1
|
Maestro S, Gómez-Echarte N, Camps G, Usai C, Suárez L, Vales Á, Olagüe C, Aldabe R, González-Aseguinolaza G. AAV-HDV: An Attractive Platform for the In Vivo Study of HDV Biology and the Mechanism of Disease Pathogenesis. Viruses 2021; 13:v13050788. [PMID: 33925087 PMCID: PMC8145145 DOI: 10.3390/v13050788] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatitis delta virus (HDV) infection causes the most severe form of viral hepatitis, but little is known about the molecular mechanisms involved. We have recently developed an HDV mouse model based on the delivery of HDV replication-competent genomes using adeno-associated vectors (AAV), which developed a liver pathology very similar to the human disease and allowed us to perform mechanistic studies. We have generated different AAV-HDV mutants to eliminate the expression of HDV antigens (HDAgs), and we have characterized them both in vitro and in vivo. We confirmed that S-HDAg is essential for HDV replication and cannot be replaced by L-HDAg or host cellular proteins, and that L-HDAg is essential to produce the HDV infectious particle and inhibits its replication. We have also found that lack of L-HDAg resulted in the increase of S-HDAg expression levels and the exacerbation of liver damage, which was associated with an increment in liver inflammation but did not require T cells. Interestingly, early expression of L-HDAg significantly ameliorated the liver damage induced by the mutant expressing only S-HDAg. In summary, the use of AAV-HDV represents a very attractive platform to interrogate in vivo the role of viral components in the HDV life cycle and to better understand the mechanism of HDV-induced liver pathology.
Collapse
Affiliation(s)
- Sheila Maestro
- Programa de Terapia Génica y Regulación de la Expresión Génica, Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Avenida Pío XII, 31080 Pamplona, Spain; (S.M.); (N.G.-E.); (G.C.); (C.U.); (Á.V.); (C.O.)
- Instituto de Investigación Sanitaria de Navarra, IdiSNA, 31080 Pamplona, Spain
| | - Nahia Gómez-Echarte
- Programa de Terapia Génica y Regulación de la Expresión Génica, Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Avenida Pío XII, 31080 Pamplona, Spain; (S.M.); (N.G.-E.); (G.C.); (C.U.); (Á.V.); (C.O.)
- Instituto de Investigación Sanitaria de Navarra, IdiSNA, 31080 Pamplona, Spain
| | - Gracián Camps
- Programa de Terapia Génica y Regulación de la Expresión Génica, Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Avenida Pío XII, 31080 Pamplona, Spain; (S.M.); (N.G.-E.); (G.C.); (C.U.); (Á.V.); (C.O.)
- Instituto de Investigación Sanitaria de Navarra, IdiSNA, 31080 Pamplona, Spain
| | - Carla Usai
- Programa de Terapia Génica y Regulación de la Expresión Génica, Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Avenida Pío XII, 31080 Pamplona, Spain; (S.M.); (N.G.-E.); (G.C.); (C.U.); (Á.V.); (C.O.)
- Instituto de Investigación Sanitaria de Navarra, IdiSNA, 31080 Pamplona, Spain
| | - Lester Suárez
- Suite 110 Research Triangle Park, 20 TW Alexander Drive, AskBio, NC 27709, USA;
| | - África Vales
- Programa de Terapia Génica y Regulación de la Expresión Génica, Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Avenida Pío XII, 31080 Pamplona, Spain; (S.M.); (N.G.-E.); (G.C.); (C.U.); (Á.V.); (C.O.)
- Instituto de Investigación Sanitaria de Navarra, IdiSNA, 31080 Pamplona, Spain
| | - Cristina Olagüe
- Programa de Terapia Génica y Regulación de la Expresión Génica, Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Avenida Pío XII, 31080 Pamplona, Spain; (S.M.); (N.G.-E.); (G.C.); (C.U.); (Á.V.); (C.O.)
- Instituto de Investigación Sanitaria de Navarra, IdiSNA, 31080 Pamplona, Spain
| | - Rafael Aldabe
- Programa de Terapia Génica y Regulación de la Expresión Génica, Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Avenida Pío XII, 31080 Pamplona, Spain; (S.M.); (N.G.-E.); (G.C.); (C.U.); (Á.V.); (C.O.)
- Instituto de Investigación Sanitaria de Navarra, IdiSNA, 31080 Pamplona, Spain
- Correspondence: (R.A.); (G.G.-A.); Tel.: +34-948194700 (ext 4024) (R.A.); +34-948194700 (ext 4024) (G.G.-A.)
| | - Gloria González-Aseguinolaza
- Programa de Terapia Génica y Regulación de la Expresión Génica, Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Avenida Pío XII, 31080 Pamplona, Spain; (S.M.); (N.G.-E.); (G.C.); (C.U.); (Á.V.); (C.O.)
- Instituto de Investigación Sanitaria de Navarra, IdiSNA, 31080 Pamplona, Spain
- Correspondence: (R.A.); (G.G.-A.); Tel.: +34-948194700 (ext 4024) (R.A.); +34-948194700 (ext 4024) (G.G.-A.)
| |
Collapse
|
3
|
Goyal A, Ribeiro RM, Perelson AS. The Role of Infected Cell Proliferation in the Clearance of Acute HBV Infection in Humans. Viruses 2017; 9:v9110350. [PMID: 29156567 PMCID: PMC5707557 DOI: 10.3390/v9110350] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/14/2017] [Accepted: 11/16/2017] [Indexed: 12/17/2022] Open
Abstract
Around 90-95% of hepatitis B virus (HBV) infected adults do not progress to the chronic phase and, instead, recover naturally. The strengths of the cytolytic and non-cytolytic immune responses are key players that decide the fate of acute HBV infection. In addition, it has been hypothesized that proliferation of infected cells resulting in uninfected progeny and/or cytokine-mediated degradation of covalently closed circular DNA (cccDNA) leading to the cure of infected cells are two major mechanisms assisting the adaptive immune response in the clearance of acute HBV infection in humans. We employed fitting of mathematical models to human acute infection data together with physiological constraints to investigate the role of these hypothesized mechanisms in the clearance of infection. Results suggest that cellular proliferation of infected cells resulting in two uninfected cells is required to minimize the destruction of the liver during the clearance of acute HBV infection. In contrast, we find that a cytokine-mediated cure of infected cells alone is insufficient to clear acute HBV infection. In conclusion, our modeling indicates that HBV clearance without lethal loss of liver mass is associated with the production of two uninfected cells upon proliferation of an infected cell.
Collapse
Affiliation(s)
- Ashish Goyal
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | - Ruy M Ribeiro
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
- Laboratório de Biomatemática, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal.
| | - Alan S Perelson
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| |
Collapse
|
4
|
Abbas Z, Afzal R. Life cycle and pathogenesis of hepatitis D virus: A review. World J Hepatol 2013; 5:666-675. [PMID: 24409335 PMCID: PMC3879688 DOI: 10.4254/wjh.v5.i12.666] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 11/06/2013] [Accepted: 11/16/2013] [Indexed: 02/06/2023] Open
Abstract
Hepatitis D virus (HDV) is a defective RNA virus which requires the help of hepatitis B virus (HBV) virus for its replication and assembly of new virions. HDV genome contains only one actively transcribed open reading frame which encodes for two isoforms of hepatitis delta antigen. Post-translational modifications of small and large delta antigens (S-HDAg and L-HDAg) involving phosphorylation and isoprenylation respectively confer these antigens their specific properties. S-HDAg is required for the initiation of the viral genome replication, whereas L-HDAg serves as a principal inhibitor of replication and is essential for the assembly of new virion particles. Immune mediation has usually been implicated in HDV-associated liver damage. The pathogenesis of HDV mainly involves interferon-α signaling inhibition, HDV-specific T-lymphocyte activation and cytokine responses, and tumor necrosis factor-alpha and nuclear factor kappa B signaling. Due to limited protein coding capacity, HDV makes use of host cellular proteins to accomplish their life cycle processes, including transcription, replication, post-transcriptional and translational modifications. This intimate host-pathogen interaction significantly alters cell proteome and is associated with an augmented expression of pro-inflammatory, growth and anti-apoptotic factors which explains severe necroinflammation and increased cell survival and an early progression to hepatocellular carcinoma in HDV patients. The understanding of the process of viral replication, HBV-HDV interactions, and etio-pathogenesis of the severe course of HDV infection is helpful in identifying the potential therapeutic targets in the virus life cycle for the prophylaxis and treatment of HDV infection and complications.
Collapse
|
5
|
D'Ugo E, Argentini C, Giuseppetti R, Canitano A, Catone S, Rapicetta M. The woodchuck hepatitis B virus infection model for the evaluation of HBV therapies and vaccine therapies. Expert Opin Drug Discov 2010; 5:1153-62. [DOI: 10.1517/17460441.2010.530252] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
6
|
de Sousa BC, Cunha C. Development of mathematical models for the analysis of hepatitis delta virus viral dynamics. PLoS One 2010; 5:e12512. [PMID: 20862328 PMCID: PMC2940762 DOI: 10.1371/journal.pone.0012512] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 08/09/2010] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Mathematical models have shown to be extremely helpful in understanding the dynamics of different virus diseases, including hepatitis B. Hepatitis D virus (HDV) is a satellite virus of the hepatitis B virus (HBV). In the liver, production of new HDV virions depends on the presence of HBV. There are two ways in which HDV can occur in an individual: co-infection and super-infection. Co-infection occurs when an individual is simultaneously infected by HBV and HDV, while super-infection occurs in persons with an existing chronic HBV infection. METHODOLOGY/PRINCIPAL FINDINGS In this work a mathematical model based on differential equations is proposed for the viral dynamics of the hepatitis D virus (HDV) across different scenarios. This model takes into consideration the knowledge of the biology of the virus and its interaction with the host. In this work we will present the results of a simulation study where two scenarios were considered, co-infection and super-infection, together with different antiviral therapies. Although, in general the predicted course of HDV infection is similar to that observed for HBV, we observe a faster increase in the number of HBV infected cells and viral load. In most tested scenarios, the number of HDV infected cells and viral load values remain below corresponding predicted values for HBV. CONCLUSIONS/SIGNIFICANCE The simulation study shows that, under the most commonly used and generally accepted therapy approaches for HDV infection, such as lamivudine (LMV) or ribavirine, peggylated alpha-interferon (IFN) or a combination of both, LMV monotherapy and combination therapy of LMV and IFN were predicted to more effectively reduce the HBV and HDV viral loads in the case of super-infection scenarios when compared with the co-infection. In contrast, IFN monotherapy was found to reduce the HDV viral load more efficiently in the case of super-infection while the effect on the HBV viral load was more pronounced during co-infection. The results suggest that there is a need for development of high efficacy therapeutic approaches towards the specific inhibition of HDV replication. These approaches may additionally be directed to the reduction of the half-life of infected cells and life-span of newly produced circulating virions.
Collapse
Affiliation(s)
- Bruno C de Sousa
- Centre for Malaria and Tropical Diseases, Associated Laboratory, Unit of Epidemiology and Biostatistics, Instituto de Higiene e Medicina Tropical-Universidade Nova de Lisboa, Lisbon, Portugal.
| | | |
Collapse
|