1
|
Yazdanizad M, Montazeri M, Saboor Yaraghi AA, Nezhad Fard RM. Isolation of bacteriophages from wastewaters on clinical Streptococcus species. Future Virol 2022. [DOI: 10.2217/fvl-2021-0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: Excessive use of antimicrobials has resulted in broad antimicrobial resistances in bacteria as well as problems in their infection treatments, which lead to increased case mortalities and medical costs. One of the alternative treatments includes use of bacteriophages. Therefore, the major aim of the current study was to isolate bacteriophages from sewages on bacteria from biological samples to potentially use in infections. Materials & methods: Urban wastewater samples were used to isolate bacteriophages on streptococcal isolates. Bacteriophages were characterized using phenotypic and genotypic methods. Results: Five bacteriophages were isolated on Streptococcus agalactiae, mostly belonging to Caudovirales order. Conclusion: As emergence of antimicrobial-resistant bacteria has created medical problems, identification of novel bacteriophages for use in infection treatments seems an appropriate solution.
Collapse
Affiliation(s)
- Maryam Yazdanizad
- Department of Medical Biotechnology, Faculty of Advanced Science & Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, 1949635881, Iran
| | - Maryam Montazeri
- Department of Medical Biotechnology, Faculty of Advanced Science & Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, 1949635881, Iran
| | - Ali Akbar Saboor Yaraghi
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, 1417613151, Iran
| | - Ramin Mazaheri Nezhad Fard
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, 1417613151, Iran
- Food Microbiology Research Center, Tehran University of Medical Sciences, Tehran, 1417613151, Iran
| |
Collapse
|
2
|
Fu Y, Deng S, Liang L, Wu Y, Gao M. Complete genome sequence of the novel phage vB_BthS-HD29phi infecting Bacillus thuringiensis. Arch Virol 2019; 164:3089-3093. [PMID: 31595357 DOI: 10.1007/s00705-019-04416-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 08/26/2019] [Indexed: 11/25/2022]
Abstract
The phage vB_BthS-HD29phi infecting Bacillus thuringiensis strain HD29 was isolated and purified. The morphology of the phage showed that it belongs to the family Siphoviridae. The phage genome was 32,181 bp in length, comprised linear double-stranded DNA with an average G + C content of 34.9%, and exhibited low similarity to known phage genomes. Genomic and phylogenetic analysis revealed that vB_BthS-HD29phi is a novel phage. In total, 50 putative ORFs were predicted in the phage genome, and only 18 ORFs encoded proteins with known functions. This article reports the genome sequence of a new tailed phage and increases the known genetic diversity of tailed phages.
Collapse
Affiliation(s)
- Yajuan Fu
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100039, People's Republic of China
| | - Sangsang Deng
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100039, People's Republic of China
| | - Leiqin Liang
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100039, People's Republic of China
| | - Yan Wu
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, People's Republic of China
| | - Meiying Gao
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, People's Republic of China.
| |
Collapse
|
3
|
Fu Y, Wu Y, Yuan Y, Gao M. Prevalence and Diversity Analysis of Candidate Prophages to Provide An Understanding on Their Roles in Bacillus Thuringiensis. Viruses 2019; 11:v11040388. [PMID: 31027262 PMCID: PMC6521274 DOI: 10.3390/v11040388] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/04/2019] [Accepted: 04/24/2019] [Indexed: 01/03/2023] Open
Abstract
Bacillus thuringiensis (Bt) is widely used in producing biological insecticides. Phage contaminations during Bt fermentation can cause severe losses of yields. Lots of strategies have been engaged to control extrinsic phage contamination during Bt fermentation, but their effectiveness is low. In this study, the candidate endogenous prophages (prophages) in 61 Bt chromosomes that had been deposited in GenBank database were analyzed. The results revealed that all chromosomes contained prophage regions, and 398 candidate prophage regions were predicted, including 135 putative complete prophages and 263 incomplete prophage regions. These putative complete prophages showed highly diverse genetic backgrounds. The inducibility of the prophages of ten Bt strains (4AJ1, 4BD1, HD-1, HD-29, HD-73, HD-521, BMB171, 4CC1, CT-43, and HD-1011) was tested, and the results showed that seven of the ten strains’ prophages were inducible. These induced phages belonged to the Siphoviridae family and exhibited a broad host spectrum against the non-original strains. The culture supernatants of the two strains (BMB171, 4CC1) could lyse Bt cells, but no virions were observed, which was speculated to be caused by lysin. The functional analysis of the putative complete prophage proteins indicated that some proteins, such as antibiotic resistance-associated proteins and restriction endonucleases, might increase the fitness of the Bt strains to different environments. The findings of this study provided understanding on the high prevalence and diversity of Bt prophages, as well as pointed out the role of prophages in the life cycle of Bt.
Collapse
Affiliation(s)
- Yajuan Fu
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
- University of Chinese Academy of Sciences, Beijing 100039, China.
| | - Yan Wu
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Yihui Yuan
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
- Present address: State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 571158, China.
| | - Meiying Gao
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
| |
Collapse
|
4
|
Genome Sequence of a New Siphoviridae Phage Found in a Brazilian Bacillus thuringiensis Serovar israelensis Strain. GENOME ANNOUNCEMENTS 2018; 6:6/22/e01606-17. [PMID: 29853516 PMCID: PMC5981044 DOI: 10.1128/genomea.01606-17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
During the fermentation process, Bacillus thuringiensis (Bt) phages can result in bacterial death and decreased yield. In this work, we describe the genome of a new phage related to the Siphoviridae viral family from a Brazilian strain of Bt which showed high nucleotide sequence identity to the genomes of phages phi4l1 and BtCS33.
Collapse
|
5
|
Wang DB, Li Y, Sun MQ, Huang JP, Shao HB, Xin QL, Wang M. Complete Genome of a Novel Pseudoalteromonas Phage PHq0. Curr Microbiol 2015; 72:81-7. [DOI: 10.1007/s00284-015-0919-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 08/23/2015] [Indexed: 01/01/2023]
|
6
|
An improved method for rapid generation and screening of Bacillus thuringiensis phage-resistant mutants. J Microbiol Methods 2014; 106:101-103. [DOI: 10.1016/j.mimet.2014.08.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 08/21/2014] [Accepted: 08/21/2014] [Indexed: 01/21/2023]
|
7
|
Gillis A, Mahillon J. Phages preying on Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis: past, present and future. Viruses 2014; 6:2623-72. [PMID: 25010767 PMCID: PMC4113786 DOI: 10.3390/v6072623] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 05/19/2014] [Accepted: 06/18/2014] [Indexed: 01/18/2023] Open
Abstract
Many bacteriophages (phages) have been widely studied due to their major role in virulence evolution of bacterial pathogens. However, less attention has been paid to phages preying on bacteria from the Bacillus cereus group and their contribution to the bacterial genetic pool has been disregarded. Therefore, this review brings together the main information for the B. cereus group phages, from their discovery to their modern biotechnological applications. A special focus is given to phages infecting Bacillus anthracis, B. cereus and Bacillus thuringiensis. These phages belong to the Myoviridae, Siphoviridae, Podoviridae and Tectiviridae families. For the sake of clarity, several phage categories have been made according to significant characteristics such as lifestyles and lysogenic states. The main categories comprise the transducing phages, phages with a chromosomal or plasmidial prophage state, γ-like phages and jumbo-phages. The current genomic characterization of some of these phages is also addressed throughout this work and some promising applications are discussed here.
Collapse
Affiliation(s)
- Annika Gillis
- Laboratory of Food and Environmental Microbiology, Université catholique de Louvain, Croix du Sud 2, L7.05.12, B-1348 Louvain-la-Neuve, Belgium.
| | - Jacques Mahillon
- Laboratory of Food and Environmental Microbiology, Université catholique de Louvain, Croix du Sud 2, L7.05.12, B-1348 Louvain-la-Neuve, Belgium.
| |
Collapse
|
8
|
El-Didamony G. Occurrence of Bacillus thuringiensis and their phages in Yemen soil. Virusdisease 2014; 25:107-13. [PMID: 24426317 PMCID: PMC3889238 DOI: 10.1007/s13337-013-0181-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 11/11/2013] [Indexed: 10/26/2022] Open
Abstract
Bacillus thuringiensis (Bt) isolates were found in all samples of soil in nine Governorates of Yemen. From 384 isolates of Bacillus recovered from these soil samples after acetate selection, 104 isolates (27.1 %) were Bt. Five isolates of Bt were selected and insecticidal activity was tested against Culex pipiens, Callosobruchus maculatus and Spodoptera littoralis. The Bt isolate YH18 gave toxicity to all tested insects larvae. This study extended to isolate phages active against the selected Bt isolates. Five phages were isolated and classified into two groups of tailed phages. Four phages with long non-contractile tails and hexagonal heads (Siphoviridae) and one phage with very short tail and isometric head (Podoviridae). Susceptibility of selected Bt to infect by these phages was studied by spot-test technique. Also the Bt isolate no YH18 was resistant to all tested phages. This is the first report illustrates the diversity and the abundance of Bt and Bt phage in Yemen soil.
Collapse
Affiliation(s)
- Gamal El-Didamony
- Department of Botany, Faculty of Science, Zagazig University, Zagazig, 44519 Egypt
| |
Collapse
|
9
|
Osman Y, . AEM, . ME, Omer F. Five Distinctive Phages from an Egyptian Industrial Strain of Bacillus
thuringiensis subsp. Aegypti. ACTA ACUST UNITED AC 2013. [DOI: 10.3923/jest.2014.67.75] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
10
|
Yuan Y, Gao M, Peng Q, Wu D, Liu P, Wu Y. Genomic analysis of a phage and prophage from a Bacillus thuringiensis strain. J Gen Virol 2013; 95:751-761. [PMID: 24285088 DOI: 10.1099/vir.0.058735-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacteriophages have been found to be the most abundant and also potentially most diverse biological entities on Earth. In the present study, Bacillus phages were isolated rapidly and shown to have a high degree of diversity. The genomes of a newly isolated phage, phiCM3, and a prophage, proCM3, from the Bacillus thuringiensis strain YM-03 were sequenced and characterized. Comparative genome analysis showed that the phiCM3 genome is highly similar to the genomes of eight other Bacillus phages and seven of these phages were classified as the Wβ group of phages. Analysis of the differential evolution of the genes in the Wβ-group phages indicated that the genes encoding the antirepressor and tail fibre protein were more highly conserved than those encoding the major capsid protein, DNA replication protein, and RNA polymerase σ factor, which might have diverged to acquire mechanisms suitable for survival in different microbial hosts. Genome analysis of proCM3 revealed that proCM3 might be a defective phage because of mutations in the minor structural protein, and it was not inducible by mitomycin C treatment. The proCM3 genome was similar to those of two lytic Bacillus phages in sequence, but had a different genomic structure, composed of three regions in a different order. These data suggest that the three phages might have had a common ancestor and that genome rearrangement might have occurred during evolution. The findings of this study enrich our current knowledge of Bacillus phage diversity and evolution, especially for the Wβ-group and TP21-L-like phages, and may help the development of practical applications of Bacillus phages.
Collapse
Affiliation(s)
- Yihui Yuan
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Meiying Gao
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Qin Peng
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Dandan Wu
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Pengming Liu
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Yan Wu
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| |
Collapse
|
11
|
Characterization and comparative genomic analysis of bacteriophages infecting members of the Bacillus cereus group. Arch Virol 2013; 159:871-84. [PMID: 24264384 DOI: 10.1007/s00705-013-1920-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Accepted: 11/05/2013] [Indexed: 12/11/2022]
Abstract
The Bacillus cereus group phages infecting B. cereus, B. anthracis, and B. thuringiensis (Bt) have been studied at the molecular level and, recently, at the genomic level to control the pathogens B. cereus and B. anthracis and to prevent phage contamination of the natural insect pesticide Bt. A comparative phylogenetic analysis has revealed three different major phage groups with different morphologies (Myoviridae for group I, Siphoviridae for group II, and Tectiviridae for group III), genome size (group I > group II > group III), and lifestyle (virulent for group I and temperate for group II and III). A subsequent phage genome comparison using a dot plot analysis showed that phages in each group are highly homologous, substantiating the grouping of B. cereus phages. Endolysin is a host lysis protein that contains two conserved domains: a cell-wall-binding domain (CBD) and an enzymatic activity domain (EAD). In B. cereus sensu lato phage group I, four different endolysin groups have been detected, according to combinations of two types of CBD and four types of EAD. Group I phages have two copies of tail lysins and one copy of endolysin, but the functions of the tail lysins are still unknown. In the B. cereus sensu lato phage group II, the B. anthracis phages have been studied and applied for typing and rapid detection of pathogenic host strains. In the B. cereus sensu lato phage group III, the B. thuringiensis phages Bam35 and GIL01 have been studied to understand phage entry and lytic switch regulation mechanisms. In this review, we suggest that further study of the B. cereus group phages would be useful for various phage applications, such as biocontrol, typing, and rapid detection of the pathogens B. cereus and B. anthracis and for the prevention of phage contamination of the natural insect pesticide Bt.
Collapse
|
12
|
Roh JY, Park JB, Liu Q, Kim SE, Tao X, Choi TW, Choi JY, Kim WJ, Jin BR, Je YH. Existence of lysogenic bacteriophages in Bacillus thuringiensis type strains. J Invertebr Pathol 2013; 113:228-31. [PMID: 23632013 DOI: 10.1016/j.jip.2013.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 04/16/2013] [Accepted: 04/19/2013] [Indexed: 10/26/2022]
Abstract
We screened the existence of bacteriophages in 67 Bacillus thuringiensis type strains by phage DNA extraction and PCR using phage terminase small subunit (TerS)-specific primers to the supernatants and the precipitated pellets of Bt cultures, and by transmission electron microscopy. The various bacteriophages were observed from the supernatants of 22 type strains. Ten type strains showed the extracted phage DNAs and the amplified fragment by TerS PCR but 12 type strains showed only the phage DNAs. Their morphological characteristic suggests that they belong to Family Siphoviridae which had a long tail and symmetrical head.
Collapse
Affiliation(s)
- Jong Yul Roh
- Department of Agricultural Biotechnology, College of Agriculture & Life Sciences, Seoul National University, Seoul 151-742, Republic of Korea.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Complete Genome Sequence of Bacillus thuringiensis Bacteriophage BMBtp2. GENOME ANNOUNCEMENTS 2013; 1:genomeA00011-12. [PMID: 23405296 PMCID: PMC3569282 DOI: 10.1128/genomea.00011-12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 10/26/2012] [Indexed: 11/30/2022]
Abstract
Bacillus thuringiensis is an insect pathogen which has been widely used for biocontrol. During B. thuringiensis fermentation, lysogenic bacteriophages cause severe losses of yield. Here, we announce the complete genome sequence of a bacteriophage, BMBtp2, which is induced from B. thuringiensis strain YBT-1765, which may be helpful to clarify the mechanism involved in bacteriophage contamination.
Collapse
|
14
|
Swanson MM, Reavy B, Makarova KS, Cock PJ, Hopkins DW, Torrance L, Koonin EV, Taliansky M. Novel bacteriophages containing a genome of another bacteriophage within their genomes. PLoS One 2012; 7:e40683. [PMID: 22815791 PMCID: PMC3398947 DOI: 10.1371/journal.pone.0040683] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 06/14/2012] [Indexed: 11/24/2022] Open
Abstract
A novel bacteriophage infecting Staphylococus pasteuri was isolated during a screen for phages in Antarctic soils. The phage named SpaA1 is morphologically similar to phages of the family Siphoviridae. The 42,784 bp genome of SpaA1 is a linear, double-stranded DNA molecule with 3' protruding cohesive ends. The SpaA1 genome encompasses 63 predicted protein-coding genes which cluster within three regions of the genome, each of apparently different origin, in a mosaic pattern. In two of these regions, the gene sets resemble those in prophages of Bacillus thuringiensis kurstaki str. T03a001 (genes involved in DNA replication/transcription, cell entry and exit) and B. cereus AH676 (additional regulatory and recombination genes), respectively. The third region represents an almost complete genome (except for the short terminal segments) of a distinct bacteriophage, MZTP02. Nearly the same gene module was identified in prophages of B. thuringiensis serovar monterrey BGSC 4AJ1 and B. cereus Rock4-2. These findings suggest that MZTP02 can be shuttled between genomes of other bacteriophages and prophages, leading to the formation of chimeric genomes. The presence of a complete phage genome in the genome of other phages apparently has not been described previously and might represent a 'fast track' route of virus evolution and horizontal gene transfer. Another phage (BceA1) nearly identical in sequence to SpaA1, and also including the almost complete MZTP02 genome within its own genome, was isolated from a bacterium of the B. cereus/B. thuringiensis group. Remarkably, both SpaA1 and BceA1 phages can infect B. cereus and B. thuringiensis, but only one of them, SpaA1, can infect S. pasteuri. This finding is best compatible with a scenario in which MZTP02 was originally contained in BceA1 infecting Bacillus spp, the common hosts for these two phages, followed by emergence of SpaA1 infecting S. pasteuri.
Collapse
Affiliation(s)
- Maud M. Swanson
- The James Hutton Institute, Invergowrie, Dundee, United Kingdom
| | - Brian Reavy
- The James Hutton Institute, Invergowrie, Dundee, United Kingdom
| | - Kira S. Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Peter J. Cock
- The James Hutton Institute, Invergowrie, Dundee, United Kingdom
| | | | - Lesley Torrance
- The James Hutton Institute, Invergowrie, Dundee, United Kingdom
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
| | | |
Collapse
|
15
|
Yuan Y, Gao M, Wu D, Liu P, Wu Y. Genome characteristics of a novel phage from Bacillus thuringiensis showing high similarity with phage from Bacillus cereus. PLoS One 2012; 7:e37557. [PMID: 22649540 PMCID: PMC3359378 DOI: 10.1371/journal.pone.0037557] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2011] [Accepted: 04/25/2012] [Indexed: 11/18/2022] Open
Abstract
Bacillus thuringiensis is an important entomopathogenic bacterium belongs to the Bacillus cereus group, which also includes B. anthracis and B. cereus. Several genomes of phages originating from this group had been sequenced, but no genome of Siphoviridae phage from B. thuringiensis has been reported. We recently sequenced and analyzed the genome of a novel phage, BtCS33, from a B. thuringiensis strain, subsp. kurstaki CS33, and compared the gneome of this phage to other phages of the B. cereus group. BtCS33 was the first Siphoviridae phage among the sequenced B. thuringiensis phages. It produced small, turbid plaques on bacterial plates and had a narrow host range. BtCS33 possessed a linear, double-stranded DNA genome of 41,992 bp with 57 putative open reading frames (ORFs). It had a typical genome structure consisting of three modules: the "late" region, the "lysogeny-lysis" region and the "early" region. BtCS33 exhibited high similarity with several phages, B. cereus phage Wβ and some variants of Wβ, in genome organization and the amino acid sequences of structural proteins. There were two ORFs, ORF22 and ORF35, in the genome of BtCS33 that were also found in the genomes of B. cereus phage Wβ and may be involved in regulating sporulation of the host cell. Based on these observations and analysis of phylogenetic trees, we deduced that B. thuringiensis phage BtCS33 and B. cereus phage Wβ may have a common distant ancestor.
Collapse
Affiliation(s)
- Yihui Yuan
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Meiying Gao
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Dandan Wu
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Pengming Liu
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Yan Wu
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| |
Collapse
|
16
|
Mazaheri Nezhad Fard R, Barton MD, Heuzenroeder MW. Novel Bacteriophages in Enterococcus spp. Curr Microbiol 2009; 60:400-6. [PMID: 19967374 DOI: 10.1007/s00284-009-9555-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2009] [Accepted: 11/13/2009] [Indexed: 02/06/2023]
Abstract
Most of the bacteriophages (phages) currently reported in Enterococcus spp. belong to tailed families of bacteriophages Podoviridae, Siphoviridae, and Myoviridae. There is a little information on non-tailed bacteriophages isolated from enterococci. Samples of sewage and piggery effluents were tested on pig and chicken isolates of Enterococcus faecalis, E. faecium and E. gallinarum for lytic phages. In addition, isolates were exposed to mitomycin C to induce lysogenic phages. Bacteriophages that were detected were visualized by electron microscopy. Ten bacteriophages were of isometric shape with long flexible or non-flexible tails, while one had a long head with a long flexible tail; all contained double-stranded DNA molecules. Seven Polyhedral, filamentous, and pleomorphic-shaped phages containing DNA or RNA were also observed. The pleomorphic phages were droplet- or lemon-shaped in morphology. This study is the first report on polyhedral phages in Enterococcus spp. of animal origin and also the first report of filamentous and pleomorphic phages in enterococci.
Collapse
|