1
|
Donovan NJ, Chambers GA, Cao M. Detection of Viroids by RT-PCR. Methods Mol Biol 2022; 2316:143-151. [PMID: 34845692 DOI: 10.1007/978-1-0716-1464-8_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Reverse transcription-polymerase chain reaction (RT-PCR) is an effective method for detecting the presence of viroids in plant tissue. Viroid RNA is converted to cDNA and amplified to detectable levels, making it a fast and useful detection tool, even when the viroid is present at low levels. Methods of viroid detection using conventional RT-PCR are described in this chapter.
Collapse
Affiliation(s)
- Nerida J Donovan
- Elizabeth Macarthur Agricultural Institute, New South Wales Department of Primary Industries, Menangle, NSW, Australia.
| | - Grant A Chambers
- Elizabeth Macarthur Agricultural Institute, New South Wales Department of Primary Industries, Menangle, NSW, Australia
| | - Mengji Cao
- National Citrus Engineering Research Centre, Citrus Research Institute, Southwest University, Chongqing, China
| |
Collapse
|
2
|
Chiumenti M, Navarro B, Candresse T, Flores R, Di Serio F. Reassessing species demarcation criteria in viroid taxonomy by pairwise identity matrices. Virus Evol 2021; 7:veab001. [PMID: 33623708 PMCID: PMC7887442 DOI: 10.1093/ve/veab001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
With a small, circular and non-protein coding RNA genome, viroids are the smallest infectious agents. They invade plants, which in turn may develop symptoms. Since their discovery about 50 years ago, more than thirty viroids have been reported and classified using as species demarcation less than 90 per cent sequence identity on the overall genome and evidence of biological divergence with respect to the closest related viroids. In the last few years, new viroids have been identified that infect latently their (frequently) woody hosts and have a narrow experimental hosts range, complicating and slowing down studies on their biology. As a consequence, several viroids are still waiting for classification. Moreover, the number of new viroids is expected to increase in the next years due to the use of high-throughput sequencing technologies with diagnostics purposes. Therefore, establishment of reliable species demarcation criteria mainly based on molecular features of viroids is needed. Here, viroid classification is reassessed and a scheme based on pairwise sequence identity matrices is developed. After identifying a threshold pairwise identity score (PWIS) for each viroid genus, to be used as a species demarcation criterion, we show that most of those yet unclassified viroids can be assigned to a known or to a new species, thus limiting the need for additional biological evidence to only a few more complex situations. The advantages of this PWIS-based method are that the proposed identity thresholds for species demarcations are not arbitrarily established and evidence for biological divergence is not mandatory. Importantly, the current classification is not essentially modified. A protocol for a tentative fast classification of new viroids according to the proposed approach is also provided.
Collapse
Affiliation(s)
- Michela Chiumenti
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Via Amendola 122/D, Bari 70126, Italy
| | - Beatriz Navarro
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Via Amendola 122/D, Bari 70126, Italy
| | - Thierry Candresse
- Univ. Bordeaux, INRAE, UMR BFP, Villenave d'Ornon Cedex, CS20032 33882, France
| | - Ricardo Flores
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia 46022, Spain
| | - Francesco Di Serio
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Via Amendola 122/D, Bari 70126, Italy
| |
Collapse
|
3
|
Chiaki Y, Ito T. Characterization of a distinct variant of hop stunt viroid and a new apscaviroid detected in grapevines. Virus Genes 2020; 56:260-265. [PMID: 31916137 DOI: 10.1007/s11262-019-01728-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 12/27/2019] [Indexed: 10/25/2022]
Abstract
Using next-generation sequencing, we detected a novel variant of hop stunt viroid (HSVd) in grapevine 'Chenin blanc' (Vitis vinifera L.) and a new viroid species in 'Nachubearmarie' (Vitis labrusca L. × V. vinifera). The HSVd variant termed HSVd-CB has 296 nucleotides with up to 82% sequence identity with other HSVd variants such as HSVd-AP1 (Genbank accession EF523826). Many nucleotide changes, deletions, and insertions were sporadically found in HSVd-CB relative to HSVd-AP1 in the pathogenic and variable domains. Although several variations were also found in the central domain, few variations were found in the terminal left and right domains, including no variations in the terminal conserved hairpin. The new viroid, tentatively termed Japanese grapevine viroid (JGVd), has 367 nucleotides and has genetic features characteristic of the genus Apscaviroid. JGVd shared the highest nucleotide sequence identity (68%) with a persimmon latent viroid (PLVd) in its overall genome. However, the JGVd sequence shows chimerism with the partial genomes of other apscaviroids from apple, grapevine, and citrus. Phylogenetic analyses showed that only HSVd-CB formed a distinct branch from the cluster of the other HSVd variants and JGVd and PLVd formed a distinct branch from all other grapevine-infecting apscaviroids.
Collapse
Affiliation(s)
- Yuya Chiaki
- Grape and Persimmon Research Station, Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization (NARO), Akitsu, Higashihiroshima, Hiroshima, 739-2494, Japan
| | - Takao Ito
- Grape and Persimmon Research Station, Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization (NARO), Akitsu, Higashihiroshima, Hiroshima, 739-2494, Japan.
| |
Collapse
|
4
|
Bragard C, Dehnen-Schmutz K, Gonthier P, Jacques MA, Jaques Miret JA, Justesen AF, MacLeod A, Magnusson CS, Milonas P, Navas-Cortes JA, Parnell S, Potting R, Reignault PL, Thulke HH, Van der Werf W, Vicent Civera A, Yuen J, Zappalà L, Candresse T, Chatzivassiliou E, Finelli F, Martelli GP, Winter S, Bosco D, Chiumenti M, Di Serio F, Kaluski T, Minafra A, Rubino L. Pest categorisation of non-EU viruses and viroids of Vitis L. EFSA J 2019; 17:e05669. [PMID: 32626420 PMCID: PMC7009087 DOI: 10.2903/j.efsa.2019.5669] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Following a request from the EU Commission, the Panel on Plant Health addressed the pest categorisation of the viruses and viroids of Vitis L. determined as being either non-EU or of undetermined standing in a previous EFSA opinion. These infectious agents belong to different genera and are heterogeneous in their biology. With the exclusion of grapevine virus 101-14.N.23.9.1/South Africa/2009 for which very limited information exists, the pest categorisation was completed for 30 viruses or viroids having acknowledged identities and available detection methods. All these viruses are efficiently transmitted by vegetative propagation techniques, with plants for planting representing the major pathway for long-distance dispersal and thus considered as the major pathway for potential entry. Depending on the virus, additional pathway(s) can also be seeds, pollen and/or vector(s). Most of the viruses categorised here are known to infect only one or few plant genera, but some of them have a wide host range, thus extending the possible entry pathways. Grapevine yellow speckle viroid 2, blueberry leaf mottle virus, grapevine Ajinashika virus, grapevine Anatolian ringspot virus, grapevine berry inner necrosis virus, grapevine deformation virus, grapevine fabavirus, grapevine red blotch virus, grapevine stunt virus, grapevine Tunisian ringspot virus, grapevine vein-clearing virus, temperate fruit decay-associated virus, peach rosette mosaic virus, tobacco ringspot virus, tomato ringspot virus meet all the criteria evaluated by EFSA to qualify as potential Union quarantine pests (QPs). With the exception of impact for the EU territory, on which the Panel was unable to conclude, blackberry virus S, grapevine geminivirus A, grapevine leafroll-associated virus 7, grapevine leafroll-associated virus 13, grapevine satellite virus, grapevine virus E, grapevine virus I, grapevine virus J, grapevine virus S, summer grape enamovirus, summer grape latent virus satisfy all the other criteria to be considered as potential Union QPs. Australian grapevine viroid, grapevine cryptic virus 1, grapevine endophyte endornavirus and wild vitis virus 1 do not meet all the criteria evaluated by EFSA to be regarded as potential Union QPs because they are not known to cause an impact on Vitis. For several viruses, especially those recently discovered, the categorisation is associated with high uncertainties mainly because of the absence of data on their biology, distribution and impact. Since this opinion addresses specifically non-EU viruses, in general these viruses do not meet the criteria assessed by EFSA to qualify as a potential Union regulated non-quarantine pests.
Collapse
|
5
|
What has been happening with viroids? Virus Genes 2014; 49:175-84. [DOI: 10.1007/s11262-014-1110-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 08/18/2014] [Indexed: 12/18/2022]
|
6
|
Salman TM, Habili N, Shi B. Effect of temperature on symptom expression and sequence polymorphism of grapevine yellow speckle viroid 1 in grapevine. Virus Res 2014; 189:243-7. [PMID: 24905287 DOI: 10.1016/j.virusres.2014.03.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 03/25/2014] [Accepted: 03/27/2014] [Indexed: 12/26/2022]
Abstract
Symptom expression of yellow speckle disease was studied in a row of 32 individual Vitis vinifera cv. Chardonnay vines in the warmer summer of 2009/2010 as compared with the cooler summer of 2011/2012 in South Australia. RT-PCR analysis showed that all these vines were positive for hop stunt viroid, grapevine yellow speckle viroid 1 (GYSVd-1) and grapevine rupestris stem pitting-associated virus. Four vines named Vines 1, 8, 11 and 15 were selected for further analyses. Vines 1 and 8 had never shown yellow speckle (YS) symptoms, Vine 11 had always been symptomatic, and Vine 15 showed YS symptoms only in the summer of 2009/2010, but not in 2011/2012. Analysis of partial nucleotide (nt) sequence of GYSVd-1 from these vines showed two major sequence polymorphisms in the pathogenicity domain coinciding with the YS symptoms and the prevailing temperature in each season. One group designated UA group had a uridine (U) at position 309 and an adenine (A) at position 311, while another group designated AU group had the other way around: an "A" at position 309 and a "U" at position 311. The AU group had never been reported before. The AU group was a minor variant in the GYSVd-1 population and not present in symptomatic Vine 11. In contrast, the UA group was dominant and present in all the vine samples. Surprisingly, all the asymptomatic vines, but not symptomatic vines, had the signature of the AU group. Whether the AU group is associated with the YS symptom expression is interesting. Our result provides a new insight into the sequence variability of viroid-inducing symptoms during two significantly different growing seasons.
Collapse
Affiliation(s)
- Thaeer M Salman
- School of Agriculture, Food & Wine, Faculty of Sciences, University of Adelaide, Australia.
| | - Nuredin Habili
- School of Agriculture, Food & Wine, Faculty of Sciences, University of Adelaide, Australia.
| | - Bujun Shi
- School of Agriculture, Food & Wine, Faculty of Sciences, University of Adelaide, Australia.
| |
Collapse
|
7
|
Poojari S, Alabi OJ, Fofanov VY, Naidu RA. A leafhopper-transmissible DNA virus with novel evolutionary lineage in the family geminiviridae implicated in grapevine redleaf disease by next-generation sequencing. PLoS One 2013; 8:e64194. [PMID: 23755117 PMCID: PMC3673993 DOI: 10.1371/journal.pone.0064194] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 04/10/2013] [Indexed: 01/25/2023] Open
Abstract
A graft-transmissible disease displaying red veins, red blotches and total reddening of leaves in red-berried wine grape (Vitis vinifera L.) cultivars was observed in commercial vineyards. Next-generation sequencing technology was used to identify etiological agent(s) associated with this emerging disease, designated as grapevine redleaf disease (GRD). High quality RNA extracted from leaves of grape cultivars Merlot and Cabernet Franc with and without GRD symptoms was used to prepare cDNA libraries. Assembly of highly informative sequence reads generated from Illumina sequencing of cDNA libraries, followed by bioinformatic analyses of sequence contigs resulted in specific identification of taxonomically disparate viruses and viroids in samples with and without GRD symptoms. A single-stranded DNA virus, tentatively named Grapevine redleaf-associated virus (GRLaV), and Grapevine fanleaf virus were detected only in grapevines showing GRD symptoms. In contrast, Grapevine rupestris stem pitting-associated virus, Hop stunt viroid, Grapevine yellow speckle viroid 1, Citrus exocortis viroid and Citrus exocortis Yucatan viroid were present in both symptomatic and non-symptomatic grapevines. GRLaV was transmitted by the Virginia creeper leafhopper (Erythroneura ziczac Walsh) from grapevine-to-grapevine under greenhouse conditions. Molecular and phylogenetic analyses indicated that GRLaV, almost identical to recently reported Grapevine Cabernet Franc-associated virus from New York and Grapevine red blotch-associated virus from California, represents an evolutionarily distinct lineage in the family Geminiviridae with genome characteristics distinct from other leafhopper-transmitted geminiviruses. GRD significantly reduced fruit yield and affected berry quality parameters demonstrating negative impacts of the disease. Higher quantities of carbohydrates were present in symptomatic leaves suggesting their possible role in the expression of redleaf symptoms.
Collapse
Affiliation(s)
- Sudarsana Poojari
- Department of Plant Pathology, Washington State University, Irrigated Agriculture Research and Extension Center, Prosser, Washington, United States of America
| | | | | | | |
Collapse
|
8
|
Alabi OJ, Zheng Y, Jagadeeswaran G, Sunkar R, Naidu RA. High-throughput sequence analysis of small RNAs in grapevine (Vitis vinifera L.) affected by grapevine leafroll disease. MOLECULAR PLANT PATHOLOGY 2012; 13:1060-76. [PMID: 22827483 PMCID: PMC6638782 DOI: 10.1111/j.1364-3703.2012.00815.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Grapevine leafroll disease (GLRD) is one of the most economically important virus diseases of grapevine (Vitis spp.) worldwide. In this study, we used high-throughput sequencing of cDNA libraries made from small RNAs (sRNAs) to compare profiles of sRNA populations recovered from own-rooted Merlot grapevines with and without GLRD symptoms. The data revealed the presence of sRNAs specific to Grapevine leafroll-associated virus 3, Hop stunt viroid (HpSVd), Grapevine yellow speckle viroid 1 (GYSVd-1) and Grapevine yellow speckle viroid 2 (GYSVd-2) in symptomatic grapevines and sRNAs specific only to HpSVd, GYSVd-1 and GYSVd-2 in nonsymptomatic grapevines. In addition to 135 previously identified conserved microRNAs in grapevine (Vvi-miRs), we identified 10 novel and several candidate Vvi-miRs in both symptomatic and nonsymptomatic grapevine leaves based on the cloning of miRNA star sequences. Quantitative real-time reverse transcriptase-polymerase chain reaction (RT-PCR) of selected conserved Vvi-miRs indicated that individual members of an miRNA family are differentially expressed in symptomatic and nonsymptomatic leaves. The high-resolution mapping of sRNAs specific to an ampelovirus and three viroids in mixed infections, the identification of novel Vvi-miRs and the modulation of certain conserved Vvi-miRs offers resources for the further elucidation of compatible host-pathogen interactions and for the provision of ecologically relevant information to better understand host-pathogen-environment interactions in a perennial fruit crop.
Collapse
Affiliation(s)
- Olufemi J Alabi
- Department of Plant Pathology, Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, WA 99350, USA
| | | | | | | | | |
Collapse
|
9
|
Jiang D, Sano T, Tsuji M, Araki H, Sagawa K, Purushothama CRA, Zhang Z, Guo R, Xie L, Wu Z, Wang H, Li S. Comprehensive diversity analysis of viroids infecting grapevine in China and Japan. Virus Res 2012; 169:237-45. [PMID: 22940569 DOI: 10.1016/j.virusres.2012.08.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 08/08/2012] [Accepted: 08/10/2012] [Indexed: 10/28/2022]
Abstract
To date, several viroid species have been shown to infect grapevine, including Hop stunt viroid (HpSVd), Citrus exocortis viroid (CEVd), Australian grapevine viroid (AGVd), Grapevine yellow speckle viroid-1 (GYSVd-1), Grapevine yellow speckle viroid-2 (GYSVd-2) and a tentative new species, Grapevine yellow speckle viroid-3 (GYSVd-3). Here, we identified and analyzed the distribution, genetic diversity, and molecular properties of viroids infecting grapevine cultivated in China and Japan, including old grapevines. The analysis showed that all the five known viroids and a tentative species GYSVd-3 infecting grapevine exist in China, and three of them (HpSVd, GYSVd-1 and GYSVd-3) exist in Japan. The contrast in diversity of viroid species in old grapevines from China and Japan may reflect different history of viticulture between the two countries. In general, the species of viroids infecting grapevine in China, as well as those in Iran and Australia, were more diverse than in the other countries. The population structure of viroids infecting grapevine in China and Japan showed species-dependency; i.e., HpSVd shared similar population structures in both countries, but GYSVd-1, GYSVd-2, and AGVd showed regional disparity even within the same country, although the role of sequence diversity in the biology of viroids infecting grapevine, such as the pathogenicity and evolution, still needs further study.
Collapse
Affiliation(s)
- Dongmei Jiang
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|