1
|
Mrkvová M, Hančinský R, Predajňa L, Alaxin P, Achs A, Tomašechová J, Šoltys K, Mihálik D, Olmos A, Ruiz-García AB, Glasa M. High-Throughput Sequencing Discloses the Cucumber Mosaic Virus (CMV) Diversity in Slovakia and Reveals New Hosts of CMV from the Papaveraceae Family. PLANTS (BASEL, SWITZERLAND) 2022; 11:1665. [PMID: 35807616 PMCID: PMC9269241 DOI: 10.3390/plants11131665] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Cucumber mosaic virus (CMV; Cucumovirus, Bromoviridae) is an omnipresent virus characterized by a large host range and high genetic variability. Using high-throughput sequencing, we have characterized near complete genomes of 14 Slovak CMV variants from different plant hosts. Of these, three variants originated from the Papaveraceae species (oilseed poppy, common poppy and great celandine), previously poorly described as CMV natural hosts. Based on a BLAST search and phylogenetic analysis, the Slovak CMV isolates can be divided into two genetically different Groups, Ia and II, respectively. The SL50V variant, characterized by a divergent RNA2 sequence, potentially represents a reassortant variant. In four samples (T101, SL50V, CP2, MVU2-21), the presence of satellite CMV RNA was identified along with CMV. Although mechanically transmitted to experimental cucumber plants, the role of satellite RNA in the symptomatology observed could not be established due to a complex infection of original hosts with different viruses.
Collapse
Affiliation(s)
- Michaela Mrkvová
- Faculty of Natural Sciences, University of Ss. Cyril and Methodius, Nám. J. Herdu 2, 91701 Trnava, Slovakia; (M.M.); (R.H.); (P.A.); (J.T.); (D.M.)
- National Agricultural and Food Centre, Research Institute of Plant Production, Bratislavská cesta 122, 92168 Piešt’any, Slovakia
| | - Richard Hančinský
- Faculty of Natural Sciences, University of Ss. Cyril and Methodius, Nám. J. Herdu 2, 91701 Trnava, Slovakia; (M.M.); (R.H.); (P.A.); (J.T.); (D.M.)
- National Agricultural and Food Centre, Research Institute of Plant Production, Bratislavská cesta 122, 92168 Piešt’any, Slovakia
| | - Lukáš Predajňa
- Biomedical Research Center of the Slovak Academy of Sciences, Institute of Virology, Dúbravská cesta 9, 84505 Bratislava, Slovakia; (L.P.); (A.A.)
| | - Peter Alaxin
- Faculty of Natural Sciences, University of Ss. Cyril and Methodius, Nám. J. Herdu 2, 91701 Trnava, Slovakia; (M.M.); (R.H.); (P.A.); (J.T.); (D.M.)
- Biomedical Research Center of the Slovak Academy of Sciences, Institute of Virology, Dúbravská cesta 9, 84505 Bratislava, Slovakia; (L.P.); (A.A.)
| | - Adam Achs
- Biomedical Research Center of the Slovak Academy of Sciences, Institute of Virology, Dúbravská cesta 9, 84505 Bratislava, Slovakia; (L.P.); (A.A.)
| | - Jana Tomašechová
- Faculty of Natural Sciences, University of Ss. Cyril and Methodius, Nám. J. Herdu 2, 91701 Trnava, Slovakia; (M.M.); (R.H.); (P.A.); (J.T.); (D.M.)
- Biomedical Research Center of the Slovak Academy of Sciences, Institute of Virology, Dúbravská cesta 9, 84505 Bratislava, Slovakia; (L.P.); (A.A.)
| | - Katarína Šoltys
- Department of Microbiology and Virology, Comenius University in Bratislava, Ilkovičova 6, 84104 Bratislava, Slovakia;
| | - Daniel Mihálik
- Faculty of Natural Sciences, University of Ss. Cyril and Methodius, Nám. J. Herdu 2, 91701 Trnava, Slovakia; (M.M.); (R.H.); (P.A.); (J.T.); (D.M.)
- National Agricultural and Food Centre, Research Institute of Plant Production, Bratislavská cesta 122, 92168 Piešt’any, Slovakia
| | - Antonio Olmos
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Ctra, Moncada-Náquera Km 4.5, 46113 Moncada, Spain; (A.O.); (A.B.R.-G.)
| | - Ana Belén Ruiz-García
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Ctra, Moncada-Náquera Km 4.5, 46113 Moncada, Spain; (A.O.); (A.B.R.-G.)
| | - Miroslav Glasa
- Faculty of Natural Sciences, University of Ss. Cyril and Methodius, Nám. J. Herdu 2, 91701 Trnava, Slovakia; (M.M.); (R.H.); (P.A.); (J.T.); (D.M.)
- Biomedical Research Center of the Slovak Academy of Sciences, Institute of Virology, Dúbravská cesta 9, 84505 Bratislava, Slovakia; (L.P.); (A.A.)
| |
Collapse
|
2
|
Thompson JR, Langenhan JL, Fuchs M, Perry KL. Genotyping of Cucumber mosaic virus isolates in western New York State during epidemic years: Characterization of an emergent plant virus population. Virus Res 2015; 210:169-77. [PMID: 26254084 DOI: 10.1016/j.virusres.2015.07.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 07/30/2015] [Accepted: 07/31/2015] [Indexed: 11/24/2022]
Abstract
In the early 2000s an epidemic of cucumber mosaic virus (CMV) spread within the Midwestern and Eastern US affecting snap and dry bean (Phaseolus vulgaris L.) cultivation. Fifty one CMV isolates from this period were partially characterized from varied hosts by sequencing a section from each of the three genomic RNAs. Aside from one subgroup II strain from pepper, all isolates, including those from snap bean, fell within the IA subgroup. The nucleotide sequence diversity of virus populations sampled at multiple sites and at different years was significantly higher than that of a population from single site in a single year, although in general the number of polymorphisms was low (<11%). Complementary DNA (cDNA) clones of Bn57, a representative isolate from snap bean, were engineered for the production of infectious in vitro RNA transcripts initiated from a T7 promoter. Infections from these cDNAs resulted in symptoms consistent with those of the original field isolate, indicating that a satellite RNA is not involved in symptom expression in snap bean. These infectious clones were used to assess symptom determinants and the effects of virus infection on plant growth. Inoculations with pseudorecombinants derived from Bn57 and the non-bean infecting strain Fny confirmed RNA2 as a specific determinant for snap bean infection. Bn57, along with almost all isolates identified in this study contained the Y631 locus in the 2a protein, a determinant for systemic infection in bean. The presence of this locus extended to all non-bean hosts except two pepper infecting isolates. Infection by Bn57 in snap bean had a significant effect on pod number and mass with a 55 and 41 percent reduction in greenhouse assays, respectively. To our knowledge Bn57 is the first CMV strain isolated from P. vulgaris to be fully sequenced and cloned, providing a useful tool for analyses of CMV-host interactions.
Collapse
Affiliation(s)
- Jeremy R Thompson
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, 334 Plant Science Building, Ithaca, NY 14853-5904, USA.
| | - Jamie L Langenhan
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, 334 Plant Science Building, Ithaca, NY 14853-5904, USA
| | - Marc Fuchs
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, New York State Agricultural Experiment Station, Geneva, NY 14456, USA
| | - Keith L Perry
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, 334 Plant Science Building, Ithaca, NY 14853-5904, USA
| |
Collapse
|