Yoshida T, Kitazawa Y, Komatsu K, Neriya Y, Ishikawa K, Fujita N, Hashimoto M, Maejima K, Yamaji Y, Namba S. Complete nucleotide sequence and genome structure of a Japanese isolate of hibiscus latent Fort Pierce virus, a unique tobamovirus that contains an internal poly(A) region in its 3' end.
Arch Virol 2014;
159:3161-5. [PMID:
25023335 DOI:
10.1007/s00705-014-2175-3]
[Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 06/30/2014] [Indexed: 11/26/2022]
Abstract
In this study, we detected a Japanese isolate of hibiscus latent Fort Pierce virus (HLFPV-J), a member of the genus Tobamovirus, in a hibiscus plant in Japan and determined the complete sequence and organization of its genome. HLFPV-J has four open reading frames (ORFs), each of which shares more than 98 % nucleotide sequence identity with those of other HLFPV isolates. Moreover, HLFPV-J contains a unique internal poly(A) region of variable length, ranging from 44 to 78 nucleotides, in its 3'-untranslated region (UTR), as is the case with hibiscus latent Singapore virus (HLSV), another hibiscus-infecting tobamovirus. The length of the HLFPV-J genome was 6431 nucleotides, including the shortest internal poly(A) region. The sequence identities of ORFs 1, 2, 3 and 4 of HLFPV-J to other tobamoviruses were 46.6-68.7, 49.9-70.8, 31.0-70.8 and 39.4-70.1 %, respectively, at the nucleotide level and 39.8-75.0, 43.6-77.8, 19.2-70.4 and 31.2-74.2 %, respectively, at the amino acid level. The 5'- and 3'-UTRs of HLFPV-J showed 24.3-58.6 and 13.0-79.8 % identity, respectively, to other tobamoviruses. In particular, when compared to other tobamoviruses, each ORF and UTR of HLFPV-J showed the highest sequence identity to those of HLSV. Phylogenetic analysis showed that HLFPV-J, other HLFPV isolates and HLSV constitute a malvaceous-plant-infecting tobamovirus cluster. These results indicate that the genomic structure of HLFPV-J has unique features similar to those of HLSV. To our knowledge, this is the first report of the complete genome sequence of HLFPV.
Collapse