1
|
Xu J, Qu Z, Wang Y, Ren W, Liu S, Zou Y, Su N, Bao J, Wang Z. Wildlife Infection of Peste des Petits Ruminants Detected in China, 2024. Vet Sci 2024; 11:489. [PMID: 39453081 PMCID: PMC11512390 DOI: 10.3390/vetsci11100489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
In 2013, the second outbreak of peste des petits ruminants occurred in China, leading to a spillover in more than 20 provinces and municipalities over the next few months. Thereafter, the epidemic situation was stable owing to strict prevention and control measures. In February 2024, several bharals and argali with suspected symptoms of PPR were discovered in Rutog country, Tibet Autonomous Region. Samples collected from these animals were delivered to our laboratory for diagnosis; the results of fluorescence quantitative reverse-transcription (RT) PCR indicated that all samples were positive for PPR viral RNA. The N and F gene fragments were amplified successfully via RT-PCR, and these results confirmed that these animals were infected with PPRV. A PPRV strain (subsequently named ChinaTibet2024) was sequenced, and its genome length was 15,954 nucleotides. A phylogenetic tree analysis using N and F genes and viral genomes showed that the ChinaTibet2024 genome was classified into lineage IV of the PRRV genotypes. The genome of the ChinaTibet2024 strain was found to be closely related to PPRVs isolated in China between 2013 and 2014. A base insertion and a base deletion were detected in the M gene 5' untranslated region. Results indicated that the prevalent PPRV strains in China did not show significant changes and that special attention should be paid to the surveillance of wild animals as an important part of PPR prevention and control.
Collapse
Affiliation(s)
- Jiao Xu
- China Animal Health and Epidemiology Center, Qingdao 266032, China; (J.X.)
| | - Zebin Qu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266000, China
| | - Yingli Wang
- China Animal Health and Epidemiology Center, Qingdao 266032, China; (J.X.)
| | - Weijie Ren
- China Animal Health and Epidemiology Center, Qingdao 266032, China; (J.X.)
| | - Shan Liu
- China Animal Health and Epidemiology Center, Qingdao 266032, China; (J.X.)
| | - Yanli Zou
- China Animal Health and Epidemiology Center, Qingdao 266032, China; (J.X.)
| | - Na Su
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266000, China
| | - Jingyue Bao
- China Animal Health and Epidemiology Center, Qingdao 266032, China; (J.X.)
| | - Zhiliang Wang
- China Animal Health and Epidemiology Center, Qingdao 266032, China; (J.X.)
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266000, China
| |
Collapse
|
2
|
Zhou N, Chen L, Wang C, Lv M, Shan F, Li W, Wu Y, Du X, Fan J, Liu M, Shi M, Cao J, Zhai J, Chen W. Isolation, genome analysis and comparison of a novel parainfluenza virus 5 from a Siberian tiger ( Panthera tigris). Front Vet Sci 2024; 11:1356378. [PMID: 38686028 PMCID: PMC11057237 DOI: 10.3389/fvets.2024.1356378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/08/2024] [Indexed: 05/02/2024] Open
Abstract
Paramyxoviruses are important pathogens affecting various animals, including mammals and humans. Parainfluenza virus 5 (PIV5)-a member of the family Paramyxoviridae-is a major threat to the health of mammals and humans. However, studies on terrestrial wild animals infected with PIV5 are scanty. In this study, we utilized reverse transcription PCR to detect PIV5 infection in the visceral organ tissues of a Siberian tiger (Panthera tigris ssp. altaica) with vomiting, diarrhea, and dyspnea before its death. A novel PIV5 (named SR strain) with a slowly progressive cytopathic effect was isolated in Vero cells and validated using a transmission electron microscope. Full-length sequencing and analysis revealed that the whole genome of the PIV5 SR strain contained 15,246 nucleotides (nt) and seven non-overlapping genes (3'-N-V/P-M-F-SH-HN-L-5') encoding eight proteins. Phylogenetic analysis of three PIV5 strains identified in the same zoo confirmed that PIV5 strains SR and ZJQ-221 shared the closest genetic relationship as they were clustered in the same branch, while the recently found Siberian tiger strain SZ2 kept a certain distance and formed a relatively unique branch. Furthermore, mutations of nt and amino acids (aa) between strains ZJQ-221, SR, and SZ2 were identified. In summary, we report the identification and genomic characterization of a novel PIV5 strain SR isolated in a Siberian tiger, which may help future research on interspecific transmission mechanisms.
Collapse
Affiliation(s)
- Niu Zhou
- Guangzhou Zoo, Guangzhou, China
- Guangzhou Wildlife Research Center, Guangzhou, China
| | - Liang Chen
- Agriculture and Rural Bureau of Yuanzhou District, Yichun, China
| | - Chen Wang
- Guangzhou Zoo, Guangzhou, China
- Guangzhou Wildlife Research Center, Guangzhou, China
| | - Mengna Lv
- Guangzhou Zoo, Guangzhou, China
- Guangzhou Wildlife Research Center, Guangzhou, China
| | - Fen Shan
- Guangzhou Zoo, Guangzhou, China
- Guangzhou Wildlife Research Center, Guangzhou, China
| | - Wanping Li
- Guangzhou Zoo, Guangzhou, China
- Guangzhou Wildlife Research Center, Guangzhou, China
| | - Yajiang Wu
- Guangzhou Zoo, Guangzhou, China
- Guangzhou Wildlife Research Center, Guangzhou, China
| | - Xueqing Du
- Guangzhou Zoo, Guangzhou, China
- Guangzhou Wildlife Research Center, Guangzhou, China
| | | | - Minting Liu
- Guangzhou Zoo, Guangzhou, China
- Guangzhou Wildlife Research Center, Guangzhou, China
| | - Menghan Shi
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Jingjing Cao
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Junqiong Zhai
- Guangzhou Zoo, Guangzhou, China
- Guangzhou Wildlife Research Center, Guangzhou, China
| | - Wu Chen
- Guangzhou Zoo, Guangzhou, China
- Guangzhou Wildlife Research Center, Guangzhou, China
| |
Collapse
|
3
|
Peng Q, Yuan B, Cheng J, Wang M, Gao S, Bai S, Zhao X, Qi J, Gao GF, Shi Y. Molecular mechanism of de novo replication by the Ebola virus polymerase. Nature 2023; 622:603-610. [PMID: 37699521 DOI: 10.1038/s41586-023-06608-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 09/05/2023] [Indexed: 09/14/2023]
Abstract
Non-segmented negative-strand RNA viruses, including Ebola virus (EBOV), rabies virus, human respiratory syncytial virus and pneumoviruses, can cause respiratory infections, haemorrhagic fever and encephalitis in humans and animals, and are considered a substantial health and economic burden worldwide1. Replication and transcription of the viral genome are executed by the large (L) polymerase, which is a promising target for the development of antiviral drugs. Here, using the L polymerase of EBOV as a representative, we show that de novo replication of L polymerase is controlled by the specific 3' leader sequence of the EBOV genome in an enzymatic assay, and that formation of at least three base pairs can effectively drive the elongation process of RNA synthesis independent of the specific RNA sequence. We present the high-resolution structures of the EBOV L-VP35-RNA complex and show that the 3' leader RNA binds in the template entry channel with a distinctive stable bend conformation. Using mutagenesis assays, we confirm that the bend conformation of the RNA is required for the de novo replication activity and reveal the key residues of the L protein that stabilize the RNA conformation. These findings provide a new mechanistic understanding of RNA synthesis for polymerases of non-segmented negative-strand RNA viruses, and reveal important targets for the development of antiviral drugs.
Collapse
Affiliation(s)
- Qi Peng
- International Institute of Vaccine Research and Innovation (iVac), Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Bin Yuan
- International Institute of Vaccine Research and Innovation (iVac), Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jinlong Cheng
- International Institute of Vaccine Research and Innovation (iVac), Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Min Wang
- International Institute of Vaccine Research and Innovation (iVac), Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Siwei Gao
- International Institute of Vaccine Research and Innovation (iVac), Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Suran Bai
- International Institute of Vaccine Research and Innovation (iVac), Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xuejin Zhao
- International Institute of Vaccine Research and Innovation (iVac), Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jianxun Qi
- International Institute of Vaccine Research and Innovation (iVac), Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
- Beijing Life Science Academy, Beijing, China.
| | - George F Gao
- International Institute of Vaccine Research and Innovation (iVac), Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
- Beijing Life Science Academy, Beijing, China.
- Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Disease (CEEID), Chinese Academy of Sciences, Beijing, China.
- Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, Beijing, China.
| | - Yi Shi
- International Institute of Vaccine Research and Innovation (iVac), Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
- Beijing Life Science Academy, Beijing, China.
- Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Disease (CEEID), Chinese Academy of Sciences, Beijing, China.
- Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
4
|
The Nucleocapsid of Paramyxoviruses: Structure and Function of an Encapsidated Template. Viruses 2021; 13:v13122465. [PMID: 34960734 PMCID: PMC8708338 DOI: 10.3390/v13122465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 01/28/2023] Open
Abstract
Viruses of the Paramyxoviridae family share a common and complex molecular machinery for transcribing and replicating their genomes. Their non-segmented, negative-strand RNA genome is encased in a tight homopolymer of viral nucleoproteins (N). This ribonucleoprotein complex, termed a nucleocapsid, is the template of the viral polymerase complex made of the large protein (L) and its co-factor, the phosphoprotein (P). This review summarizes the current knowledge on several aspects of paramyxovirus transcription and replication, including structural and functional data on (1) the architecture of the nucleocapsid (structure of the nucleoprotein, interprotomer contacts, interaction with RNA, and organization of the disordered C-terminal tail of N), (2) the encapsidation of the genomic RNAs (structure of the nucleoprotein in complex with its chaperon P and kinetics of RNA encapsidation in vitro), and (3) the use of the nucleocapsid as a template for the polymerase complex (release of the encased RNA and interaction network allowing the progress of the polymerase complex). Finally, this review presents models of paramyxovirus transcription and replication.
Collapse
|
5
|
Douglas J, Drummond AJ, Kingston RL. Evolutionary history of cotranscriptional editing in the paramyxoviral phosphoprotein gene. Virus Evol 2021; 7:veab028. [PMID: 34141448 PMCID: PMC8204654 DOI: 10.1093/ve/veab028] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The phosphoprotein gene of the paramyxoviruses encodes multiple protein products. The P, V, and W proteins are generated by transcriptional slippage. This process results in the insertion of non-templated guanosine nucleosides into the mRNA at a conserved edit site. The P protein is an essential component of the viral RNA polymerase and is encoded by a faithful copy of the gene in the majority of paramyxoviruses. However, in some cases, the non-essential V protein is encoded by default and guanosines must be inserted into the mRNA in order to encode P. The number of guanosines inserted into the P gene can be described by a probability distribution, which varies between viruses. In this article, we review the nature of these distributions, which can be inferred from mRNA sequencing data, and reconstruct the evolutionary history of cotranscriptional editing in the paramyxovirus family. Our model suggests that, throughout known history of the family, the system has switched from a P default to a V default mode four times; complete loss of the editing system has occurred twice, the canonical zinc finger domain of the V protein has been deleted or heavily mutated a further two times, and the W protein has independently evolved a novel function three times. Finally, we review the physical mechanisms of cotranscriptional editing via slippage of the viral RNA polymerase.
Collapse
Affiliation(s)
- Jordan Douglas
- Centre for Computational Evolution, University of Auckland, Auckland 1010, New Zealand
- School of Computer Science, University of Auckland, Auckland 1010, New Zealand
| | - Alexei J Drummond
- Centre for Computational Evolution, University of Auckland, Auckland 1010, New Zealand
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Richard L Kingston
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
6
|
Young DF, Wignall-Fleming EB, Busse DC, Pickin MJ, Hankinson J, Randall EM, Tavendale A, Davison AJ, Lamont D, Tregoning JS, Goodbourn S, Randall RE. The switch between acute and persistent paramyxovirus infection caused by single amino acid substitutions in the RNA polymerase P subunit. PLoS Pathog 2019; 15:e1007561. [PMID: 30742688 PMCID: PMC6386407 DOI: 10.1371/journal.ppat.1007561] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 02/22/2019] [Accepted: 01/04/2019] [Indexed: 12/24/2022] Open
Abstract
Paramyxoviruses can establish persistent infections both in vitro and in vivo, some of which lead to chronic disease. However, little is known about the molecular events that contribute to the establishment of persistent infections by RNA viruses. Using parainfluenza virus type 5 (PIV5) as a model we show that phosphorylation of the P protein, which is a key component of the viral RNA polymerase complex, determines whether or not viral transcription and replication becomes repressed at late times after infection. If the virus becomes repressed, persistence is established, but if not, the infected cells die. We found that single amino acid changes at various positions within the P protein switched the infection phenotype from lytic to persistent. Lytic variants replicated to higher titres in mice than persistent variants and caused greater infiltration of immune cells into infected lungs but were cleared more rapidly. We propose that during the acute phases of viral infection in vivo, lytic variants of PIV5 will be selected but, as the adaptive immune response develops, variants in which viral replication can be repressed will be selected, leading to the establishment of prolonged, persistent infections. We suggest that similar selection processes may operate for other RNA viruses.
Collapse
Affiliation(s)
- Dan F. Young
- School of Biology, Centre for Biomolecular Sciences, BMS Building, North Haugh, University of St. Andrews, St. Andrews, Fife, United Kingdom
| | - Elizabeth B. Wignall-Fleming
- School of Biology, Centre for Biomolecular Sciences, BMS Building, North Haugh, University of St. Andrews, St. Andrews, Fife, United Kingdom
- MRC–University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - David C. Busse
- Mucosal Infection and Immunity Group, Section of Virology, Imperial College London, London, United Kingdom
| | - Matthew J. Pickin
- Institute for Infection and Immunity, St. George's, University of London, London, United Kingdom
| | - Jack Hankinson
- Institute for Infection and Immunity, St. George's, University of London, London, United Kingdom
| | - Elizabeth M. Randall
- School of Biology, Centre for Biomolecular Sciences, BMS Building, North Haugh, University of St. Andrews, St. Andrews, Fife, United Kingdom
| | - Amy Tavendale
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Andrew J. Davison
- MRC–University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Douglas Lamont
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - John S. Tregoning
- Mucosal Infection and Immunity Group, Section of Virology, Imperial College London, London, United Kingdom
| | - Steve Goodbourn
- Institute for Infection and Immunity, St. George's, University of London, London, United Kingdom
| | - Richard E. Randall
- School of Biology, Centre for Biomolecular Sciences, BMS Building, North Haugh, University of St. Andrews, St. Andrews, Fife, United Kingdom
| |
Collapse
|
7
|
1-Benzyl-3-cetyl-2-methylimidazolium Iodide (NH125) Is a Broad-Spectrum Inhibitor of Virus Entry with Lysosomotropic Features. Viruses 2018; 10:v10060306. [PMID: 29874821 PMCID: PMC6024324 DOI: 10.3390/v10060306] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 05/28/2018] [Indexed: 12/13/2022] Open
Abstract
Cellular kinases are crucial for the transcription/replication of many negative-strand RNA viruses and might serve as targets for antiviral therapy. In this study, a library comprising 80 kinase inhibitors was screened for antiviral activity against vesicular stomatitis virus (VSV), a prototype member of the family Rhabdoviridae. 1-Benzyl-3-cetyl-2-methylimidazolium iodide (NH125), an inhibitor of eukaryotic elongation factor 2 (eEF2) kinase, significantly inhibited entry of single-cycle VSV encoding a luciferase reporter. Treatment of virus particles had only minimal effect on virus entry, indicating that the compound primarily acts on the host cell rather than on the virus. Accordingly, resistant mutant viruses were not detected when the virus was passaged in the presence of the drug. Unexpectedly, NH125 led to enhanced, rather than reduced, phosphorylation of eEF2, however, it did not significantly affect cellular protein synthesis. In contrast, NH125 revealed lysosomotropic features and showed structural similarity with N-dodecylimidazole, a known lysosomotropic agent. Related alkylated imidazolium compounds also exhibited antiviral activity, which was critically dependent on the length of the alkyl group. Apart from VSV, NH125 inhibited infection by VSV pseudotypes containing the envelope glycoproteins of viruses that are known to enter cells in a pH-dependent manner, i.e. avian influenza virus (H5N1), Ebola virus, and Lassa virus. In conclusion, we identified an alkylated imidazolium compound which inhibited entry of several viruses not because of the previously postulated inhibition of eEF2 kinase but most likely because of its lysosomotropic properties.
Collapse
|
8
|
Bao J, Wang Q, Li L, Liu C, Zhang Z, Li J, Wang S, Wu X, Wang Z. Evolutionary dynamics of recent peste des petits ruminants virus epidemic in China during 2013-2014. Virology 2017; 510:156-164. [PMID: 28734191 PMCID: PMC7111700 DOI: 10.1016/j.virol.2017.07.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 07/12/2017] [Accepted: 07/13/2017] [Indexed: 12/17/2022]
Abstract
Peste des petits ruminants virus (PPRV) causes a highly contagious disease, peste des petits ruminants (PPR), in sheep and goats which has been considered as a serious threat to the local economy in Africa and Asia. However, the in-depth evolutionary dynamics of PPRV during an epidemic is not well understood. We conducted phylogenetic analysis on genomic sequences of 25 PPRV strains from China 2013-2014 outbreaks. All these strains clustered into a novel clade in lineage 4. An evolutionary rate of 2.61 × 10-6 nucleotide substitutions per site per day was estimated, dating the most recent common ancestor of PPRV China 2013-2014 strains to early August 2013. Transmission network analysis revealed that all the virus sequences could be grouped into five clusters of infection, suggesting long-distance animal transmission play an important role in the spread of PPRV in China. These results expanded our knowledge for PPRV evolution to achieve effective control measures.
Collapse
Affiliation(s)
- Jingyue Bao
- China Animal Health and Epidemiology Center, Qingdao, Shandong, China.
| | - Qinghua Wang
- China Animal Health and Epidemiology Center, Qingdao, Shandong, China
| | - Lin Li
- China Animal Health and Epidemiology Center, Qingdao, Shandong, China
| | - Chunju Liu
- China Animal Health and Epidemiology Center, Qingdao, Shandong, China
| | - Zhicheng Zhang
- China Animal Health and Epidemiology Center, Qingdao, Shandong, China
| | - Jinming Li
- China Animal Health and Epidemiology Center, Qingdao, Shandong, China
| | - Shujuan Wang
- China Animal Health and Epidemiology Center, Qingdao, Shandong, China
| | - Xiaodong Wu
- China Animal Health and Epidemiology Center, Qingdao, Shandong, China
| | - Zhiliang Wang
- China Animal Health and Epidemiology Center, Qingdao, Shandong, China.
| |
Collapse
|
9
|
Filovirus proteins for antiviral drug discovery: Structure/function bases of the replication cycle. Antiviral Res 2017; 141:48-61. [PMID: 28192094 DOI: 10.1016/j.antiviral.2017.02.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 01/12/2017] [Accepted: 02/07/2017] [Indexed: 12/26/2022]
Abstract
Filoviruses are important pathogens that cause severe and often fatal hemorrhagic fever in humans, for which no approved vaccines and antiviral treatments are yet available. In an earlier article (Martin et al., Antiviral Research, 2016), we reviewed the role of the filovirus surface glycoprotein in replication and as a target for drugs and vaccines. In this review, we focus on recent findings on the filovirus replication machinery and how they could be used for the identification of new therapeutic targets and the development of new antiviral compounds. First, we summarize the recent structural and functional advances on the molecules involved in filovirus replication/transcription cycle, particularly the NP, VP30, VP35 proteins, and the "large" protein L, which harbors the RNA-dependent RNA polymerase (RdRp) and mRNA capping activities. These proteins are essential for viral mRNA synthesis and genome replication, and consequently they constitute attractive targets for drug design. We then describe how these insights into filovirus replication mechanisms and the structure/function characterization of the involved proteins have led to the development of new and innovative antiviral strategies that may help reduce the filovirus disease case fatality rate through post-exposure or prophylactic treatments.
Collapse
|
10
|
Falcinelli SD, Chertow DS, Kindrachuk J. Integration of Global Analyses of Host Molecular Responses with Clinical Data To Evaluate Pathogenesis and Advance Therapies for Emerging and Re-emerging Viral Infections. ACS Infect Dis 2016; 2:787-799. [PMID: 27933782 PMCID: PMC6131701 DOI: 10.1021/acsinfecdis.6b00104] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
Outbreaks
associated with emerging and re-emerging viral pathogens continue
to increase in frequency and are associated with an increasing burden
to global health. In light of this, there is a need to integrate basic
and clinical research for investigating the connections between molecular
and clinical pathogenesis and for therapeutic development strategies.
Here, we will discuss this approach with a focus on the emerging viral
pathogens Middle East respiratory syndrome coronavirus (MERS-CoV),
Ebola virus (EBOV), and monkeypox virus (MPXV) from the context of
clinical presentation, immunological and molecular features of the
diseases, and OMICS-based analyses of pathogenesis. Furthermore, we
will highlight the role of global investigations of host kinases,
the kinome, for investigating emerging and re-emerging viral pathogens
from the context of characterizing cellular responses and identifying
novel therapeutic targets. Lastly, we will address how increased integration
of clinical and basic research will assist treatment and prevention
efforts for emerging pathogens.
Collapse
Affiliation(s)
- Shane D. Falcinelli
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland 20814, United States
| | - Daniel S. Chertow
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland 20814, United States
| | - Jason Kindrachuk
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland 20814, United States
| |
Collapse
|
11
|
Organization, Function, and Therapeutic Targeting of the Morbillivirus RNA-Dependent RNA Polymerase Complex. Viruses 2016; 8:v8090251. [PMID: 27626440 PMCID: PMC5035965 DOI: 10.3390/v8090251] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/02/2016] [Accepted: 09/05/2016] [Indexed: 12/16/2022] Open
Abstract
The morbillivirus genus comprises major human and animal pathogens, including the highly contagious measles virus. Morbilliviruses feature single stranded negative sense RNA genomes that are wrapped by a plasma membrane-derived lipid envelope. Genomes are encapsidated by the viral nucleocapsid protein forming ribonucleoprotein complexes, and only the encapsidated RNA is transcribed and replicated by the viral RNA-dependent RNA polymerase (RdRp). In this review, we discuss recent breakthroughs towards the structural and functional understanding of the morbillivirus polymerase complex. Considering the clinical burden imposed by members of the morbillivirus genus, the development of novel antiviral therapeutics is urgently needed. The viral polymerase complex presents unique structural and enzymatic properties that can serve as attractive candidates for druggable targets. We evaluate distinct strategies for therapeutic intervention and examine how high-resolution insight into the organization of the polymerase complex may pave the path towards the structure-based design and optimization of next-generation RdRp inhibitors.
Collapse
|
12
|
Identification and functional analysis of phosphorylation in Newcastle disease virus phosphoprotein. Arch Virol 2016; 161:2103-16. [PMID: 27160999 DOI: 10.1007/s00705-016-2884-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 04/29/2016] [Indexed: 10/21/2022]
Abstract
Newcastle disease virus (NDV) encodes a highly phosphorylated P protein; however, the phosphorylation sites have not been identified, and the relationship between phosphorylation and protein function is still unclear. In this study, we bioinformatically predicted 26 amino acid residues in the P protein as potential phosphorylation sites. Furthermore, we treated infected cells with kinase inhibitors to investigate NDV propagation and found that protein kinase C (PKC) is involved in the NDV life cycle and that PKC-activated phosphorylation functions in NDV replication. Using an NDV minigenome assay, we found that expression of a reporter protein decreased when the minigenome system contained P mutants lacking T44, S48, T271, S373 and especially T111. The phosphorylation status of S48, T111, S125 and T271 was determined by Phos-tag SDS-PAGE analysis. Coimmunoprecipitation assays showed that the binding activity of NP and the P-T111A mutant was stronger than that of NP and the wild-type P, suggesting that P-T111 is involved in NP-P interaction. This study sheds light on the mechanism by which P protein phosphorylation affects NDV replication and transcription.
Collapse
|
13
|
Dynamic Phosphorylation of VP30 Is Essential for Ebola Virus Life Cycle. J Virol 2016; 90:4914-4925. [PMID: 26937028 DOI: 10.1128/jvi.03257-15] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 02/21/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Ebola virus is the causative agent of a severe fever with high fatality rates in humans and nonhuman primates. The regulation of Ebola virus transcription and replication currently is not well understood. An important factor regulating viral transcription is VP30, an Ebola virus-specific transcription factor associated with the viral nucleocapsid. Previous studies revealed that the phosphorylation status of VP30 impacts viral transcription. Together with NP, L, and the polymerase cofactor VP35, nonphosphorylated VP30 supports viral transcription. Upon VP30 phosphorylation, viral transcription ceases. Phosphorylation weakens the interaction between VP30 and the polymerase cofactor VP35 and/or the viral RNA. VP30 thereby is excluded from the viral transcription complex, simultaneously leading to increased viral replication which is supported by NP, L, and VP35 alone. Here, we use an infectious virus-like particle assay and recombinant viruses to show that the dynamic phosphorylation of VP30 is critical for the cotransport of VP30 with nucleocapsids to the sites of viral RNA synthesis, where VP30 is required to initiate primary viral transcription. We further demonstrate that a single serine residue at amino acid position 29 was sufficient to render VP30 active in primary transcription and to generate a recombinant virus with characteristics comparable to those of wild-type virus. In contrast, the rescue of a recombinant virus with a single serine at position 30 in VP30 was unsuccessful. Our results indicate critical roles for phosphorylated and dephosphorylated VP30 during the viral life cycle. IMPORTANCE The current Ebola virus outbreak in West Africa has caused more than 28,000 cases and 11,000 fatalities. Very little is known regarding the molecular mechanisms of how the Ebola virus transcribes and replicates its genome. Previous investigations showed that the transcriptional support activity of VP30 is activated upon VP30 dephosphorylation. The current study reveals that the situation is more complex and that primary transcription as well as the rescue of recombinant Ebola virus also requires the transient phosphorylation of VP30. VP30 encodes six N-proximal serine residues that serve as phosphorylation acceptor sites. The present study shows that the dynamic phosphorylation of serine at position 29 alone is sufficient to activate primary viral transcription. Our results indicate a series of phosphorylation/dephosphorylation events that trigger binding to and release from the nucleocapsid and transcription complex to be essential for the full activity of VP30.
Collapse
|
14
|
Dundon WG, Adombi C, Waqas A, Otsyina HR, Arthur CT, Silber R, Loitsch A, Diallo A. Full genome sequence of a peste des petits ruminants virus (PPRV) from Ghana. Virus Genes 2014; 49:497-501. [PMID: 25150987 DOI: 10.1007/s11262-014-1109-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 08/14/2014] [Indexed: 12/24/2022]
Abstract
The full genome of a peste des petits ruminants virus (PPRV) isolated from a sheep lung sample collected in Ghana, Western Africa, in 2010, has been sequenced. Phylogenetic analysis demonstrated that the virus clustered within the lineage II clade while comparison of its full genome with those of other PPRV strains revealed the highest identity (96.6 %) at a nucleotide level with the PPRV strain Nigeria/76/1. This is the first full genome sequence generated for a PPRV lineage II isolated since 1976.
Collapse
Affiliation(s)
- W G Dundon
- Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria,
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Biedenkopf N, Hartlieb B, Hoenen T, Becker S. Phosphorylation of Ebola virus VP30 influences the composition of the viral nucleocapsid complex: impact on viral transcription and replication. J Biol Chem 2013; 288:11165-74. [PMID: 23493393 DOI: 10.1074/jbc.m113.461285] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ebola virus is a non-segmented negative-sense RNA virus causing severe hemorrhagic fever with high fatality rates in humans and nonhuman primates. For transcription of the viral genome four viral proteins are essential: the nucleoprotein NP, the polymerase L, the polymerase cofactor VP35, and VP30. VP30 represents an essential Ebola virus-specific transcription factor whose activity is regulated via its phosphorylation state. In contrast to viral transcription, VP30 is not required for viral replication. Using a minigenome assay, we show that phosphorylation of VP30 inhibits viral transcription while viral replication is increased. Concurrently, phosphorylation of VP30 reciprocally regulates a newly described interaction of VP30 with VP35, and strengthens the interaction with NP. Our results indicate a critical role of VP30 phosphorylation for viral transcription and replication, suggesting a mechanism by which VP30 phosphorylation modulates the composition of the viral polymerase complex presumably forming a transcriptase in the presence of non-phosphorylated VP30 or a replicase in the presence of phosphorylated VP30.
Collapse
Affiliation(s)
- Nadine Biedenkopf
- Institut für Virologie, Philipps-Universität Marburg, Hans-Meerwein-Str. 2, 35043 Marburg, Germany
| | | | | | | |
Collapse
|
16
|
Sugai A, Sato H, Yoneda M, Kai C. Phosphorylation of measles virus phosphoprotein at S86 and/or S151 downregulates viral transcriptional activity. FEBS Lett 2012; 586:3900-7. [PMID: 23022562 DOI: 10.1016/j.febslet.2012.09.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 09/10/2012] [Accepted: 09/15/2012] [Indexed: 01/14/2023]
Abstract
Measles virus phosphoprotein (P protein) is a cofactor of the viral RNA polymerase (L protein) that associates with the nucleoprotein-RNA complex to support viral transcription and replication. Here, we report a significant inverse correlation between the phosphorylation level of MV-P protein and viral transcriptional activity. Upregulation of P protein phosphorylation resulted in reduction of viral transcription. Additionally, we found that strong phosphorylation at S86 and S151 of P protein, which may be generally prevented by association with nucleoprotein, downregulates the viral transcriptional activity. These findings suggest that P protein is involved in regulation of viral transcription through changes in its phosphorylation status.
Collapse
Affiliation(s)
- Akihiro Sugai
- International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | | | | | | |
Collapse
|
17
|
Martinez MJ, Volchkova VA, Raoul H, Alazard-Dany N, Reynard O, Volchkov VE. Role of VP30 phosphorylation in the Ebola virus replication cycle. J Infect Dis 2011; 204 Suppl 3:S934-40. [PMID: 21987772 DOI: 10.1093/infdis/jir320] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Ebola virus (EBOV) transcription is dependent on the phosphoprotein VP30, a component of the viral nucleocapsid. VP30 is phosphorylated at 2 serine residue clusters located at the N-terminal part of the protein. In this report, we have investigated the role of VP30 phosphorylation in EBOV replication using a reverse genetics approach. In effect, recombinant EBOVs with the VP30 serine clusters substituted either by nonphosphorylatable alanines or phosphorylation-mimicking aspartates were generated and characterized. We show that in comparison to the wild-type EBOV the mutated viruses possess reduced infectivity. This difference is explained by alterations in the balance between the transcription and replication processes and appear to be associated with the state of VP30 phosphorylation. Here we propose a model in which dynamic phosphorylation of VP30 is an important mechanism to regulate the EBOV replication cycle.
Collapse
Affiliation(s)
- Miguel J Martinez
- INSERM U758, Human Virology Department, Université de Lyon, Claude Bernard University Lyon-1, Ecole Normale Supérieure de Lyon, Lyon, France
| | | | | | | | | | | |
Collapse
|
18
|
Hoenen T, Jung S, Herwig A, Groseth A, Becker S. Both matrix proteins of Ebola virus contribute to the regulation of viral genome replication and transcription. Virology 2010; 403:56-66. [PMID: 20444481 DOI: 10.1016/j.virol.2010.04.002] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 03/30/2010] [Accepted: 04/02/2010] [Indexed: 11/29/2022]
Abstract
Ebola virus (EBOV) causes severe hemorrhagic fevers in humans and non-human primates. While the role of the EBOV major matrix protein VP40 in morphogenesis is well understood, nothing is known about its contributions to the regulation of viral genome replication and/or transcription. Similarly, while it was reported that the minor matrix protein VP24 impairs viral genome replication, it remains unclear whether it also regulates transcription, since all common experimental systems measure the combined products of replication and transcription. We have developed systems that allow the independent monitoring of viral transcription and replication, based on qRT-PCR and a replication-deficient minigenome. Using these systems we show that VP24 regulates not only viral genome replication, but also transcription. Further, we show for the first time that VP40 is also involved in regulating these processes. These functions are conserved among EBOV species and, in the case of VP40, independent of its budding or RNA-binding functions.
Collapse
Affiliation(s)
- T Hoenen
- Institute for Virology, Philipps University Marburg, Marburg, Germany
| | | | | | | | | |
Collapse
|
19
|
Gopinath M, Shaila MS. RNA triphosphatase and guanylyl transferase activities are associated with the RNA polymerase protein L of rinderpest virus. J Gen Virol 2009; 90:1748-1756. [PMID: 19297608 DOI: 10.1099/vir.0.010975-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rinderpest virus (RPV) large (L) protein is an integral part of the ribonucleoprotein (RNP) complex of the virus that is responsible for transcription and replication of the genome. Previously, we have shown that recombinant L protein coexpressed along with P protein (as the L-P complex) catalyses the synthesis of all viral mRNAs in vitro and the abundance of mRNAs follows a gradient of polarity, similar to the occurrence in vivo. In the present work, we demonstrate that the viral mRNAs synthesized in vitro by the recombinant L or purified RNP are capped and methylated at the N7 guanine position. RNP from the purified virions, as well as recombinant L protein, shows RNA triphosphatase (RTPase) and guanylyl transferase (GT) activities. L protein present in the RNP complex catalyses the removal of gamma-phosphate from triphosphate-ended 25 nt RNA generated in vitro representing the viral N-terminal mRNA 5' sequence. The L protein forms a covalent enzyme-guanylate intermediate with the GMP moiety of GTP, whose formation is inhibited by the addition of pyrophosphate; thus, it exhibits characteristics of cellular GTs. The covalent bond between the enzyme and nucleotide is acid labile and alkali stable, indicating the presence of phosphoamide linkage. The C-terminal region (aa 1717-2183) of RPV L protein alone exhibits the first step of GT activity needed to form a covalent complex with GMP, though it lacks the ability to transfer GMP to substrate RNA. Here, we describe the biochemical characterization of the newly found RTPase/GT activity of L protein.
Collapse
Affiliation(s)
- M Gopinath
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - M S Shaila
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|