliation(s)
- R L Lamprecht
- Department of Microbiology and Plant Pathology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, 0002, South Africa
| | - G G F Kasdorf
- Agricultural Research Council-Plant Protection Research Institute, Queenswood, 0121, Pretoria, South Africa
| | - M Stiller
- Agricultural Research Council-Plant Protection Research Institute, Queenswood, 0121, Pretoria, South Africa
| | - S M Staples
- Agricultural Research Council-Plant Protection Research Institute, Queenswood, 0121, Pretoria, South Africa
| | - L H Nel
- Department of Microbiology and Plant Pathology, Faculty of Natural and Agricultural Sciences, University of Pretoria
| | - G Pietersen
- Agricultural Research Council-Plant Protection Research Institute, Queenswood
| |
Collapse
|
26
|
Firth AE, Atkins JF. Candidates in Astroviruses, Seadornaviruses, Cytorhabdoviruses and Coronaviruses for +1 frame overlapping genes accessed by leaky scanning. Virol J 2010; 7:17. [PMID: 20100346 PMCID: PMC2832772 DOI: 10.1186/1743-422x-7-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 01/25/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Overlapping genes are common in RNA viruses where they serve as a mechanism to optimize the coding potential of compact genomes. However, annotation of overlapping genes can be difficult using conventional gene-finding software. Recently we have been using a number of complementary approaches to systematically identify previously undetected overlapping genes in RNA virus genomes. In this article we gather together a number of promising candidate new overlapping genes that may be of interest to the community. RESULTS Overlapping gene predictions are presented for the astroviruses, seadornaviruses, cytorhabdoviruses and coronaviruses (families Astroviridae, Reoviridae, Rhabdoviridae and Coronaviridae, respectively).
Collapse
Affiliation(s)
- Andrew E Firth
- BioSciences Institute, University College Cork, Cork, Ireland.
| | | |
Collapse
|
27
|
Ammar ED, Tsai CW, Whitfield AE, Redinbaugh MG, Hogenhout SA. Cellular and molecular aspects of rhabdovirus interactions with insect and plant hosts. ANNUAL REVIEW OF ENTOMOLOGY 2009; 54:447-68. [PMID: 18793103 DOI: 10.1146/annurev.ento.54.110807.090454] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The rhabdoviruses form a large family (Rhabdoviridae) whose host ranges include humans, other vertebrates, invertebrates, and plants. There are at least 90 plant-infecting rhabdoviruses, several of which are economically important pathogens of various crops. All definitive plant-infecting and many vertebrate-infecting rhabdoviruses are persistently transmitted by insect vectors, and a few putative plant rhabdoviruses are transmitted by mites. Plant rhabdoviruses replicate in their plant and arthropod hosts, and transmission by vectors is highly specific, with each virus species transmitted by one or a few related insect species, mainly aphids, leafhoppers, or planthoppers. Here, we provide an overview of plant rhabdovirus interactions with their insect hosts and of how these interactions compare with those of vertebrate-infecting viruses and with the Sigma rhabdovirus that infects Drosophila flies. We focus on cellular and molecular aspects of vector/host specificity, transmission barriers, and virus receptors in the vectors. In addition, we briefly discuss recent advances in understanding rhabdovirus-plant interactions.
Collapse
Affiliation(s)
- El-Desouky Ammar
- Department of Entomology, The Ohio State University-OARDC, Wooster, Ohio 44691, USA.
| | | | | | | | | |
Collapse
|
28
|
Identification and characterization of structural proteins of orchid fleck virus. Arch Virol 2008; 154:37-45. [DOI: 10.1007/s00705-008-0268-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Accepted: 11/04/2008] [Indexed: 10/21/2022]
|
29
|
Ghosh D, Brooks RE, Wang R, Lesnaw J, Goodin MM. Cloning and subcellular localization of the phosphoprotein and nucleocapsid proteins of Potato yellow dwarf virus, type species of the genus Nucleorhabdovirus. Virus Res 2008; 135:26-35. [PMID: 18387687 DOI: 10.1016/j.virusres.2008.02.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Revised: 02/07/2008] [Accepted: 02/10/2008] [Indexed: 11/15/2022]
Abstract
We have cloned and characterized mRNAs corresponding to the phosphoprotein (P) and nucleocapsid (N) genes of the sanguinolenta strain of Potato yellow dwarf virus (PYDV). The P and N messenger RNAs both begin with a common AAACA pentanucleotide and are 1546nt and 962nt in length, and capable of encoding 52kDa and 31kDa proteins, respectively. The N mRNA contains a 12nt 5' non-translated sequence (NTS) and a 83nt 3'-NTS. Similarly, the P mRNA has a 19nt 5'-NTS and a 125nt 3'-NTS. Primary structure analyses revealed three potential phosphorylation sites in the P protein and six in the N protein. Despite a lack of predictable nuclear localization signals (NLSs) in either protein, transient expression of the P and N proteins in N. benthamiana showed that both proteins are targeted exclusively to nuclei. Phylogenetic analyses showed that PYDV is most closely related to Maize mosaic virus and Taro vein chlorosis virus, which also lack predictable NLSs in their N proteins. The present data further distinguish PYDV from SYNV and suggest that, together, these viruses serve to provide a more comprehensive view of rhabdovirus cell biology, which can be studied in a common host plant.
Collapse
Affiliation(s)
- Debasish Ghosh
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, United States
| | | | | | | | | |
Collapse
|